1
|
Labra FA, San Martín VA, Jahnsen-Guzmán N, Fernández C, Zapata J, García-Huidobroro MR, Duarte C, García-Herrera C, Vivanco JF, Lardies MA, Lagos NA. Metabolic rate allometry in intertidal mussels across environmental gradients: The role of coastal carbonate system parameters in mediating the effects of latitude and temperature. MARINE POLLUTION BULLETIN 2022; 184:114149. [PMID: 36162293 DOI: 10.1016/j.marpolbul.2022.114149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus purpuratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.
Collapse
Affiliation(s)
- Fabio A Labra
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.
| | - Valeska A San Martín
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Fernández
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Javier Zapata
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - M Roberto García-Huidobroro
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Cristián Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan F Vivanco
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Marco A Lardies
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile; Instituto Milenio de Socio-Ecología Costera - SECOS, Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Instituto Milenio de Socio-Ecología Costera - SECOS, Santiago, Chile
| |
Collapse
|
2
|
Manríquez N, Bacigalupe LD, Lardies MA. Variable Environments in an Upwelling System Trigger Differential Thermal Sensitivity in a Low Intertidal Chiton. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.753486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental variability in coastal oceans associated with upwelling dynamics probably is one of the most pervasive forces affecting the physiological performance of marine life. As the environmental temperature is the abiotic factor with major incidence in the physiology and ecology of marine ectotherms, the abrupt temperature changes in upwelling systems could generate important variations in these organisms’ functional processes. The relationship between ambient temperature and physiological performance can be described through a thermal performance curve (TPC). The parameters of this curve usually show geographic variation usually is in accordance with the predictions of the climate variability hypothesis (CVH), which states that organisms inhabiting more variable environments should have broader ranges of environmental tolerance in order to cope with the fluctuating environmental conditions they experience. Here we study the effect generated by the environmental variability in an active upwelling zone on the physiological performance of the marine ectotherm Achanthopleura echinata. In particular, we compared the parameters of the TPC and the metabolic rate of two populations of A. echinata, one found in high semi-permanent upwelling (Talcaruca), while the other is situated in an adjacent area with seasonal upwelling (Los Molles) and therefore more stable environmental conditions. Our results show that: (1) oxygen consumption increases with body size and this effect is more significant in individuals from the Talcaruca population, (2) optimal temperature, thermal breadth, upper critical limit and maximum performance were higher in the population located in the area of high environmental heterogeneity and (3) individuals from Talcaruca showed greater variance in optimal temperature, thermal breadth, upper critical limit but not in maximum performance. Although it is clear that a variable environment affects the thermal physiology of organisms, expanding their tolerance ranges and generating energy costs in the performance of individuals, it is relevant to note that upwelling systems are multifactorial phenomena where the rise of water masses modifies not only temperature, but also decreases O2, pH, and increases pCO2 which in turn could modify metabolism and TPC.
Collapse
|
3
|
Matesanz S, Blanco-Sánchez M, Ramos-Muñoz M, de la Cruz M, Benavides R, Escudero A. Phenotypic integration does not constrain phenotypic plasticity: differential plasticity of traits is associated to their integration across environments. THE NEW PHYTOLOGIST 2021; 231:2359-2370. [PMID: 34097309 DOI: 10.1111/nph.17536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Understanding constraints to phenotypic plasticity is key given its role on the response of organisms to environmental change. It has been suggested that phenotypic integration, the structure of trait covariation, could limit trait plasticity. However, the relationship between plasticity and integration is far from resolved. Using a database of functional plasticity to drought of a Mediterranean shrub that included 20 ecophysiological traits, we assessed environmentally-induced changes in phenotypic integration and whether integration constrained the expression of plasticity, accounting for the within-environment phenotypic variation of traits. Furthermore, we provide the first test of the association between differential trait plasticity and trait integration across an optimum and a stressful environment. Phenotypic plasticity was positively associated with phenotypic integration in both environments, but this relationship was lost when phenotypic variation was considered. The similarity in the plastic response of two traits predicted their integration across environments, with integrated traits having more similar plasticity. Such variation in the plasticity of traits partly explained the lower phenotypic integration found in the stressful environment. We found no evidence that integration may constitute an internal constraint to plasticity. Rather, we present the first empirical demonstration that differences in plastic responses may involve a major reorganization of the relationships among traits, and challenge the notion that stress generally induces a tighter phenotype.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Mario Blanco-Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Marcelino de la Cruz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| | - Raquel Benavides
- Centro de Estudos Florestais, ISA, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles, 28933, Spain
| |
Collapse
|
4
|
Nielsen ES, Henriques R, Beger M, Toonen RJ, von der Heyden S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 2020; 20:121. [PMID: 32938400 PMCID: PMC7493327 DOI: 10.1186/s12862-020-01679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species' potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). RESULTS Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. CONCLUSION The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.,Technical University of Denmark, National Institute of Aquatic Resources, Section for Marine Living Resources, Velsøvej 39, 8600, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|