1
|
Yang B, Wang Q, Wei C, Sun Y, Li Y, Wei Y, Jiang Q, Huang Y. EGCG Alleviates Skeletal Muscle Oxidative Damage in Heat-Stressed Pigs via Keap1/PGAM5 Complex-Mediated Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39693506 DOI: 10.1021/acs.jafc.4c06573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The heat stress (HS) induced by high temperatures can result in oxidative damage to muscles, thereby compromising both muscle growth and immune function within the organism. Mitophagy serves as a pivotal pathway in alleviating excessive ROS production and subsequent oxidative damage. However, the potential role of epigallocatechin-3-gallate (EGCG), a natural antioxidant found in tea, in mitophagy under HS remains unexplored. Here, we present evidence of EGCG mitigating the oxidative-redox imbalance in porcine skeletal muscles induced by HS involving the antioxidant enzyme system mediated by the Keap1/Nrf2 pathway and mitophagy mediated by the PINK1/Parkin pathway. Importantly, we identified phosphate mutase 5 (PGAM5) for the first time as a key protein modulated by EGCG under HS conditions, regulating mitophagy. Inhibition of PGAM5 significantly attenuated the activation of mitophagy by EGCG. Molecular docking and dynamics simulations further suggested that EGCG directly binds to Keap1, disrupting the Keap1-PGAM5 protein interaction and thus promoting the release of PGAM5 and subsequently activating mitophagy. In summary, this study represents the first discovery of EGCG directly targeting Keap1/PGAM5-mediated mitophagy, which serves as a potential functional supplement for regulating the antioxidant capacity in pigs.
Collapse
Affiliation(s)
- Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chongwan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yangyang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
2
|
Rudolph TE, Roths M, Freestone AD, Yap SQ, Michael A, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. Biological sex impacts oxidative stress in skeletal muscle in a porcine heat stress model. Am J Physiol Regul Integr Comp Physiol 2024; 326:R578-R587. [PMID: 38708546 PMCID: PMC11381024 DOI: 10.1152/ajpregu.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; n = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; n = 8/sex) or 7 days (HS7; n = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; P < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (P = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (P = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (P ≤ 0.03) and HS7 males (P = 0.02). Notably, HS increased skeletal muscle Ca2+ deposition (P = 0.05) and was greater in HS1 females compared with TN females (P < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA)2a protein abundance (P < 0.01); however, Ca2+ ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.NEW & NOTEWORTHY Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Sau Qwan Yap
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyona Michael
- Department of Vet Diagnostic & Production Animal Med, Iowa State University, Ames, Iowa, United States
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, Texas, United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
3
|
Rudolph TE, Roths M, Freestone AD, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. The contribution of biological sex to heat stress-mediated outcomes in growing pigs. Animal 2024; 18:101168. [PMID: 38762992 DOI: 10.1016/j.animal.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Heat stress (HS) negatively impacts a variety of production parameters in growing pigs; however, the impact of biological sex on the HS response is largely unknown. To address this, 48 crossbred barrows and gilts (36.8 ± 3.7 kg BW) were individually housed and assigned to one of three constant environmental conditions: (1) thermoneutral (TN) (20.8 ± 1.6 °C; 62.0 ± 4.7% relative humidity; n = 8/sex), (2) HS (39.4 ± 0.6 °C; 33.7 ± 6.3% relative humidity) for 1 d (HS1; n = 8/sex), or (3) or for 7 d (HS7; n = 8/sex). As expected, HS increased rectal temperature (Tr) following 1 d of HS (1.0 °C; P < 0.0001) and 7 d of HS (0.9 °C; P < 0.0001). By 7 d, heat-stressed gilts were cooler than barrows (0.4 °C; P = 0.016), despite identical heating conditions. There was a main effect of sex such that barrows had higher Tr than gilts (P = 0.031). Heat-stressed pigs on d 1 had marked reductions in feed intake and BW compared to TN (P < 0.0001). One day of HS resulted in negative gain to feed (G:F) in barrows and gilts and was reduced compared to TN (P < 0.0001). Notably, following 1 d of HS, the variability of G:F was greater in gilts than in barrows. Between 1 and 7 d of HS, G:F improved in barrows and gilts and were similar to TN pigs, even though HS barrows had higher Tr than gilts over this period. Heat stress for 1 and 7 d reduced empty gastrointestinal tract weight compared to TN (P < 0.0001). Interestingly, HS7 gilts had decreased gastrointestinal tract weight compared to HS1 gilts (2.43 vs 2.72 kg; P = 0.03), whereas it was similar between HS1 and HS7 barrows. Lastly, a greater proportion of gastrointestinal contents was in the stomach of HS1 pigs compared to TN and HS7 (P < 0.05), which is suggestive of decreased gastric emptying. Overall, HS barrows maintained an elevated Tr compared to HS gilts through the duration of the experiment but also maintained similar growth and production metrics compared to gilts, despite this higher temperature.
