1
|
Ozcan C, Safak T, Dellalbasi AB, Dogan E. The Effects of Pregnancy Status on Lacrimal Caruncle Temperature, Intraocular Pressure and Rectal Temperature in Cats: A Preliminary Study. Vet Med Sci 2024; 10:e70077. [PMID: 39418225 PMCID: PMC11485324 DOI: 10.1002/vms3.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE The objectives of this study were to compare the body temperatures between pregnant and nonpregnant cats from two sites, lacrimal caruncle temperature (LCT) and rectal temperature (RT), and to compare intraocular pressure (IOP) between pregnant and nonpregnant cats. ANIMAL STUDIED This study was performed on 13 pregnant and 16 anoestrous cats. PROCEDURES The gestation period of the pregnant cats ranged from 20 to 45 days. A vaginal smear was also performed to determine the sexual cycles of nonpregnant cats. The IOP was measured using a rebound tonometer. RESULTS The pregnant cats (38 ± 0.7°C) exhibited a lower RT than the nonpregnant cats (38.5 ± 0.5°C) (p < 0.05). No significant differences existed between the pregnant and nonpregnant groups in the right (R)-LCT or left (L)-LCT (p > 0.05). The average LCT temperature measured 32.30 ± 2.23°C in cats. The right (R)-IOP in pregnant cats (17.69 ± 5.6 mm Hg) was significantly lower than in nonpregnant cats (22.37 ± 5.27 mm Hg) (p < 0.029). Pregnant cats exhibited a significantly lower left (L)-IOP value (17.69 ± 5.76 mm Hg) compared to nonpregnant cats (23.18 ± 5.55 mm Hg) (p < 0.015). CONCLUSION This study presents a preliminary report that documents a noteworthy reduction in RT in pregnant cats (38 ± 0.7°C) as compared to cats in anoestrus. Pregnancy also has an effect on the IOP. It was hypothesised that the hormonal changes induced by pregnancy in cats would have a substantial impact on IOP and RT. Although body temperature can be measured using LCT, RT should still be utilised as the reference measurement site.
Collapse
Affiliation(s)
- Candemir Ozcan
- Faculty of Veterinary Medicine, Department of SurgeryKastamonu UniversityKastamonuTürkiye
| | - Tarik Safak
- Faculty of Veterinary Medicine, Department of Obstetrics and GynecologyKastamonu UniversityKastamonuTürkiye
| | - Ayse Basak Dellalbasi
- Faculty of Veterinary Medicine, Department of SurgeryKastamonu UniversityKastamonuTürkiye
| | - Elif Dogan
- Faculty of Veterinary Medicine, Department of SurgeryKastamonu UniversityKastamonuTürkiye
| |
Collapse
|
2
|
Li D, Yan G, Li F, Lin H, Jiao H, Han H, Liu W. Optimized Machine Learning Models for Predicting Core Body Temperature in Dairy Cows: Enhancing Accuracy and Interpretability for Practical Livestock Management. Animals (Basel) 2024; 14:2724. [PMID: 39335314 PMCID: PMC11428240 DOI: 10.3390/ani14182724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Heat stress poses a significant challenge to livestock farming, particularly affecting the health and productivity of high-yield dairy cows. This study develops a machine learning framework aimed at predicting the core body temperature (CBT) of dairy cows to enable more effective heat stress management and enhance animal welfare. The dataset includes 3005 records of physiological data from real-world production environments, encompassing environmental parameters, individual animal characteristics, and infrared temperature measurements. Employed machine learning algorithms include elastic net (EN), artificial neural networks (ANN), random forests (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and CatBoost, alongside several optimization algorithms such as Bayesian optimization (BO) and grey wolf optimizer (GWO) to refine model performance through hyperparameter tuning. Comparative analysis of various feature sets reveals that the feature set incorporating the average infrared temperature of the trunk (IRTave_TK) excels in CBT prediction, achieving a coefficient of determination (R2) value of 0.516, mean absolute error (MAE) of 0.239 °C, and root mean square error (RMSE) of 0.302 °C. Further analysis shows that the GWO-XGBoost model surpasses others in predictive accuracy with an R2 value of 0.540, RMSE as low as 0.294 °C, and MAE of just 0.232 °C, and leads in computational efficiency with an optimization time of merely 2.41 s-approximately 4500 times faster than the highest accuracy model. Through SHAP (SHapley Additive exPlanations) analysis, IRTave_TK, time zone (TZ), days in lactation (DOL), and body posture (BP) are identified as the four most critical factors in predicting CBT, and the interaction effects of IRTave_TK with other features such as body posture and time periods are unveiled. This study provides technological support for livestock management, facilitating the development and optimization of predictive models to implement timely and effective interventions, thereby maintaining the health and productivity of dairy cows.
Collapse
Affiliation(s)
- Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Jinan 250100, China
| | - Geqi Yan
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Jinan 250100, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Jinan 250100, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Provincial Key Laboratory of Livestock and Poultry Breeding, Jinan 250100, China
| |
Collapse
|
3
|
Shokrollahi B, Morammazi S, Dananiani K, Tarjoman H. Infrared thermometry for detecting estrus and pregnancy in Holstein cows. J Therm Biol 2024; 125:103972. [PMID: 39332206 DOI: 10.1016/j.jtherbio.2024.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p < 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p < 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p < 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran; Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, South Korea.
| | - Salim Morammazi
- Department of Animal Science, Faculty of Agricultural and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| | - Kavous Dananiani
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Hamidreza Tarjoman
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
4
|
Singh A, Verma A, Dutta G, Gowane GR, Ludri A, Alex R. Functional transcriptome analysis revealed major changes in pathways affecting systems biology of Tharparkar cattle under seasonal heat stress. 3 Biotech 2024; 14:177. [PMID: 38855148 PMCID: PMC11156831 DOI: 10.1007/s13205-024-04018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Heat stress significantly disturbs the production, reproduction, and systems biology of dairy cattle. A complex interaction among biological systems helps to combat and overcome heat stress. Indicine cattle breed Tharparkar has been well known for its thermal adaptability. Therefore, present investigation considered RNA-seq technology to explore the functional transcriptomics of Tharparkar cattle with the help of samples collected in spring and summer season. Among differentially expressed genes, about 3280 genes were highly dysregulated, in which 1207 gene were upregulated and 2073 genes were downregulated (|log2fold change|≥ 1 and p ≤ 0.05). Upregulated genes were related to insulin activation, interferons, and potassium ion transport. In contrast, downregulated genes were related to RNA processing, translation, and ubiquitination. Functional annotation revealed that the pathways associated with nervous system (NPFFR1, ROBO3) and metal ion transport (KCNG2, ATP1A2) were highly activated while mRNA processing and translation (EIF4A, EIF4B) and protein processing pathway (VPS4B, PEX13) were highly downregulated. Protein-protein interactions identified hub genes such as ATP13A3, IFNGR2, UBXN7, EIF4A2, SLC12A8 found to play an important role in immune, ubiquitination, translation and transport function. Co-expression network includes LYZ, PNRC1, SQSTM1, EIF4AB and DDX17 genes which are involved in lysosomal activity, tumor inhibition, ubiquitination, and translation initiation. Chemokine signaling pathway associated with immune response was highly upregulated in cluster analysis. The findings of this study provide insights into transcriptome expression and regulation which may better explain complex thermal resilience mechanism of Tharparkar cattle in heat stress under natural conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04018-2.
Collapse
Affiliation(s)
- Ayushi Singh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Gaurav Dutta
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Gopal R. Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Ashutosh Ludri
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Rani Alex
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| |
Collapse
|
5
|
Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol 2024; 90:e0028624. [PMID: 38624196 PMCID: PMC11107170 DOI: 10.1128/aem.00286-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.
Collapse
Affiliation(s)
| | - Daniel Cazares
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Serena Johnson
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Emily J. Stevens
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - R. Craig MacLean
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Crump A, Jenkins K, Bethell EJ, Ferris CP, Arnott G. Pasture access and eye temperature in dairy cows. J APPL ANIM WELF SCI 2024; 27:234-242. [PMID: 35416093 DOI: 10.1080/10888705.2022.2063020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pasture access can benefit dairy cows' behavior, health, and welfare, but herds are increasingly housed indoors full-time. Recent infrared thermal-imaging (thermography) studies suggest that higher eye temperatures may be a physiological indicator of chronic stress. We, therefore, hypothesized that, compared to cows with pasture access, cows housed indoors full-time would have higher eye temperatures. In a two-phase crossover experiment, 29 Holstein-Friesian dairy cows experienced 18 days of overnight pasture access and 18 days of full-time indoor housing. We measured each animal's eye temperature 16 times (eight/phase). During Phase One, cows with pasture access had higher eye temperatures than cows housed indoors full-time (contrary to our hypothesis). However, during Phase Two, cows with pasture access had lower eye temperatures than cows housed indoors full-time. It is, therefore, unclear whether eye temperature reflected disparities in dairy cow welfare between different housing treatments.