Collapse
Affiliation(s)
- T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - R P Rhoads
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - S H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA; Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA. %
| |
Collapse
|
4
|
Rudolph TE, Roths M, Freestone AD, White-Springer SH, Rhoads RP, Baumgard LH, Selsby JT. Heat stress alters hematological parameters in barrows and gilts. J Anim Sci 2024; 102:skae123. [PMID: 38706303 PMCID: PMC11141298 DOI: 10.1093/jas/skae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
The purpose of this investigation was to establish the role biological sex plays in circulating factors following heat stress (HS). Barrows and gilts (36.8 ± 3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ± 1.6 °C; 62.0% ± 4.7% relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ± 0.6 °C; 33.7% ± 6.3% relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) d. Circulating glucose decreased as a main effect of the environment (P = 0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P < 0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P = 0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P = 0.02) and HS7 barrows (P = 0.04). Cortisol, insulin, glucagon, T3, and T4 were reduced as a main effect of environment (P ≤ 0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P ≤ 0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P ≤ 0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P ≤ 0.01) and HS7 barrows had less neutrophils compared to TN barrows (P = 0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte numbers were similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P ≤ 0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, 77843, USA
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
5
|
Roths M, Abeyta MA, Wilson B, Rudolph TE, Hudson MB, Rhoads RP, Baumgard LH, Selsby JT. Effects of heat stress on markers of skeletal muscle proteolysis in dairy cattle. J Dairy Sci 2023:S0022-0302(23)00356-9. [PMID: 37349209 DOI: 10.3168/jds.2022-22678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/20/2023] [Indexed: 06/24/2023]
Abstract
Heat stress (HS) markedly affects postabsorptive energetics and protein metabolism. Circulating urea nitrogen increases in multiple species during HS and it has been traditionally presumed to stem from increased skeletal muscle proteolysis; however, this has not been empirically established. We hypothesized HS would increase activation of the calpain and proteasome systems as well as increase degradation of autophagosomes in skeletal muscle. To test this hypothesis, lactating dairy cows (∼139 d in milk; parity ∼2.4) were exposed to thermal neutral (TN) or HS conditions for 7 d (8 cows/environment). To induce HS, cattle were fitted with electric blankets for the duration of the heating period and the semitendinosus was biopsied on d 7. Heat stress increased rectal temperature (1.3°C) and respiratory rate (38 breaths per minute) while it decreased dry matter intake (34%) and milk yield (32%). Plasma urea nitrogen (PUN) peaked following 3 d (46%) and milk urea nitrogen (MUN) peaked following 4 d of environmental treatment and while both decreased thereafter, PUN and MUN remained elevated compared with TN (PUN: 20%; MUN: 27%) on d 7 of HS. Contrary to expectations, calpain I and II abundance and activation and calpain activity were similar between groups. Likewise, relative protein abundance of E3 ligases, muscle atrophy F-box protein/atrogin-1 and muscle ring-finger protein-1, total ubiquitinated proteins, and proteasome activity were similar between environmental treatments. Finally, autophagosome degradation was also unaltered by HS. Counter to our hypothesis, these results suggest skeletal muscle proteolysis is not increased following 7 d of HS and call into question the presumed dogma that elevated skeletal muscle proteolysis, per se, drives increased AA mobilization.