Collapse
Affiliation(s)
- Andrew Crump
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Kirsty Jenkins
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Emily J Bethell
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Conrad P Ferris
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Hillsborough, UK
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Blond B, Majkić M, Spasojević J, Hristov S, Radinović M, Nikolić S, Anđušić L, Čukić A, Došenović Marinković M, Vujanović BD, Obradović N, Cincović M. Influence of Heat Stress on Body Surface Temperature and Blood Metabolic, Endocrine, and Inflammatory Parameters and Their Correlation in Cows. Metabolites 2024; 14:104. [PMID: 38392996 PMCID: PMC10890091 DOI: 10.3390/metabo14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to determine whether heat stress affected the values and correlations of metabolic, endocrinological, and inflammatory parameters as well as the rectal and body surface temperature of cows in the early and middle stages of lactation. This experiment was conducted in May (thermoneutral period), June (mild heat stress), and July (moderate to severe heat stress). In each period we included 15 cows in early lactation and 15 in mid-lactation. The increase in rectal and body surface temperatures (°C) in moderate to severe heat stress compared to the thermoneutral period in different regions was significant (p < 0.01) and the results are presented as mean and [95%CI]: rectal + 0.9 [0.81-1.02], eye + 6 [5.74-6.25], ear + 13 [11.9-14.0], nose + 3.5 [3.22-3.71], forehead + 6.6 [6.43-6.75], whole head + 7.5 [7.36-7.68], abdomen + 8.5 [8.25-8.77], udder + 7.5 [7.38-7.65], front limb + 6 [5.89-6.12], hind limb + 3.6 [3.46-3.72], and whole body + 9 [8.80-9.21]. During heat stress (in both mild and moderate to severe stress compared to a thermoneutral period), an increase in the values of extracellular heat shock protein 70 (eHsp70), tumor necrosis factor α (TNFα), cortisol (CORT), insulin (INS), revised quantitative insulin sensitivity check index (RQUICKI), urea, creatinine, total bilirubin, aspartate transpaminase (AST), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and creatin kinase (CK) occurred, as well as a decrease in the values of triiodothyronine (T3), thyroxine (T4), non-esterified fatty acids (NEFA), glucose (GLU), β-Hydroxybutyrate (BHB), calcium, phosphorus, total protein (TPROT), albumin (ALB), triglycerides (TGCs), and cholesterol (CHOL). In cows in early lactation compared to cows in mid-lactation, there was a significantly larger increase (p < 0.01) in the values of eHsp70, TNFα, GLU, RQUICKI, and GGT, while the INS increase was smaller during the three experimental periods. The decrease in the values of Ca, CHOL, and TGC was more pronounced in cows in early lactation compared to cows in mid-lactation during the three experimental periods. Rectal temperature was related to eHsp70 (r = 0.38, p < 0.001) and TNFα (r = 0.36, p < 0.01) and showed non-significant poor correlations with other blood parameters. Blood parameters correlate with body surface temperature, with the following most common results: eHsp70 and TNFα showed a moderately to strongly significant positive correlation (r = 0.79-0.96, p < 0.001); CORT, INS, and Creat showed fairly to moderately significant positive correlations; T3, T4, NEFA and GLU showed fairly to moderately significant negative correlations (r = 0.3-0.79; p < 0.01); RQUICKI, urea, AST, and GGT showed fairly and significantly positive correlations; and TGC, CHOL, TPROT, and ALB showed fairly and significantly negative correlations (r = 0.3-0.59; p < 0.01). Measuring the surface temperature of the whole body or head can be a useful tool in evaluating the metabolic response of cows because it has demonstrated an association with inflammation (TNFα, eHsp70), endocrine response (CORT, T3, T4), the increased use of glucose and decreased use of lipids for energy purposes (INS, NEFA, GLU, and RQUICKI), and protein catabolism (ALB, TPROT, urea, Creat), which underlies thermolysis and thermogenesis in cows under heat stress. In future research, it is necessary to examine the causality between body surface area and metabolic parameters.
Collapse
Affiliation(s)
- Bojan Blond
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Mira Majkić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Jovan Spasojević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Slavča Hristov
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Miodrag Radinović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Sandra Nikolić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Ljiljana Anđušić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, Kopaonička bb, 38219 Lešak, Serbia
| | - Aleksandar Čukić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, Kopaonička bb, 38219 Lešak, Serbia
| | | | | | - Nemanja Obradović
- Pasteur Institute Novi Sad, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Marko Cincović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals (Basel) 2023; 13:3451. [PMID: 38003069 PMCID: PMC10668733 DOI: 10.3390/ani13223451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In the dairy cattle sector, the evaluation of the effects induced by heat stress is still one of the most impactful and investigated aspects as it is strongly connected to both sustainability of the production and animal welfare. On the other hand, more recently, the possibility of collecting a large dataset made available by the increasing technology diffusion is paving the way for the application of advanced numerical techniques based on machine learning or big data approaches. In this scenario, driven by rapid change, there could be the risk of dispersing the relevant information represented by the physiological animal component, which should maintain the central role in the development of numerical models and tools. In light of this, the present literature review aims to consolidate and synthesize existing research on the physiological consequences of heat stress in dairy cattle. The present review provides, in a single document, an overview, as complete as possible, of the heat stress-induced responses in dairy cattle with the intent of filling the existing research gap for extracting the veterinary knowledge present in the literature and make it available for future applications also in different research fields.
Collapse
Affiliation(s)
| | - Marco Bovo
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 48, 40127 Bologna, Italy; (C.G.); (M.C.); (D.T.); (P.T.)
| | | | | | | |
Collapse
|
9
|
Buckham-Sporer K, Earley B, Marti S. Current Knowledge on the Transportation by Road of Cattle, including Unweaned Calves. Animals (Basel) 2023; 13:3393. [PMID: 37958148 PMCID: PMC10649969 DOI: 10.3390/ani13213393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Transport conditions have the potential to alter the physiological responses of animals to the psychological or physical stress of transport. Transportation may introduce multiple physical and psychological stressors to unweaned calves and adult cattle, including noise, overcrowding, food and water deprivation, extreme temperatures, commingling with unfamiliar animals, handling by unfamiliar humans, and being placed in a novel environment upon arrival. Apart from these factors, the type of road and even driving skill may affect the welfare of animals. One of the concerns regarding cattle transport is that the handling and marketing of animals prior to a journey may lengthen the period of feed withdrawal. Furthermore, feed withdrawal can impact animal welfare through hunger and metabolic stress. Transportation is also associated with a decrease in animal performance as well as an increase in the incidence of bovine respiratory disease. It is well established that the transportation of cattle is a stressor that causes a quantifiable response; however, excessive stress during transport resulting in physiological or pathological changes can be reduced with best management practices. The objective of this review was to analyse the available scientific literature pertaining to the transport by road of cattle, including unweaned calves.
Collapse
Affiliation(s)
- Kelly Buckham-Sporer
- Animal & Grassland Research and Innovation Centre (AGRIC), Teagasc, Grange, Dunsany, C15 PW93 Co. Meath, Ireland
| | - Bernadette Earley
- Animal & Grassland Research and Innovation Centre (AGRIC), Teagasc, Grange, Dunsany, C15 PW93 Co. Meath, Ireland
| | - Sonia Marti
- Ruminant Production Program, IRTA, Institut de Recerca i Tecnologia Agroalimentàries, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
10
|
da Silva WC, da Silva JAR, da Silva ÉBR, Barbosa AVC, Sousa CEL, de Carvalho KC, dos Santos MRP, Neves KAL, Martorano LG, Camargo Júnior RNC, Lourenço-Júnior JDB. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals (Basel) 2023; 13:2735. [PMID: 37685000 PMCID: PMC10487038 DOI: 10.3390/ani13172735] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
In the Lower Amazon mesoregion, there are basically three types of production systems: the traditional (without shade and no bathing area), the silvopastoral (with shade and no bathing area), and the integrated (with shade and bathing area). It is considered that the type of production system influences the thermal comfort and productivity of cattle, so this research aims to evaluate the influence of these three types of production systems on the thermoregulation of Nellore cattle. The experiment was carried out on a rural property for raising cattle, located in Mojuí dos Campos, Pará, Brazil, during the transition period (June/July). Thirty bovine males (not castrated, aged between 18 and 20 months, average weight of 250 ± 36 kg, body condition score of 3.5, clinically healthy) were randomly divided into three groups: Silvopastoral System-SS (n = 10), Traditional System-TS (n = 10), and Integrated System-IS (n = 10). Climate variables were collected (air temperature (AT °C), relative humidity (RH %), wind speed (WS, m/s), solar radiation (SR), black globe temperature (BGT °C), and physiological parameters, such as respiratory rate (RR) and rectal temperature (RT)) at 6 a.m., 12 p.m., 6 p.m., and 12 a.m. to determine the thermal comfort situation of the animals. Thermographic images of the environment and animals were captured in order to obtain the body surface temperature (BST) through infrared thermography. The Benezra Thermal Comfort Index (BTCI), Environmental Stress Index (ESI), Equivalent Temperature Index (ETI), and Iberian Heat Tolerance Index (Iberian HTI) were used. The results showed that the silvopastoral system, with shading by chestnut trees and an ample vegetative area, presented better thermal conditions, with an average of 28.98 °C, in comparison with the traditional system (35.93 °C) and the integrated one (34.11 °C). It was observed that the body surface temperature of cattle did not differ significantly between the anatomical regions of the body and the studied systems (p > 0.05). As for the respiratory rate, the traditional system registered higher values, with an average of 41 movements per minute, indicating possible thermal stress (p < 0.05). The thermal comfort indices revealed that all systems presented moderate stress conditions during times of higher solar intensity. It is concluded that the silvopastoral system proved to be more favorable for cattle, providing shade and reducing thermal stress, which may have a positive impact on animal welfare and productivity in this region.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| | | | - Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| | | | - Carlos Eduardo Lima Sousa
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarem 68010-200, Brazil; (C.E.L.S.); (K.C.d.C.)
| | - Katarina Cardoso de Carvalho
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarem 68010-200, Brazil; (C.E.L.S.); (K.C.d.C.)
| | | | | | | | - Raimundo Nonato Colares Camargo Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Federal Rural University of the Amazônia (UFRA), Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal 68746-360, Brazil; (É.B.R.d.S.); (R.N.C.C.J.); (J.d.B.L.-J.)
| |
Collapse
|
11
|
Bakony M, Kovács L, Kézér LF, Jurkovich V. The use of body surface temperatures in assessing thermal status of hutch-reared dairy calves in shaded and unshaded conditions. Front Vet Sci 2023; 10:1162708. [PMID: 37465278 PMCID: PMC10350673 DOI: 10.3389/fvets.2023.1162708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
The study was carried out in a Hungarian large-scale dairy farm during a 5-day period in hot August weather. Altogether 16 preweaning calves were chosen for the study. An agricultural mesh with 80% shielding was stretched over eight calf cages at 2 m from the ground to shield the cages in their entirety, while eight others were left unshaded. Ambient temperature and relative humidity were measured in 10 min intervals inside and outside one of the hutches in the shaded and unshaded groups during the total length of the study. The rectal temperature of the calves was measured by a digital thermometer every 4 h. Surface temperatures were measured on body parts, in the same intervals as rectal temperature with an infrared thermometer. Measuring sites included: the leg (metacarpus), muzzle, eye bulb, scapula, and ear. Statistical analyses were performed to assess the effects of shading on environmental and body temperatures and to also assess the strength of the association between core, skin and ambient temperatures; to estimate the temperature gradient between body shell and core; to compare the changes in heat dissipation capacity of the different body regions (as represented by temperatures of various sites) with increasing ambient temperature controlling for shaded or unshaded conditions; and to predict the risk of hyperthermia (rectal temperature not lower than 39.5°C) with the CART classification method. The average rectal temperatures suggest that the temperature conditions both in shaded and unshaded groups imposed a severe heat load on the calves. The temperature of the body shell, as represented by skin temperatures, shows a much more significant variation, similar to ambient temperature. As expected, areas that are closer to the core of the body (ear and eye) show less difference from rectal temperature and show a narrower range (lower variance), as more distal regions (leg, scapula) have a wider range. Body surface temperatures are more related to ambient temperature in calves than rectal temperature. The predictive value of infrared body surface temperatures for predicting heat stress or rectal temperature is low.
Collapse
Affiliation(s)
- Mikolt Bakony
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | - Levente Kovács
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
| | - Luca Fruzsina Kézér
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
| | - Viktor Jurkovich
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
12
|
Llada IM, Lourenco JM, Dycus MM, Carpenter JM, Suen G, Hill NS, Filipov NM. Behavioral and Physiological Alterations in Angus Steers Grazing Endophyte-Infected Toxic Fescue during Late Fall. Toxins (Basel) 2023; 15:toxins15050343. [PMID: 37235377 DOI: 10.3390/toxins15050343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E-) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E- and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.
Collapse
Affiliation(s)
- Ignacio M Llada
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Jeferson M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Mikayla M Dycus
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, College of Agriculture, University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Uddin J, McNeill DM, Phillips CJC. Infrared thermography as a tool for the measurement of negative emotions in dairy cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:219-231. [PMID: 36402916 DOI: 10.1007/s00484-022-02410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In commercial dairy cows, the conditions in which they are kept may lead to negative emotional states associated with the development of chronic physiological and behavioural abnormalities that may compromise their health, welfare and productivity. Such states include fear, stress or anxiety. Behavioural rather than physiological tests are more likely to be used to indicate these states but can be limited by their subjectivity, need for specialised infrastructure and training (of the operator and sometimes the animal) and the time-consuming nature of data collection. Popularly used physiological measures such as blood cortisol may be more appropriate for acute rather than chronic assessments but are easily confounded, for example by a response to the act of measurement per se. More sophisticated physiological measures such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) may be impractical due to cost and time and, like blood cortisol, have the confounding associated with the act of measurement. By contrast, infrared thermography of external body surfaces is remote, non-invasive, easily repeated and follows an objective methodology, allowing longitudinal data acquisition for the inference of changes in chronic emotional state over time. The objective of this review was to investigate the potential of infrared thermography to measure cow emotions. In lactating dairy cows, maximum IRT of the eyes and coronary band of the limbs seem to be most representative of thermoregulatory changes, which are repeatable and correlate with behavioural and physiological indicators of emotional state. IRT methodologies have the potential to become a fundamental tool for the objective assessment of welfare state in dairy cows.
Collapse
Affiliation(s)
- Jashim Uddin
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - David M McNeill
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - Clive J C Phillips
- Institute of Veterinary Medicine and Animal Science, Estonia University of Life Sciences, Tartu, Estonia
- Curtin University Sustainability Policy Institute, Kent St., Bentley, Perth, WA, 6102, Australia
| |
Collapse
|
14
|
Durunna O, Carroll JA, Dailey JW, Damiran D, Larson KA, Timsit E, Parsons R, Manafiazar G, Lardner HA. Phenotypic and genetic parameters of circadian rhythms from core body temperature profiles and their relationships with beef steers' production efficiency profiles during successive winter feeding periods. Front Genet 2023; 14:1026601. [PMID: 36741324 PMCID: PMC9893500 DOI: 10.3389/fgene.2023.1026601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
This 2-year study evaluated differences in circadian parameters obtained from measures of core body temperatures using telemetric reticulo-rumen and rectal devices during two winter feeding regimes in western Canada. The study also estimated phenotypic correlations and genetic parameters associated with circadian parameters and other production traits in each feeding regime. Each year, 80 weaned steer calves (initial age: 209 ± 11 days; BW: 264 ± 20 kg) from the same cohort were tested over two successive regimes, Fall-Winter (FW) and Winter-Spring (WS) at Lanigan, Saskatchewan, Canada. The steers received forage-based rations in both regimes where the individual feed intake was measured with automatic feeding units. During the trial, the reticulo-rumen (RTMP) and rectal (RCT) temperatures were simultaneously measured every 5 min using telemetric devices. These were used to calculate the circadian parameters (Midline Estimating Statistic Of Rhythms, amplitude, and acrophase/peak time) for both temperature measures. Growth and efficiency performance traits were also determined for all steers. Each steer was assigned into inefficient, neutral, and efficient classes based on the SD of the residual feed intake (RFI), residual gain (RG), and residual intake and gain (RIG) within each year and feeding regime. Higher (p < 0.0003) RTMP and rectal temperature MESORs were observed in the Fall-Winter compared to the Winter-Spring regime. While the two test regimes were different (p < 0.05) for the majority of the RTMP or RCT temperature parameters, they did not differ (p > 0.10) with the production efficiency profiles. The heritability estimates were higher in FW (0.78 ± 0.18 vs. 0.56 ± 0.26) than WS (0.50 ± 0.18 vs. 0.47 ± 0.22) for the rumen and rectal MESORs, respectively. There were positive genetic correlations between the two regimes for the RTMP (0.69 ± 0.21) and RCT (0.32 ± 0.59). There was a negative correlation (p < 0.001) between body temperature and ambient temperature. The high heritability estimates and genetic correlations for rumen and rectal temperature parameters demonstrate their potential as beef genetic improvement tools of economic traits associated with the parameters. However, there are limited practical implications of using only the core-body temperature as a proxy for production efficiency traits for beef steers during winter.