Collapse
Affiliation(s)
- M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716
| | - T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M B Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716
| | - R P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
6
|
McCormick JJ, Côté MD, King KE, McManus MK, Goulet N, Dokladny K, Moseley PL, Kenny GP. The autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. Am J Physiol Regul Integr Comp Physiol 2022; 323:R467-R482. [PMID: 35993558 DOI: 10.1152/ajpregu.00110.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy is essential to maintaining cellular homeostasis in all eukaryotic cells and to tolerance of acute stressors such as starvation, heat, and recovery following exercise. Limited information exists regarding the exercise intensity-dependent autophagic response in humans, and it is unknown how environmental heat stress may modulate this response. Therefore, we evaluated autophagy and accompanying pathways of cellular stress (the heat shock response [HSR], apoptosis, and acute inflammation) in peripheral blood mononuclear cells (PBMCs) from 10 young men (mean [SD]; 22 [2] years) before, immediately after and up to 6h post-exercise recovery from 30 minutes of low-, moderate-, and high-intensity semi-recumbent cycling (40, 55 and 70% of maximal oxygen consumption (VO2max), respectively)in a temperate environment (25°C) and at 70% of VO2max in a hot environment (40°C). Changes in protein content were analyzed via Western blot. Each increase in exercise intensity was associated with elevations in mean body temperature. LC3-II increased following moderate-intensity exercise, with further increases following high-intensity exercise (p < 0.05). However, an increase in beclin-2 and ULK1, with a decrease in p62 was only observed after high-intensity exercise, which was paralleled by elevated TNF-α and cleaved-caspase-3, with the HSR peaking at 6h after exercise (p < 0.05). When exercise was performed in the heat, greater LC3-II and cleaved-caspase-3 accumulation was observed, however beclin-2 declined in recovery (p < 0.05). Therefore, our findings indicate that autophagy in PBMCs during exercise may be associated with greater heat strain exhibited during increasing exercise intensities, which is modulated by exposure to heat.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Melissa D Côté
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Pope L Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,College of Health Solutions, Arizona State University, Phoenix, Arizona, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Rudolph TE, Roach CM, Baumgard LH, Ross JW, Keating AF, Selsby JT. The impact of Zearalenone on heat-stressed skeletal muscle in pigs. J Anim Sci 2022; 100:6652325. [PMID: 35908787 PMCID: PMC9339304 DOI: 10.1093/jas/skac215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) and Zearalenone (ZEN) exposure affect growth, production efficiency, and animal welfare; and, under extreme situations, both can be lethal. Given that both HS and ZEN independently cause oxidative stress, we hypothesized that simultaneous exposure to HS and ZEN would cause greater oxidative stress in porcine skeletal muscle than either condition, alone. To address this hypothesis, crossbred, prepubertal gilts were treated with either vehicle control (cookie dough) or ZEN (40 μg/kg) and exposed to either thermoneutral (TN; 21.0 °C) or 12-h diurnal HS conditions (night: 32.2 °C; day: 35.0 °C) for 7 d. Pigs were euthanized immediately following the environmental challenge and the glycolytic (STW) and oxidative (STR) portions of the semitendinosus muscle were collected for analysis. In STR, malondialdehyde (MDA) concentration, a marker of oxidative stress, tended to increase following ZEN exposure (P = 0.08). HS increased CAT (P = 0.019) and SOD1 (P = 0.049) protein abundance, while ZEN decreased GPX1 protein abundance (P = 0.064) and activity (P = 0.036). In STR, HS did not alter protein expression of HSP27, HSP70, or HSP90. Conversely, in STW, MDA-modified proteins remained similar between all groups. Consistent with STR, ZEN decreased GPX1 (P = 0.046) protein abundance in STW. In STW, ZEN decreased protein abundance of HSP27 (P = 0.032) and pHSP27 (P = 0.0068), while HS increased protein expression of HSP70 (P = 0.04) and HSP90 (P = 0.041). These data suggest a muscle fiber type-specific response to HS or ZEN exposure, potentially rendering STR more susceptible to HS- and/or ZEN-induced oxidative stress, however, the combination of HS and ZEN did not augment oxidative stress.