Collapse
Affiliation(s)
- Obioha Durunna
- Department of Applied Research, Lakeland College, Vermilion, AB, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Obioha Durunna,
| | | | - Jeff W. Dailey
- USDA ARS Livestock Issues Research Unit, Lubbock, TX, United States
| | - Daalkhaijav Damiran
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kathy A. Larson
- Department of Agricultural and Resource Economics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edouard Timsit
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rex Parsons
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Ghader Manafiazar
- Animal Science and Aquaculture Department, Faculty of Agriculture, Dalhousie University, Halifax, NS, Canada
| | - Herbert A. Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Izquierdo VS, Silva JVL, Ranches J, Santos GCM, Carroll JA, Burdick Sanchez NC, Bittar JHJ, Vendramini JMB, Moriel P. Removing maternal heat stress abatement during gestation modulated postnatal physiology and improved performance of Bos indicus-influenced beef offspring. J Anim Sci 2023; 101:skad250. [PMID: 37542727 PMCID: PMC10414138 DOI: 10.1093/jas/skad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
This study evaluated the growth and immune response of beef calves born from Bos indicus-influenced beef heifers provided pre- and postpartum heat abatement on pasture. On 83 ± 4 d prepartum (day 0), 64 Brangus crossbred beef heifers (~¼ B. indicus) were stratified by body weight (BW; 454 ± 37 kg) and body condition score (BCS; 6.3 ± 0.28; scale 1 to 9), and then allocated into 1 of 16 bahiagrass pastures (1 ha and 4 heifers per pasture). Treatments were randomly assigned to pastures (8 pastures per treatment) and consisted of heifers provided (SH) or not (NSH) access to artificial shade (4.5 m2 of shade area per heifer) from 83 d prepartum to 50 d postpartum (days 0 to 133). Heifers and calves were managed similarly from day 133 until the start of the breeding season (day 203). Calves were weaned on day 203 (at 119 ± 19 d of age), limit-fed the same drylot diet at 3.5% of BW (DM basis) days 209 to 268 (3 to 4 calves per pen; 8 pens per treatment) and vaccinated against respiratory disease pathogens on days 222 and 236. Heifer intravaginal temperatures from days 35 to 42 were lower (P ≤ 0.03) for NSH vs. SH heifers from 0000 to 0800 hours but greater (P ≤ 0.05) for NSH vs. SH heifers from 1100 to 1800 hours. Heifer intravaginal temperature from days 126 to 132 did not differ (P = 0.99) between NSH and SH heifers. Heifers assigned to NSH had greater respiration rates from days 20 to 96 (P ≤ 0.0007), greater plasma concentration of cortisol on days 35 (P = 0.07) and 55 (P = 0.02), less plasma concentration of insulin-like growth factor 1 (IGF-1) on days 35 (P = 0.10), 55, and 133 (P ≤ 0.05), and less BCS from days 55 to 203 (P ≤ 0.01) compared to SH heifers. Calves born from NSH heifers had less birth BW (P = 0.05), greater overall plasma haptoglobin concentrations (P = 0.05), greater seroconversion against bovine respiratory syncytial virus on day 222 (P = 0.02), tended to have greater ADG from days 209 to 268 (P = 0.07), and had greater BW on day 268 (P = 0.05) compared to SH offspring. Plasma concentrations of cortisol and serum titers against other respiratory disease pathogens did not differ (P ≥ 0.15) between NSH and SH offspring. Hence, removing maternal access to artificial shade: (1) increased prepartum intravaginal temperature and plasma concentrations of cortisol but reduced prepartum BCS and plasma concentrations of IGF-1 in grazing B. indicus-influenced beef heifers; and (2) increased post-weaning BW gain and had positive effects on humoral immune response of their offspring.
Collapse
Affiliation(s)
- Vinicius S Izquierdo
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - João V L Silva
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Giovanna C M Santos
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | | | | | - João H J Bittar
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - João M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
16
|
Pires BV, Freitas AC, Klein JL, de Melo TP, Stafuzza NB, de Paz CCP. Meta-analysis and meta-regression of core body temperature in taurine and zebuine cattle under different environmental conditions. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Græsli AR, Thiel A, Fuchs B, Stenbacka F, Neumann W, Malmsten J, Singh NJ, Ericsson G, Arnemo JM, Evans AL. Body temperature patterns during pregnancy and parturition in moose. J Therm Biol 2022; 109:103334. [DOI: 10.1016/j.jtherbio.2022.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
|
18
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Earley B, Edwards S, Faucitano L, Marti S, de La Lama GCM, Costa LN, Thomsen PT, Ashe S, Mur L, Van der Stede Y, Herskin M. Welfare of cattle during transport. EFSA J 2022; 20:e07442. [PMID: 36092766 PMCID: PMC9449995 DOI: 10.2903/j.efsa.2022.7442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of the animal welfare legislation. The present Opinion deals with protection of cattle (including calves) during transport. Welfare of cattle during transport by road is the main focus, but other means of transport are also covered. Current practices related to transport of cattle during the different stages (preparation, loading/unloading, transit and journey breaks) are described. Overall, 11 welfare consequences were identified as being highly relevant for the welfare of cattle during transport based on severity, duration and frequency of occurrence: group stress, handling stress, heat stress, injuries, motion stress, prolonged hunger, prolonged thirst, respiratory disorders, restriction of movement, resting problems and sensory overstimulation. These welfare consequences and their animal-based measures are described. A variety of hazards, mainly relating to inexperienced/untrained handlers, inappropriate handling, structural deficiencies of vehicles and facilities, poor driving conditions, unfavourable microclimatic and environmental conditions, and poor husbandry practices leading to these welfare consequences were identified. The Opinion contains general and specific conclusions relating to the different stages of transport for cattle. Recommendations to prevent hazards and to correct or mitigate welfare consequences have been developed. Recommendations were also developed to define quantitative thresholds for microclimatic conditions within the means of transport and spatial thresholds (minimum space allowance). The development of welfare consequences over time was assessed in relation to maximum journey duration. The Opinion covers specific animal transport scenarios identified by the European Commission relating to transport of unweaned calves, cull cows, the export of cattle by livestock vessels, the export of cattle by road, roll-on-roll-off ferries and 'special health status animals', and lists welfare concerns associated with these.
Collapse
|
19
|
Foroushani S, Amon T. Thermodynamic assessment of heat stress in dairy cattle: lessons from human biometeorology. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1811-1827. [PMID: 35821443 PMCID: PMC9418108 DOI: 10.1007/s00484-022-02321-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
A versatile meteorological index for predicting heat stress in dairy cattle remains elusive. Despite numerous attempts at developing such indices and widespread use of some, there is growing skepticism about the accuracy and adequacy of the existing indices as well as the general statistical approach used to develop them. At the same time, precision farming of high-yielding animals in a drastically changing climate calls for more effective prediction and alleviation of heat stress. The present paper revisits classical work on human biometeorology, particularly the apparent temperature scale, to draw inspiration for advancing research on heat stress in dairy cattle. The importance of a detailed, mechanistic understanding of heat transfer and thermoregulation is demonstrated and reiterated. A model from the literature is used to construct a framework for identifying and characterizing conditions of potential heat stress. New parameters are proposed to translate the heat flux calculations based on heat-balance models into more tangible and more useful meteorological indices, including an apparent temperature for cattle and a thermoregulatory exhaustion index. A validation gap in the literature is identified as the main hindrance to the further development and deployment of heat-balance models. Recommendations are presented for systematically addressing this gap in particular and continuing research within the proposed framework in general.
Collapse
Affiliation(s)
- Sepehr Foroushani
- Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany.
| | - Thomas Amon
- Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
- Institute of Animal Hygiene and Environmental Health, College of Veterinary Medicine, Free University Berlin, Berlin, Germany
| |
Collapse
|
20
|
Vieira R. Path and Logistic Analysis for Heat Tolerance in Adapted Breeds of Cattle in Brazil. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Maggiolino A, Landi V, Bartolomeo N, Bernabucci U, Santus E, Bragaglio A, De Palo P. Effect of Heat Waves on Some Italian Brown Swiss Dairy Cows' Production Patterns. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.800680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is impacting worldwide efficiency and welfare standards in livestock production systems. Considering the sensibility to heat stress reported for different milk production patterns in Italian Brown Swiss, this study aims to evaluate the effect of heat waves (HWs)of different lengths on some milk production traits (fat-corrected milk, energy-corrected milk, protein and fat yield, protein percentage, cheese production at 24 h, and cheese yield). A 10-year dataset (2009–2018), containing 202,776 test-day records from 23,296 Brown Swiss cows, was used. The dataset was merged both with the daily maximum temperature–humidity index (THI) recorded by weather stations and with the daily maximum THI threshold for each trait in Italian Brown Swiss cows. The study considered 4 different HWs according to their length: 2, 3, 4, and 5 consecutive days before the test-day over the weighted THI threshold. Milk production traits were determined as the difference in losses compared to those after only 1 day before the test-day over the weighted maximum THI. All traits showed to be affected by HWs. Particularly, protein percentage losses increased from −0.047% to −0.070% after 2 consecutive days over the daily THI threshold, reaching −0.10% to −0.14% after 5 days (p < 0.01), showing a worsening trend with the increasing length of HWs. First parity cows showed to be more sensitive to HWs than other parity classes, recording greater losses after shorter HWs, compared to multiparous cows, for protein yield and, consequently, for cheese production at 24 h. This suggests a less efficient metabolic response to heat stress and exposure time in primiparous, compared to multiparous cows, probably due to their incomplete growth process that overlaps milk production, making it more difficult for them to dissipate heat. Although actions to mitigate heat stress are always needed in livestock, this study points out that often time exposure to warm periods worsens milk production traits in Brown Swiss cows.
Collapse
|
22
|
Flattot EAL, Batterham TR, Timsit E, White BJ, McMeniman JP, Ward MP, González LA. Evaluation of reticulorumen temperature boluses for the diagnosis of subclinical cases of bovine respiratory disease in feedlot cattle. J Anim Sci 2021; 99:6426233. [PMID: 34788846 DOI: 10.1093/jas/skab337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most important and costly health issue of the feedlot industry worldwide. Remote monitoring of reticulorumen temperature has been suggested as a potential tool to improve the diagnostic accuracy of BRD. The present study aimed to evaluate 1) the difference and degree of reticulorumen hyperthermia episodes between healthy and subclinical BRD feedlot steers, and 2) determine the correlation between reticulorumen hyperthermia and lung pathology, performance, and carcass traits. Mixed-breed feedlot steers (n = 148) with a mean arrival weight of 321 ± 3.34 kg were administered a reticulorumen bolus at feedlot entry and monitored for visual and audible signs of BRD until slaughter when lungs were examined and scored for lesions indicative of BRD. Post-slaughter animals with no record of BRD treatment were assigned to one of three case definitions. Healthy steers had no visual or audible signs of BRD (i.e., CIS=1), and total lung consolidation score < 5% or pleurisy score < 3 at slaughter. Subclinical BRD cases had a CIS of 1, and a lung consolidation score ≥ 5% or a pleurisy score of 3 at slaughter. Mild CIS cases had at least one CIS of 2, and a lung consolidation score < 5% and a pleurisy score < 3 at slaughter. Subclinical BRD and mild CIS cases had longer total duration of reticulorumen hyperthermia, more episodes and longer average episode duration above 40.0 °C compared to healthy steers (P < 0.05). A moderate positive correlation was found between lung consolidation and total duration (r = 0.27, P < 0.001), episode duration (r = 0.29, P < 0.001), and number of episodes (r = 0.20, P < 0.05). Pleurisy score was also found to be moderately and positively correlated with total duration (r = 0.23, P < 0.01), episode duration (r = 0.37, P < 0.001), and number of episodes (r = 0.26, P < 0.01). Moderate negative correlations were found between reticulorumen hyperthermia and carcass traits including hot standard carcass weight (HSCW) (-0.22 ≤ r ≤ -0.23, P < 0.05) and P8-fat depth (-0.18 ≤ r ≤ -0.32, P < 0.05). Subclinical BRD reduced carcass weight by 22 kg and average daily gain (ADG) by 0.44 kg/day compared to healthy steers (P < 0.05), but mild CIS cases had no effect on performance (P > 0.05). The reticulorumen bolus technology appears promising for detection of subclinical BRD cases in feedlot cattle as defined by lung pathology at slaughter.
Collapse
Affiliation(s)
- Emilie A-L Flattot
- Apiam Animal Health, East Bendigo, Victoria 3550, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia
| | - Tony R Batterham
- Apiam Animal Health, East Bendigo, Victoria 3550, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia.,Quirindi Feedlot Services, Quirindi, NSW 2343, Australia
| | - Edouard Timsit
- Innovation Department, CEVA Santé Animal, Libourne 33500, France
| | - Brad J White
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia
| | - Luciano A González
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia.,Sydney Institute of Agriculture, University of Sydney, Sydney, NSW 2015, Australia
| |
Collapse
|
23
|
Heat Load-Induced Changes in Lying Behavior and Lying Cubicle Occupancy of Lactating Dairy Cows in a Naturally Ventilated Barn. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Dairy cows show a high sensitivity to changes in barn climate, which can result in physiological and ethological responses because of the homeostatic mechanisms to regulate the body temperature under heat load. The objective of this study was to analyze the lying behavior and occupancy of lying cubicles of lactating high-yielding Holstein-Friesian cows throughout the day during three summer months and three winter months. The study was conducted in summer 2016 and in winter 2016/17 in a naturally ventilated barn in Brandenburg, Germany. The determined temperaturehumidity index (THI) of the barn was calculated using the measured ambient temperature and relative humidity at eight locations inside the barn. The THI was used to define the heat load the cows were exposed to. The activity of the cows was measured with accelerometers, and a video recording was made to analyze the occupancy of the three rows of lying cubicles. The results indicated that increasing heat load led to a decrease in lying time; therefore, the daily lying time differed between summer and winter months. In addition, there were different patterns of lying behavior during the course of the day, depending on the season. A sharp decline in lying time could be observed especially in the afternoon hours during the summer. The occupancy of lying cubicles was also influenced by the heat load. The data could be helpful to enable evaluation with algorithms for early detection of heat load.
Collapse
|
24
|
Carvalheira LDR, Wenceslau RR, Ribeiro LDS, de Carvalho BC, Borges ÁM, Camargo LSDA. Daily vaginal temperature in Girolando cows from three different genetic composition under natural heat stress. Transl Anim Sci 2021; 5:txab138. [PMID: 34532644 PMCID: PMC8439259 DOI: 10.1093/tas/txab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The present trial evaluated the effect of crossbred composition and Temperature and Humidity Index (THI) on vaginal temperature (VT) of Girolando dairy cows maintained under tropical pasture during warm seasons. The VT was monitored along 41 to 96 h in 615 Girolando cows with different Holstein (H) × Gir genetic composition (1/2 H = 284, 3/4 H = 248, and 7/8 H = 83) from six Brazilian farms in the summer of 2016 and 2017. VT of each cow at each hour of the day and the respective THI were averaged per hour across all monitoring days to generate an averaged value for VT and THI during 24 h. A linear mixed model with repeated measures using restricted maximum likelihood (REML) method for (co)variance components estimation procedure was employed. The final model adjusted the VT for the effects of cow, time, THI, farm, year, pregnancy status, body condition score (BCS), milk yield, genetic composition, and genetic composition*time interaction. Fixed effects were evaluated by ANOVA and tested with Tukey test in R software version 3.6.1 (R Core Team, 2019). Overall mean of VT, air temperature (AT), and THI were 39.06 ± 0.52 °C, 25.63 ± 0.40 °C, and 75.06 ± 3.96, respectively. VT had moderate positive correlation with THI (r² = 0.45, P < 0.001) and AT (r² = 0.46, P < 0.001). The VT had estimated linear increase of 0.05 °C for each THI unit increase (P < 0.001). Least square mean of VT varied among the farms (P < 0.001), pregnancy status (P < 0.001), and BCS (P < 0.05) but not for Milk yield (P > 0.05). The daily average VT was affected by genetic composition (P < 0.001) with highest temperature for 3/4 H (39.08 ± 0.06 °C a) and 7/8 H (39.09 ± 0.06 °C a) and lowest temperature for 1/2 H (38.95 ± 0.06 °C b). The difference of VT among the three crossbred groups varied in function of the time of the day, from 12:00 to 20:00 h (P < 0.001), with 3/4 Holstein and 7/8 Holstein cows reaching similar VT, above to the upper limit 39.1 °C and higher than 1/2 Holstein cows during all this period. In conclusion, Girolando cows are sensitive to heat stress in tropical condition during warm seasons. Moreover, Girolando cows with genetic composition higher than 3/4 Holstein display reduced thermoregulatory efficiency. Therefore, Girolando cows in tropical dairy farms require strategies to mitigate heat stress according to their genetic composition.
Collapse
Affiliation(s)
- Luciano de Rezende Carvalheira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael Rocha Wenceslau
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Dos Santos Ribeiro
- Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Álan Maia Borges
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
25
|
Yan G, Liu K, Hao Z, Shi Z, Li H. The effects of cow-related factors on rectal temperature, respiration rate, and temperature-humidity index thresholds for lactating cows exposed to heat stress. J Therm Biol 2021; 100:103041. [PMID: 34503788 DOI: 10.1016/j.jtherbio.2021.103041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
The objectives of this study were to investigate the effects of the cow-related factors on rectal temperature (RT) and respiration rate (RR) of lactating dairy cows under different heat stress (HS) conditions and establish the temperature-humidity index (THI) thresholds at which RT and RR begin to increase for cows in China. Cow-related factors included body posture (standing and lying), milk yield (<26 kg/d, ≥ 26-39 kg/d, and ≥39 kg/d), days in milk (≤60 d, > 60 and ≤ 150 d, and >150 d), and parity (1, 2, and ≥3). Records of RT, RR, and individual characteristics were collected from July to October 2020 on a commercial dairy farm in Northern China, where 826 Holstein lactating cows were measured. Using the broken-stick regression models and the entire dataset, the THI thresholds for RT and RR were 69.8 and 67.1, respectively. Therefore, the heat stress conditions during this study were classified according to the THI levels as thermoneutrality (TN, 60 < THI ≤ 67), mild (67 < THI ≤ 72), moderate (72 < THI ≤ 80), and severe (80 < THI ≤ 86). Results showed that lying cows exhibited the higher RT and RR but the lower THI threshold for RT (68.8 vs. 70.7) and RR (65.6 vs. 68.4) than standing cows; milk yield is positively associated with the values of RT and RR under TN or HS conditions, and the THI thresholds for RT (70.2 vs. 70.0 vs. 68.0) and RR (68.1 vs. 64.7 vs. 64.7) were progressively lower for low-yielding, middle-yielding, and high-yielding cows; there was a significant increase in RT and RR in early-lactation cows compared to late-lactation cows under TN or HS conditions (P < 0.001), and the lowest THI threshold (67.8 for RT and 64.7 for RR) was observed in early-lactation cows, followed by mid-lactation cows (68.2 for RT and 65.3 for RR) and late-lactation cows (70.0 for RT and 67.3 for RR); the effects of parity were not significant on RT (P > 0.05), but significant on RR (P < 0.001). The THI thresholds for RT (69.2) and RR (66.0) were lowest for cows in 3rd-parity and higher, followed by cows in 2nd-parity (70.0 for RT and 68.9 for RR) and 1st-parity (70.7 for RT and 66.6 for RR). This study highlighted the great significance of considering the cow-related factors in heat stress responses and THI threshold assessment. For dairy cows in China, we suggest that cooling should be initiated when THI reaches 65 to 66.