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Josh T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Zhao W, Green MP, Marth CD, Liu F, Le HH, Lynch GS, Bell AW, Leury BJ, Dunshea FR, Cottrell JJ. Gestational heat stress alters skeletal muscle gene expression profiles and vascularity in fetal pigs in a sexually dimorphic manner. J Anim Sci Biotechnol 2022; 13:76. [PMID: 35836286 PMCID: PMC9284688 DOI: 10.1186/s40104-022-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is evidence that sow heat stress (HS) during gestation affects fetal development with implications for impaired muscle growth. We have previously demonstrated that maternal HS during early to mid-gestation compromised muscle fibre hyperplasia in developing fetal pigs. Thus, we hypothesised these phenotypic changes are associated with a change in expression of genes regulating fetal skeletal muscle development and metabolism. To test this, at d 60 of gestation, RNA sequencing and immunohistochemistry were performed on fetal longissimus dorsi (LD) muscle biopsies collected from pregnant gilts that had experienced either thermoneutral control (CON, 20 °C, n = 7 gilts, 18 LD samples) or controlled HS (cyclic 28 to 33 °C, n = 8 gilts, 23 LD samples) conditions for 3 weeks. RESULTS A total of 282 genes were differentially expressed between the HS and CON groups in female LD muscles (false discovery rate (FDR) ≤ 0.05), whereas no differentially expressed genes were detected in male LD muscles between the two groups (FDR > 0.05). Gestational HS increased the expression of genes associated with transcription corepressor activity, adipogenesis cascades, negative regulation of angiogenesis and pro-inflammatory signalling in female LD muscles. Immunohistochemical analyses revealed a decreased muscle vascularity density in fetuses from HS group for both sexes compared to those from the CON group (P = 0.004). CONCLUSIONS These results reveal gilt HS during early to mid-gestation altered gene expression profiles in fetal LD muscles in a sexually dimorphic manner. The molecular responses, including transcription and angiogenesis repressions and enhanced adipogenesis cascades, were exclusively observed in females. However, the associated reductions in muscle vascularity were observed independently of sexes. Collectively this may indicate female fetal pigs are more adaptive to gestational HS in terms of gene expression changes, and/or there may be sexually dimorphic differences with respect to the timing of muscle molecular responses to gestational HS.
Collapse
Affiliation(s)
- Weicheng Zhao
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Mark P Green
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christina D Marth
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Fan Liu
- Rivalea Australia Pty Ltd, Corowa, NSW, 2646, Australia
| | - Hieu H Le
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Alan W Bell
- Department of Animal Science, Cornell University, Ithaca, NY, 14853-4801, USA
| | - Brian J Leury
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Jeremy J Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
9
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
10
|
McCormick JJ, King KE, Rutherford MM, Meade RD, Notley SR, Akerman AP, Dokladny K, Kenny GP. Effect of extracellular hyperosmolality during normothermia and hyperthermia on the autophagic response in peripheral blood mononuclear cells from young men. J Appl Physiol (1985) 2022; 132:995-1004. [PMID: 35238651 DOI: 10.1152/japplphysiol.00661.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat-stress induced dehydration is associated with extracellular hyperosmolality. To counteract the associated stress, cells employ cytoprotective mechanisms, including autophagy, however, the autophagic response to hyperosmotic stress has yet to be evaluated in humans. Thus, we investigated autophagy and associated cellular stress pathways (the heat shock response [HSR], apoptosis, and the acute inflammatory response) to isosmotic and hyperosmotic conditions with and without hyperthermia in twelve young men (mean [SD]; 25 [5] years). Participants received a 90-min intravenous infusion of either isosmotic (ISO; 0.9% NaCl; serum osmolality of 293 [4] mOsm/kg) or hyperosmotic (HYP; 3.0% NaCl; 300 [6] mOsm/kg) saline, followed by passive whole-body heating using a water perfused suit to increase esophageal temperature by ~0.8⁰C. Peripheral blood mononuclear cells were harvested at baseline (pre-infusion), post-infusion, and after heating, and changes in protein content were analyzed via Western blotting. Post-infusion, the LC3-II/I ratio was higher in HYP compared to ISO infusion (p<0.001), although no other protein changes were observed (all p>0.050). Following passive heating, autophagy increased in HYP, as demonstrated by an increase in LC3-II from baseline (p=0.004) and an elevated LC3-II/I ratio compared to ISO (p=0.035), and a decrease in p62 when compared to the ISO condition (p=0.019). This was accompanied by an elevation in cleaved caspase-3 following heating in the HYP condition (p<0.010), however, the HSR and acute inflammatory response did not change under any condition (all p>0.050). Taken together, our findings indicate that serum hyperosmolality induces autophagy and apoptotic signaling during mild hyperthermia with minimal autophagic activation during normothermia.