Collapse
Affiliation(s)
- Geqi Yan
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources & Civil Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, 100083, China
| | - Kaixin Liu
- Institute of Yantai, China Agricultural University, Yantai, Shangdong, 264670, China
| | - Ze Hao
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources & Civil Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, 100083, China
| | - Zhengxiang Shi
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources & Civil Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, 100083, China.
| | - Hao Li
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources & Civil Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, 100083, China
| |
Collapse
|
26
|
Yan G, Li H, Shi Z. Evaluation of Thermal Indices as the Indicators of Heat Stress in Dairy Cows in a Temperate Climate. Animals (Basel) 2021; 11:2459. [PMID: 34438916 PMCID: PMC8388788 DOI: 10.3390/ani11082459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Many thermal indices (TIs) have been developed to quantify the severity of heat stress in dairy cows. Systematic evaluation of the representative TIs is still lacking, which may cause potential misapplication. The objectives of this study were to evaluate the theoretical and actual performance of the TIs in a temperate climate. The data were collected in freestall barns at a commercial dairy farm. The heat transfer characteristics of the TIs were examined by equivalent air temperature change (ΔTeq). One-way ANOVA and correlation were used to test the relationships between the TIs and the animal-based indicators (i.e., rectal temperature (RT), respiration rate (RR), skin temperature (ST), and eye temperature (ET)). Results showed that the warming effect of the increased relative humidity and the chilling effect of the increased wind speed was the most reflected by the equivalent temperature index (ETI) and the comprehensive climate index (CCI), respectively. Only the equivalent temperature index for cows (ETIC) reflected that warming effect of solar radiation could obviously increase with increasing Ta. The THI and ETIC showed expected relationships with the RT and RR, whereas the CCI and ETIC showed expected relationships with the ST and ET. Moreover, CCI showed a higher correlation with RT (r = 0.672, p < 0.01), ST(r = 0.845, p < 0.01), and ET (r = 0.617, p < 0.01) than other TIs (p < 0.0001). ETIC showed the highest correlation with RR (r = 0.850, p < 0.01). These findings demonstrated that the CCI could be the most promising thermal index to assess heat stress for housed dairy cows. Future research is still needed to develop new TIs tp precisely assess the microclimates in cow buildings.
Collapse
Affiliation(s)
- Geqi Yan
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China; (G.Y.); (H.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China
| | - Hao Li
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China; (G.Y.); (H.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China
| | - Zhengxiang Shi
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China; (G.Y.); (H.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Beijing Engineering Research Center on Animal Healthy Environment, Beijing 100083, China
| |
Collapse
|
27
|
Holton MD, Wilson RP, Teilmann J, Siebert U. Animal tag technology keeps coming of age: an engineering perspective. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200229. [PMID: 34176328 PMCID: PMC8237169 DOI: 10.1098/rstb.2020.0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 02/04/2023] Open
Abstract
Animal-borne tags (biologgers) have now become extremely sophisticated, recording data from multiple sensors at high frequencies for long periods and, as such, have become a powerful tool for behavioural ecologists and physiologists studying wild animals. But the design and implementation of these tags is not trivial because engineers have to maximize performance and ability to function under onerous conditions while minimizing tag mass and volume (footprint) to maximize the wellbeing of the animal carriers. We present some of the major issues faced by tag engineers and show how tag designers must accept compromises while maintaining systems that can answer the questions being posed. We also argue that basic understanding of engineering issues in tag design by biologists will help feedback to engineers to better tag construction but also reduce the likelihood that tag-deploying biologists will misunderstand their own results. Finally, we suggest that proper consideration of conventional technology together with new approaches will lead to further step changes in our understanding of wild-animal biology using smart tags. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- Mark D. Holton
- Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Rory P. Wilson
- Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Jonas Teilmann
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
28
|
Uddin J, Phillips CJ, Auboeuf M, McNeill DM. Relationships between body temperatures and behaviours in lactating dairy cows. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Mufford J, Reudink M, Rakobowchuk M, Carlyle C, Church J. Using unmanned aerial vehicles to record behavioral and physiological indicators of heat stress in cattle on feedlot and pasture. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological and behavioral indicators of heat stress in cattle are time- and labor-intensive to measure, and difficult to observe in extensive feedlot and pasture settings. We proposed to record respiration rate and standing behavior using unmanned aerial vehicles. Videos were recorded above steers on feedlot in the morning (0830–1130) and afternoon (1400–1700) over 10 d between 25 July and 10 August and cows on pasture over 9 d between 19 and 29 August In the feedlot, video recordings on 925 individuals (264 black coated, 413 red, and 248 white) were obtained, varying in breed which included Black Angus, Hereford, Charolais, Canadian Speckle Park, and Simmental. On pasture, video recordings on 267 individuals (116 Black Angus and 151 Hereford) were obtained. Observer software was used to analyze videos. Respiration rate in feedlot cattle was the highest in black cattle, followed by red cattle, then white cattle. Coat color did not affect respiration rate in cows on pasture; temperatures on pasture were lower than in feedlots and the effect of coat color may not manifest until a certain heat load threshold. The probability that cattle would be standing increased with heat load index in feedlot and pasture settings.
Collapse
Affiliation(s)
- J.T. Mufford
- Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - M.W. Reudink
- Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - M. Rakobowchuk
- Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - C.N. Carlyle
- University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - J.S. Church
- Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
30
|
Dos Santos MM, Souza-Junior JBF, Dantas MRT, de Macedo Costa LL. An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30471-30485. [PMID: 33895955 DOI: 10.1007/s11356-021-14077-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Heat stress is one of the main obstacles to achieving efficient cattle production systems, and it may have numerous adverse effects on cattle. As the planet undergoes climatic changes, which is predicted to raise the earth's average temperature by 1.5 °C between 2030 and 2052, its impact may trigger several stressful factors for livestock. Among these, an increase in core body temperature would trigger physiological imbalance, consequently affecting reproduction, animal health, and dry matter intake adversely. Core body temperature increase is commonly observed and poses challenges to livestock farmers. In cattle farming, thermal stress severely affects milk production and weight gain, and can compromise food security in the coming years. This review presents an updated approach to the physiological and thermoregulatory responses of cattle under various environmental conditions. Strategies for mitigating the harmful effects of heat stress on livestock are suggested as viable alternatives for the betterment of production systems.
Collapse
Affiliation(s)
- Mateus Medeiros Dos Santos
- Laboratory of Biometeorology and Environmental Biophysics, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil
| | | | - Maiko Roberto Tavares Dantas
- Laboratory of Biometeorology and Environmental Biophysics, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil
| | | |
Collapse
|
31
|
Shu H, Wang W, Guo L, Bindelle J. Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review. Animals (Basel) 2021; 11:980. [PMID: 33915761 PMCID: PMC8066310 DOI: 10.3390/ani11040980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
In pursuit of precision livestock farming, the real-time measurement for heat strain-related data has been more and more valued. Efforts have been made recently to use more sensitive physiological indicators with the hope to better inform decision-making in heat abatement in dairy farms. To get an insight into the early detection of heat strain in dairy cows, the present review focuses on the recent efforts developing early detection methods of heat strain in dairy cows based on body temperatures and respiratory dynamics. For every candidate animal-based indicator, state-of-the-art measurement methods and existing thresholds were summarized. Body surface temperature and respiration rate were concluded to be the best early indicators of heat strain due to their high feasibility of measurement and sensitivity to heat stress. Future studies should customize heat strain thresholds according to different internal and external factors that have an impact on the sensitivity to heat stress. Wearable devices are most promising to achieve real-time measurement in practical dairy farms. Combined with internet of things technologies, a comprehensive strategy based on both animal- and environment-based indicators is expected to increase the precision of early detection of heat strain in dairy cows.
Collapse
Affiliation(s)
- Hang Shu
- Agricultural Information Institute, Chinese Academy of Agriculture Sciences, Beijing 100086, China;
- AgroBioChem/TERRA, Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Wensheng Wang
- Agricultural Information Institute, Chinese Academy of Agriculture Sciences, Beijing 100086, China;
| | - Leifeng Guo
- Agricultural Information Institute, Chinese Academy of Agriculture Sciences, Beijing 100086, China;
| | - Jérôme Bindelle
- AgroBioChem/TERRA, Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| |
Collapse
|
32
|
Luo H, Li X, Hu L, Xu W, Chu Q, Liu A, Guo G, Liu L, Brito LF, Wang Y. Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. J Dairy Sci 2021; 104:4441-4451. [PMID: 33589260 DOI: 10.3168/jds.2020-18725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022]
Abstract
Heat stress is a major cause of welfare issues and economic losses to the worldwide dairy cattle industry. Genetic selection for heat tolerance has a great potential to positively affect the dairy industry, as the gains are permanent and cumulative over generations. Rectal temperature (RT) is hypothesized to be a good indicator trait of heat tolerance. Therefore, this study investigated the genetic architecture of RT by estimating genetic parameters, performing genome-wide association studies, and biologically validating potential candidate genes identified to be related to RT in Holstein cattle. A total of 33,013 RT records from 7,598 cows were used in this study. In addition, 1,114 cows were genotyped using the Illumina 150K Bovine BeadChip (Illumina, San Diego, CA). Rectal temperature measurements taken in the morning (AMRT) and in the afternoon (PMRT) are moderately heritable traits, with estimates of 0.09 ± 0.02 and 0.04 ± 0.01, respectively. These 2 traits are also highly genetically correlated (r = 0.90 ± 0.08). A total of 10 SNPs (located on BTA3, BTA4, BTA8, BTA13, BTA14, and BTA29) were found to be significantly associated with AMRT and PMRT. Subsequently, gene expression analyses were performed to validate the key functional genes identified (SPAG17, FAM107B, TSNARE1, RALYL, and PHRF1). This was done through in vitro exposure of peripheral blood mononuclear cells (PBMC) to different temperatures (37°C, 39°C, and 42°C). The relative mRNA expression of 2 genes, FAM107B and PHRF1, significantly changed between the control and heat stressed PBMC. In summary, RT is heritable, and enough genetic variability exists to enable genetic improvement of heat tolerance in Holstein cattle. Important genomic regions were identified and biologically validated; FAM107B and PHRF1 are the main candidate genes identified to influence heat stress response in dairy cattle.