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Two hours of heat stress induces MAP-kinase signaling and autophagasome accumulation in C2C12 myotubes. Cell Biochem Biophys 2022; 80:367-373. [PMID: 35122618 DOI: 10.1007/s12013-021-01054-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 12/09/2022]
Abstract
Short bouts of heat can induce a hormetic stress response, whereas prolonged or excessive exposure can elicit detrimental effects. We previously demonstrated an increase in autophagic signaling in C2C12 myotubes in response to 1 h of heat at 40 °C. In opposition, longer durations of heat exposure (e.g., 12 and 24 h) lead to an accumulation of autophagasomes and elevations in markers of cellular inflammation, oxidative stress, and apoptosis. Whether a longer, yet moderate, duration of 2 h of heat further enhances autophagic flux and attenuates stress and inflammatory signaling, or transitions the cell toward a dysregulation of autophagy is unclear. In this study, C2C12 myotubes were maintained at 37 °C or exposed to 40 °C (HT) for 2 h, and harvested immediately or following 2, 8, or 24 h of recovery. Two hours of HT immediately increased pAMPK (T172; p = 0.001), and subsequently increased pULK1 (S555) at 2 h of recovery (p = 0.028). LC3 II was increased at 8 h (p = 0.043) and 24 h (p = 0.015) of recovery, whereas p62 was elevated at 2 h (p = 0.002) and 8 h (p < 0.001) of recovery, but returned to baseline by 24 h. In Bafilomycin A1 treated cells, p62 was further increased immediately following HT (p = 0.041). There was also a significant elevation in p-p38 (Thr180/Try182), pJNK (Thr183/Tyr185), and pNFκB (Ser536). These findings suggest that as short as 2 h of heat exposure contributes to cell stress and accumulation of autophagasomes in skeletal muscle.
Collapse
|
12
|
Tardo-Dino PE, Taverny C, Siracusa J, Bourdon S, Baugé S, Koulmann N, Malgoyre A. Effect of heat acclimation on metabolic adaptations induced by endurance training in soleus rat muscle. Physiol Rep 2021; 9:e14686. [PMID: 34405575 PMCID: PMC8371354 DOI: 10.14814/phy2.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
Aerobic training leads to well‐known systemic metabolic and muscular alterations. Heat acclimation may also increase mitochondrial muscle mass. We studied the effects of heat acclimation combined with endurance training on metabolic adaptations of skeletal muscle. Thirty‐two rats were divided into four groups: control (C), trained (T), heat‐acclimated (H), and trained with heat acclimation (H+T) for 6 weeks. Soleus muscle metabolism was studied, notably by the in situ measurement of mitochondrial respiration with pyruvate (Pyr) or palmitoyl‐coenzyme A (PCoA), under phosphorylating conditions (V˙max) or not (V˙0). Aerobic performance increased, and retroperitoneal fat mass decreased with training, independently of heat exposure (p < 0.001 and p < 0.001, respectively). Citrate synthase and hydroxyl‐acyl‐dehydrogenase activity increased with endurance training (p < 0.001 and p < 0.01, respectively), without any effect of heat acclimation. Training induced an increase of the V˙0 and V˙max for PCoA (p < .001 and p < .01, respectively), without interference with heat acclimation. The training‐induced increase of V˙0 (p < 0.01) for pyruvate oxidation was limited when combined with heat acclimation (−23%, p < 0.01). Training and heat acclimation independently increased the V˙max for pyruvate (+60% p < 0.001 and +50% p = 0.01, respectively), without an additive effect of the combination. Heat acclimation doubled the training effect on muscle glycogen storage (p < 0.001). Heat acclimation did not improve mitochondrial adaptations induced by endurance training in the soleus muscle, possibly limiting the alteration of carbohydrate oxidation while not facilitating fatty‐acid utilization. Furthermore, the increase in glycogen storage observed after HA combined with endurance training, without the improvement of pyruvate oxidation, appears to be a hypoxic metabolic phenotype.