Collapse
Affiliation(s)
- Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Wei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China; Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, 100029, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, 100192, Beijing, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
33
|
Effects of Airspeed on the Respiratory Rate, Rectal Temperature, and Immunity Parameters of Dairy Calves Housed Individually in an Axial-Fan-Ventilated Barn. Animals (Basel) 2021; 11:ani11020354. [PMID: 33572539 PMCID: PMC7910846 DOI: 10.3390/ani11020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
At many modern dairy farms, calves raised in barns are kept in individual stalls separated by solid partitions, which act as barriers. Ventilation fans blowing air perpendicular to these stalls only provide the optimal airflow to the first few calves, while those further away receive a slower airflow. To ascertain whatever effects different airflow speeds may have on the health of animals kept in stalls located at increasing distances from ventilation fans, we divided a select group of 43 Holstein dairy calves into six subgroups based on age, and each subgroup was subjected to either a specified high-speed or low-speed airflow as follows: (1) Six 3-day-olds received high-speed airflow (D3-HA); (2) Six 3-day-olds received low-speed airflow (D3-LA); (3) Eight 19 (±3)-day-olds received high-speed airflow (D19-HA); (4) Eight 19 (± 3)-day-olds received low-speed airflow (D19-LA); (5) Eight 29 (±3)-day-olds received high-speed airflow (D29-HA); and (6) Seven 29 (±3)-day-olds received medium-speed airflow (D29-MA). These trials show that the rectal temperatures and respiratory rates of D19-LA (39.37 °C; 72.90 breaths/min) were significantly higher than those of D19-HA (39.14 °C; 61.57 breaths/min) (p ≤ 0.05), and those of D29-MA (39.40 °C; 75.52 breaths/min) were significantly higher than those of D29-HA (39.20 °C; 68.41 breaths/min) (p ≤ 0.05). At 33 (±3) days of age, those calves receiving high-speed airflow (p ≤ 0.05) registered significantly higher immunoglobulins A and M than calves receiving low-speed flow. Those calves subjected to a high-speed airflow also registered significantly lower tumor necrosis factor levels than those receiving low-speed flow (p ≤ 0.05). Among the 29 to 43-day-old calves, no significant differences in immunity parameters were found to exist between groups D29-HA and D29-MA. On the basis of these findings, we were able to conclude that in the warm season, when the calves were less than 0.5 months old, low-speed (0.17-0.18 m/s) airflows had no significant effect on calves; when the calves were 1 month old, low-speed airflow (0.20-0.21 m/s) may impair the immune functions; when the calves were 1 to 1.5 months old, the airflow velocity higher than 0.9 m/s can meet the needs of the calf without a negative impact on the calf.
Collapse
|
34
|
Real-Time Extensive Livestock Monitoring Using LPWAN Smart Wearable and Infrastructure. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extensive unsupervised livestock farming is a habitual technique in many places around the globe. Animal release can be done for months, in large areas and with different species packing and behaving very differently. Nevertheless, the farmer’s needs are similar: where livestock is (and where has been) and how healthy they are. The geographical areas involved usually have difficult access with harsh orography and lack of communications infrastructure. This paper presents the design of a solution for extensive livestock monitoring in these areas. Our proposal is based in a wearable equipped with inertial sensors, global positioning system and wireless communications; and a Low-Power Wide Area Network infrastructure that can run with and without internet connection. Using adaptive analysis and data compression, we provide real-time monitoring and logging of cattle’s position and activities. Hardware and firmware design achieve very low energy consumption allowing months of battery life. We have thoroughly tested the devices in different laboratory setups and evaluated the system performance in real scenarios in the mountains and in the forest.
Collapse
|
35
|
Yan G, Li H, Zhao W, Shi Z. Evaluation of thermal indices based on their relationships with some physiological responses of housed lactating cows under heat stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:2077-2091. [PMID: 32851452 DOI: 10.1007/s00484-020-01999-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Thermal indices as environmental risk indicators have been used to assess heat stress of dairy cows. The present study aimed to evaluate the predictive performance of the typical cattle-related thermal indices by comparing their prediction to heat stress levels and associations with some physiological responses. The study was conducted from August to September 2019 in a naturally ventilated barn in Jiangsu, China. Nine typical cattle-related thermal indices, i.e., temperature-humidity index (THI), black globe temperature index (BGHI), equivalent temperature index, effective temperature (ET) for dairy cows, respiratory rate predictor (RRP), adjusted temperature-humidity index (THIadj), heat load index (HLI), comprehensive climate index (CCI), and equivalent temperature index for cattle (ETIC), were evaluated. Respiration rate (RR) and body surface temperature (BST) were collected twice per day from a total of 287 lactating cows, 18 of which were continuously measured vaginal temperature (VT). Over the experimental period, the average daily RR, VT, and BST were 55.8 breaths/min, 38.7 °C, and 32.3 to 36.4 °C that depend on body positions, respectively. The study found that the prediction of THI, BGHI, THIadj, and CCI was closer to the actual heat stress conditions which were mild to moderate heat stress. Correlation analyses showed that RR, VT, and BST correlated most closely with effective temperature (r = 0.580; P < 0.05), BGHI (r = 0.642; P < 0.05), and CCI (r = 0.849; P < 0.05). In this evaluation, based on the comprehensive performance of CCI in the relatively accurate prediction to heat stress level and duration, detection on environmental differences between standing and lying zone, and correlations with some physiological responses, CCI is seemingly the promising thermal index to assess heat stress of housed dairy cows.
Collapse
Affiliation(s)
- Geqi Yan
- College of Water Resources and Civil Engineering, China Agricultural University, 17 Tsing Hua East Road, Beijing, 100083, China
| | - Hao Li
- College of Water Resources and Civil Engineering, China Agricultural University, 17 Tsing Hua East Road, Beijing, 100083, China
| | - Wanying Zhao
- College of Water Resources and Civil Engineering, China Agricultural University, 17 Tsing Hua East Road, Beijing, 100083, China
| | - Zhengxiang Shi
- College of Water Resources and Civil Engineering, China Agricultural University, 17 Tsing Hua East Road, Beijing, 100083, China.
| |
Collapse
|
36
|
Franchi GA, Jensen MB, Herskin MS, McNeill DM, Phillips CJC. Assessing response to dry-off in dairy cows kept outdoors using spontaneous behaviours and infrared thermography-a pilot study. Trop Anim Health Prod 2020; 53:46. [PMID: 33241458 DOI: 10.1007/s11250-020-02487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022]
Abstract
We used spontaneous behaviours to assess response to dry-off involving abrupt dietary and milking frequency changes, followed by regrouping, after the last milking in 15 clinically healthy Holstein-Frisian cows kept outdoors. Moreover, we explored the potential of infrared thermography to detect eye temperature variations possibly induced by dry-off. On days - 1, 0, 1 and 2 relative to dry-off, we recorded whether cows vocalised during feed delivery; ate fresh feed within 5 min; and mean maximum eye temperature at approximately 1 h after feed delivery. On days 1 and 2, cows were more likely to eat fresh feed compared to days - 1 and 0. No difference in likelihood of vocalising was found. Compared to day - 1, eye temperature was substantially higher on days 0 and 2. Collectively, the results suggest that cows responded, both behaviourally and physiologically, to the abrupt dry-off management. The interpretation of the current findings deserves further investigation using larger sample sizes, more controlled environments and further behavioural, physiological, cognitive and clinical measures.
Collapse
Affiliation(s)
| | - Margit Bak Jensen
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Mette S Herskin
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - David M McNeill
- School of Veterinary Science, University of Queensland, Gatton, 4343, Australia
| | - Clive J C Phillips
- School of Veterinary Science, University of Queensland, Gatton, 4343, Australia.,Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
37
|
Wijffels G, Sullivan M, Gaughan J. Methods to quantify heat stress in ruminants: Current status and future prospects. Methods 2020; 186:3-13. [PMID: 32927085 DOI: 10.1016/j.ymeth.2020.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
The physiology of hyperthermia or heat stress in mammals is complex. It is a totally systemic condition that in varying degrees involves all organs, tissues and body fluid compartments. The nature and magnitude of the response is influenced by animal specific characteristics (e.g. age, diet, body condition, gender, reproductive stage), environment and animal management. Given the multifaceted nature of heat stress, and the varied ruminant production systems based in varied geoclimatic zones, it has been difficult to find appropriate measures of heat stress for production ruminants. This has become an urgent challenge as production systems intensify globally in a warming climate. Bioclimatic indices such as the Temperature-Humidity Index (THI) have evolved to incorporate some measure of animal physiology. However, these indices do not have strong relationships with core temperature trajectories and altered respiratory dynamics of animals with excessive heat load. In recent decades, the careful physiology studies of the 1950-80s, have given way to numerous studies trialling a plethora of new technologies and computational approached to measure heat stress. Infrared thermography of body surface temperatures, automated measures of respiration rate and radiotelemetry of internal body temperatures are the most intensively researched. The common goal has been to find the 'holy grail' decision-making threshold or timepoint as to the animal's wellbeing. Are we making any progress?