Collapse
Affiliation(s)
- Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Cindy Taverny
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Julien Siracusa
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphanie Bourdon
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphane Baugé
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Nathalie Koulmann
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Alexandra Malgoyre
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| |
Collapse
|
13
|
Mayorga EJ, Horst EA, Goetz BM, Rodríguez-Jiménez S, Abeyta MA, Al-Qaisi M, Lei S, Rhoads RP, Selsby JT, Baumgard LH. Rapamycin administration during an acute heat stress challenge in growing pigs. J Anim Sci 2021; 99:6265784. [PMID: 33950189 DOI: 10.1093/jas/skab145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
14
|
Rudolph TE, Mayorga EJ, Roths M, Rhoads RP, Baumgard LH, Selsby JT. The effect of Mitoquinol (MitoQ) on heat stressed skeletal muscle from pigs, and a potential confounding effect of biological sex. J Therm Biol 2021; 97:102900. [PMID: 33863453 DOI: 10.1016/j.jtherbio.2021.102900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/23/2023]
Abstract
Heat stress (HS) poses a major threat to human health and agricultural production. Oxidative stress and mitochondrial dysfunction appear to play key roles in muscle injury caused by HS. We hypothesized that mitoquinol (MitoQ), would alleviate oxidative stress and cellular dysfunction in skeletal muscle during HS. To address this, crossbred barrows (male pigs) were treated with placebo or MitoQ (40 mg/d) and were then exposed to thermoneutral (TN; 20 °C) or HS (35 °C) conditions for 24 h. Pigs were euthanized following the environmental challenge and the red portion of the semitendinosus (STR) was collected for analysis. Unexpectedly, malondialdehyde concentration, an oxidative stress marker, was similar between environmental and supplement treatments. Heat stress decreased LC3A/B-I (p < 0.05) and increased the ratio of LC3A/B-II/I (p < 0.05), while p62 was similar among groups suggesting increased degradation of autophagosomes during HS. These outcomes were in disagreement with our previous results in muscle from gilts (female pigs). To probe the impact of biological sex on HS-mediated injury in skeletal muscle, we compared STR from these barrows to archived STR from gilts subjected to a similar environmental intervention. We confirmed our previous findings of HS-mediated dysfunction in muscle from gilts but not barrows. These data also raise the possibility that muscle from gilts is more susceptible to environment-induced hyperthermia than muscle from barrows.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
McCormick JJ, Dokladny K, Moseley PL, Kenny GP. Autophagy and heat: a potential role for heat therapy to improve autophagic function in health and disease. J Appl Physiol (1985) 2021; 130:1-9. [DOI: 10.1152/japplphysiol.00542.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a crucial cell survival mechanism that involves the degradation and recycling of old or damaged organelles and proteins to maintain cellular homeostasis. Impairments in autophagy are central to the pathogenesis of many conditions including metabolic and neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, and aging. Although various pharmacological agents may be able to stimulate autophagic function, to our knowledge, few interventions exist that have been deemed safe and effective in humans. An emerging body of evidence suggests that targeting the autophagic pathway via passive heating (heat therapy) may stimulate autophagic function. Therefore, the primary focus of the present review is to analyze the mechanisms in which passive heating induces autophagy as defined by in vitro and in vivo (animal and human) models. Our secondary focus is to examine the implications of utilizing passive heating to restore dysfunctional autophagy in chronic disease and aging. Finally, we discuss potential therapeutic strategies to implement passive heating to stimulate autophagic function in humans.
Collapse
Affiliation(s)
- James J. McCormick
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Karol Dokladny
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico
| | - Pope L. Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Shuler KT, Wilson BE, Muñoz ER, Mitchell AD, Selsby JT, Hudson MB. Muscle Stem Cell-Derived Extracellular Vesicles Reverse Hydrogen Peroxide-Induced Mitochondrial Dysfunction in Mouse Myotubes. Cells 2020; 9:E2544. [PMID: 33256005 PMCID: PMC7760380 DOI: 10.3390/cells9122544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) hold great potential as a regenerative therapeutic but have met numerous challenges in treating systemic muscle diseases. Muscle stem cell-derived extracellular vesicles (MuSC-EVs) may overcome these limitations. We assessed the number and size distribution of extracellular vesicles (EVs) released by MuSCs ex vivo, determined the extent to which MuSC-EVs deliver molecular cargo to myotubes in vitro, and quantified MuSC-EV-mediated restoration of mitochondrial function following oxidative injury. MuSCs released an abundance of EVs in culture. MuSC-EVs delivered protein cargo into myotubes within 2 h of incubation. Fluorescent labeling of intracellular mitochondria showed co-localization of delivered protein and mitochondria. Oxidatively injured myotubes demonstrated a significant decline in maximal oxygen consumption rate and spare respiratory capacity relative to untreated myotubes. Remarkably, subsequent treatment with MuSC-EVs significantly improved maximal oxygen consumption rate and spare respiratory capacity relative to the myotubes that were damaged but received no subsequent treatment. Surprisingly, MuSC-EVs did not affect mitochondrial function in undamaged myotubes, suggesting the cargo delivered is able to repair but does not expand the existing mitochondrial network. These data demonstrate that MuSC-EVs rapidly deliver proteins into myotubes, a portion of which co-localizes with mitochondria, and reverses mitochondria dysfunction in oxidatively-damaged myotubes.
Collapse
Affiliation(s)
- Kyle T. Shuler
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Brittany E. Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Eric R. Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Andrew D. Mitchell
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, 2356G Kildee Hall, Ames, IA 50011, USA;
| | - Matthew B. Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| |
Collapse
|
17
|
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020; 154:190-202. [PMID: 32622199 DOI: 10.1016/j.theriogenology.2020.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
In cattle, genetic variation exists in regulation of body temperature and stabilization of cellular function during heat stress. There are opportunities to reduce the impact of heat stress on cattle production by identifying the causative mutations responsible for genetic variation in thermotolerance and transferring specific alleles that confer thermotolerance to breeds not adapted to hot climates. An example of a mutation conferring superior ability to regulate body temperature is the group of frame-sift mutations in the prolactin receptor gene (PRLR) that lead to a truncated receptor and development of cattle with a short, sleek hair coat. Slick mutations in PRLR have been found in several extant breeds derived from criollo cattle. The slick mutation in Senepol cattle has been introgressed into dairy cattle in Puerto Rico, Florida and New Zealand. An example of a mutation that confers cellular protection against elevated body temperature is a deletion mutation in the promoter region of a heat shock protein 70 gene called HSPA1L. Inheritance of the mutation results in amplification of the transcriptional response of HSPA1L to heat shock and increased cell survival. The case of PRLR provides a promising example of the efficacy of the genetic approach outlined in this paper. Identification of other mutations conferring thermotolerance at the whole-animal or cellular level will lead to additional opportunities for using genetic solutions to reduce the impact of heat stress.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
18
|
Srikanth K, Park JE, Ji SY, Kim KH, Lee YK, Kumar H, Kim M, Baek YC, Kim H, Jang GW, Choi BH, Lee SD. Genome-Wide Transcriptome and Metabolome Analyses Provide Novel Insights and Suggest a Sex-Specific Response to Heat Stress in Pigs. Genes (Basel) 2020; 11:genes11050540. [PMID: 32403423 PMCID: PMC7291089 DOI: 10.3390/genes11050540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) negatively impacts pig production and swine health. Therefore, to understand the genetic and metabolic responses of pigs to HS, we used RNA-Seq and high resolution magic angle spinning (HR-MAS) NMR analyses to compare the transcriptomes and metabolomes of Duroc pigs (n = 6, 3 barrows and 3 gilts) exposed to heat stress (33 °C and 60% RH) with a control group (25 °C and 60% RH). HS resulted in the differential expression of 552 (236 up, 316 down) and 879 (540 up, 339 down) genes and significant enrichment of 30 and 31 plasma metabolites in female and male pigs, respectively. Apoptosis, response to heat, Toll-like receptor signaling and oxidative stress were enriched among the up-regulated genes, while negative regulation of the immune response, ATP synthesis and the ribosomal pathway were enriched among down-regulated genes. Twelve and ten metabolic pathways were found to be enriched (among them, four metabolic pathways, including arginine and proline metabolism, and three metabolic pathways, including pantothenate and CoA biosynthesis), overlapping between the transcriptome and metabolome analyses in the female and male group respectively. The limited overlap between pathways enriched with differentially expressed genes and enriched plasma metabolites between the sexes suggests a sex-specific response to HS in pigs.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Jong-Eun Park
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Yoo Kyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Himansu Kumar
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Youl Chang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Hana Kim
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Gul-Won Jang
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Bong-Hwan Choi
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
19
|
Lou SL, Zhang XY, Wang DH. HSP70 plays a role in the defense of acute and chronic heat stress in Mongolian gerbils (Meriones unguiculatus). J Therm Biol 2019; 86:102452. [PMID: 31789240 DOI: 10.1016/j.jtherbio.2019.102452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
Mongolian gerbils (Meriones unguiculatus) show a wide thermal neutral zone (TNZ, 26.5-38.9 °C). Whether heat shock proteins (HSPs) are involved in thermal tolerance for gerbils has still been unknown. We investigated the effects of acute and chronic high temperature within and above TNZ on the expressions of HSP70 and HSP90 and oxidative status in Mongolian gerbils, to test the hypothesis that the gerbils need increase the expression in HSPs to defense the acute and chronic heat stress. In experiment I, 50 Mongolian gerbils were exposed to 23 °C, 27 °C, 37 °C, 40 °C and 43.5 °C for 80 min respectively, and then sacrificed 12 h after treatment. HSP70 expression in the liver increased at 40 °C compared to that at 23 °C, but did not change after 27 °C, 37 °C or 43.5 °C exposure. There were no differences in HSP90 expression, oxidative stress parameters such as malonaldehyde (MDA) and hydrogen peroxide (H2O2), or antioxidant parameters such as superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in the liver. HSP70 and HSP90 expression both in the heart and brain showed no differences among groups. In experiment II, another set of 30 gerbils were acclimated to 23 °C, 27 °C and 37 °C for 21 days, respectively. During chronic acclimation, HSP70 expression increased and H2O2 level decreased in the liver in 37 °C group compared to other two groups. Both H2O2 and SOD in the brain decreased in 37 °C group, but there were no differences in HSP70, MDA or T-AOC in the brain. These data indicate that Mongolian gerbils can maintain basal levels of HSPs after acute exposure to temperatures within the wide TNZ, but rely on increased HSP70 in the liver to protect from heat damage at temperatures above TNZ and during chronic heat acclimation. The increased HSP70 expression in the liver may contribute to keeping from heat damage in desert rodents.
Collapse
Affiliation(s)
- Shu-Lei Lou
- State Key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pests Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Wang J, Xue X, Liu Q, Zhang S, Peng M, Zhou J, Chen L, Fang F. Effects of duration of thermal stress on growth performance, serum oxidative stress indices, the expression and localization of ABCG2 and mitochondria ROS production of skeletal muscle, small intestine and immune organs in broilers. J Therm Biol 2019; 85:102420. [PMID: 31657761 DOI: 10.1016/j.jtherbio.2019.102420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 02/09/2023]
Abstract
The purpose of the current study was to investigate that effect of duration of thermal stress on growth performance, oxidative stress indices in serum, the expression and localization of ABCG2, and mitochondria ROS production in skeletal muscle, small intestine and immune organs, and then to further reveal correlations between indicators. At 28 days of age, sixty broilers were randomly divided into the control group (25 ± 2 °C; 24 h/day) and the heat stress group (36 ± 2 °C; 8 h/day lasted for 1 week or 2 weeks). Fifteen broilers per group were respectively euthanized, and some samples were respectively collected from the control and the heat stress groups at the end of the 1st week or the 2nd week of heat stress. A typical heat stress response has been observed at this temperature. Compared with the control group, the birds subjected to heat stress at the end of the 1st week reduced (P < 0.05) body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), the activity of serum antioxidant enzyme and content of glutathione (GSH), while increased (P < 0.05) feed conversion ratio (FCR), serum corticosterone and malondialdehyde (MDA) levels. However, when the heat stress lasted for the end of the 2nd week, there was no significant difference (P > 0.05) in ADFI, ADG, FCR and serum contents of corticosterone, MDA and GSH. Regardless of duration of thermal stress, the localization of ABCG2 protein had no change. Moreover, heat stress also did not affect (P > 0.05) the IOD of the ABCG2 positive portion and the expression of the ABCG2 mRNA in the pectorales, crureus, duodenum, jejunum, ileum and spleen, while significantly increased (P < 0.05) the corresponding tissues ROS production at the end of the 1st week of heat stress. In contrast, at the end of the 2nd week of heat stress, IOD of the ABCG2 positive portion and the expression of the ABCG2 mRNA in heat stress group significantly increased (P < 0.05), while the corresponding tissues ROS production had no difference (P > 0.05) compared to the control group. Collectively, duration of thermal stress affects growth performance, serum oxidative stress indices, and the expression of ABCG2 and the ROS production of broiler tissues in a time-dependent manner. There is a negative correlation between the expression of ABCG2 and the ROS production in the corresponding tissues under heat stress.
Collapse
Affiliation(s)
- Juhua Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Xiuheng Xue
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Qi Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Suzi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mengling Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Jie Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding in Anhui Provincial, Hefei, China
| |
Collapse
|