Collapse
Affiliation(s)
- Gene Wijffels
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd., St Lucia, Queensland 4067, Australia.
| | - Megan Sullivan
- Agri-Science Queensland (Dairy), Department of Agriculture and Fisheries, at The University of Queensland Gatton Campus, Lawes, Queensland 4343, Australia.
| | - John Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland 4343, Australia.
| |
Collapse
|
38
|
Uddin J, McNeill DM, Lisle AT, Phillips CJC. A sampling strategy for the determination of infrared temperature of relevant external body surfaces of dairy cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1583-1592. [PMID: 32506160 DOI: 10.1007/s00484-020-01939-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Infrared thermography is a tool to investigate the welfare of cattle. This study aimed to identify a sampling strategy for recording infrared thermograms in dairy cows, in order to most efficiently determine biologically relevant changes in the maximum infrared temperature (IRT) of the eyes and coronary band of forelimbs. Thirty-one dairy cows were used for the study. They were assessed with four replicates of thermograms for each of the head and lower forelimb per cow for 6 mostly consecutive days (sessions). The data obtained were subjected to random effects Analysis of Variance which was used to estimate the variance components for this sampling model, using maximum IRT of both eyes; (left + right eye)/2 and both limbs; (left + right coronary band of forelimb)/2 as dependant variables. The variance components were used to calculate least significant differences (LSD) between two theoretical treatment groups under different sampling scenarios. Analysis showed that there was minimal improvement in precision beyond 2 thermograms within a session but there was improvement with increasing the number of sessions from 2 to 3. The LSD of both eyes and both limbs reached a biologically relevant difference (0.4 and 0.9 °C, respectively) at a minimum number of 14 - 16 cows monitored for 2 consecutive thermography sessions, or 10 - 12 cows for 3 sessions. We conclude that no more than 2 replicate IRT measures are required per session but that measuring on 3 consecutive days should be considered, depending on whether time or number of cows used is the primary limitation.
Collapse
Affiliation(s)
- Jashim Uddin
- Centre for Animal Welfare and Ethics, School of Veterinary Science, The University of Queensland, QLD, Gatton, 4343, Australia.
| | - David M McNeill
- Centre for Animal Welfare and Ethics, School of Veterinary Science, The University of Queensland, QLD, Gatton, 4343, Australia
| | - Allan T Lisle
- Centre for Animal Welfare and Ethics, School of Veterinary Science, The University of Queensland, QLD, Gatton, 4343, Australia
| | - Clive J C Phillips
- Centre for Animal Welfare and Ethics, School of Veterinary Science, The University of Queensland, QLD, Gatton, 4343, Australia
| |
Collapse
|
39
|
Infrared thermography reveals surface body temperature changes during proestrus and estrus reproductive phases in Gyr heifers (Bos taurus indicus). J Therm Biol 2020; 92:102662. [PMID: 32888565 DOI: 10.1016/j.jtherbio.2020.102662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022]
Abstract
Our aim was to evaluate the application of infrared thermography (IRT) to detect body surface temperature variation of body regions during the proestrus and estrus phases of the reproductive cycle of Gyr heifers and investigate environmental factors that could affect these measurements. Fifty-seven heifers were submitted to an ovulation synchronization protocol. This was followed by monitoring the heifers every 12 h over 60 h. Heifers were monitored for rectal and vaginal temperature using a digital thermometer. The surface temperature of the eye, vulva, and muzzle regions were monitored by IRT. Meteorological data was recorded for temperature and humidity. Observation of sexual behavior was performed to monitor estrus onset. Transrectal ultrasonography was used to identify the dominant follicle and confirm ovulation of all heifers. We observed a decrease in temperature of the rectum and vagina, as well as in the eye and vulva regions within the first 12 h after the completion of the synchronization. This period coincides with the expected proestrus phase of the estrous cycle. A progressive increase in all temperatures was noticed in the following 36 h, which coincides with the estrus phase of the reproductive cycle. The regions evaluated around the vulva and eye exhibited the highest temperature and experienced less environmental distortion than the muzzle area thermographs. Environmental factors, such as rainfall and temperature-humidity index, influenced the IRT readings altering the radiation patterns detected. In conclusion, IRT is an effective method to detect temperature variation during the proestrus and estrus phases in Gyr heifers. Furthermore, biological and environmental effects should be considered when collecting and interpreting IRT data in livestock.
Collapse
|
40
|
Osei-Amponsah R, Dunshea FR, Leury BJ, Cheng L, Cullen B, Joy A, Abhijith A, Zhang MH, Chauhan SS. Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals (Basel) 2020; 10:E869. [PMID: 32429603 PMCID: PMC7278445 DOI: 10.3390/ani10050869] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to measure the impacts of summer heat events on physiological parameters (body temperature, respiratory rate and panting scores), grazing behaviour and production parameters of lactating Holstein Friesian cows managed on an Automated Robotic Dairy during Australian summer. The severity of heat stress was measured using Temperature-Humidity Index (THI) and impacts of different THIs-low (≤72), moderate (73-82) and high (≥83)-on physiological responses and production performance were measured. There was a highly significant (p ≤ 0.01) effect of THI on respiratory rate (66.7, 84.7 and 109.1/min), panting scores (1.4, 1.9 and 2.3) and average body temperature of cows (38.4, 39.4 and 41.5 °C), which increased as THI increased from low to moderate to high over the summer. Average milk production parameters were also significantly (p ≤ 0.01) affected by THI, such that daily milk production dropped by 14% from low to high THI, milk temperature and fat% increased by 3%, whilst protein% increased by 2%. The lactation stage of cow had no significant effect on physiological parameters but affected (p ≤ 0.05) average daily milk yield and milk solids. Highly significant (p ≤ 0.01) positive correlations were obtained between THI and milk temperature, fat% and protein% whilst the reverse was observed between THI and milk yield, feed intake and rumination time. Under moderate and high THI, most cows sought shade, spent more time around watering points and showed signs of distress (excessive salivation and open mouth panting). In view of the expected future increase in the frequency and severity of heat events, additional strategies including selection and breeding for thermotolerance and dietary interventions to improve resilience of cows need to be pursued.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
- Department of Animal Science, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon, P.O. Box LG 226, Accra, Ghana
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Brian J. Leury
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Long Cheng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Brendan Cullen
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Aleena Joy
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Archana Abhijith
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Michael H. Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| | - Surinder S. Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.O.-A.); (F.R.D.); (B.J.L.); (L.C.); (B.C.); (A.J.); (A.A.); (M.H.Z.)
| |
Collapse
|
41
|
Sammad A, Wang YJ, Umer S, Lirong H, Khan I, Khan A, Ahmad B, Wang Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals (Basel) 2020; 10:ani10050793. [PMID: 32375261 PMCID: PMC7278580 DOI: 10.3390/ani10050793] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Modern dairy cows have elevated internal heat loads caused by high milk production, and the effects of accumulating incremental heat are exacerbated when temperature and humidity increases in the surroundings. To shed this additional heat, cows initiate a variety of adaptive mechanisms including increased respiration rate, panting, sweating, reduced milk yield, vasodilatation, and decreased reproductive performance. Hormonal changes based on reciprocal alterations to the energetic metabolism are particularly accountable for reduced efficiency of the dairy production under the heat stress. As animals experience negative energy balance; glucose, which is also a precursor of milk lactose, becomes the preferential energy fuel. In the absence of proper mitigations, heat stress possesses potential risk of economic losses to dairy sector. Besides physical measures for the timely prediction of the actual heat stress coupled with its proper amelioration, nutritional mitigation strategies should target modulating energetic metabolism and rumen environment. Abstract Higher milk yield and prolificacy of the modern dairy cattle requires high metabolism activities to support them. It causes high heat production by the body, which coupled with increasing environmental temperatures results in heat stress (HS). Production, health, and welfare of modern cattle are severely jeopardized due to their low adaptability to hot conditions. Animal activates a variety of physiological, endocrine, and behavioral mechanisms to cope with HS. Traditionally, decreased feed intake is considered as the major factor towards negative energy balance (NEBAL) leading to a decline in milk production. However, reciprocal changes related to insulin; glucose metabolism; failure of adipose mobilization; and skeletal muscle metabolism have appeared to be the major culprits behind HS specific NEBAL. There exists high insulin activity and glucose become preferential energy fuel. Physiological biochemistry of the heat stressed cows is characterized by low-fat reserves derived NEFA (non-esterified fatty acids) response, despite high energy demands. Besides these, physiological and gut-associated changes and poor feeding practices can further compromise the welfare and production of the heat-stressed cows. Better understanding of HS specific nutritional physiology and metabolic biochemistry of the dairy cattle will primarily help to devise practical interventions in this context. Proper assessment of the HS in cattle and thereby applying relevant cooling measures at dairy seems to be the basic mitigation approach. Score of the nutritional strategies be applied in the eve of HS should target supporting physiological responses of abatement and fulfilling the deficiencies possessed, such as water and minerals. Second line of abatement constitutes proper feeding, which could augment metabolic activities and synergizes energy support. The third line of supplemental supports should be directed towards modulating the metabolic (propionates, thiazolidinediones, dietary buffers, probiotics, and fermentates) and antioxidant responses (vitamins). Comprehensive understanding of the energetic metabolism dynamics under the impact of incremental heat load and complete outlook of pros and cons of the dietary ameliorating substances together with the discovery of the newer relevant supplementations constitutes the future avenues in this context.
Collapse
Affiliation(s)
- Abdul Sammad
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Ya Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Saqib Umer
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (I.K.)
| | - Hu Lirong
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Imran Khan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (I.K.)
| | - Adnan Khan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Baseer Ahmad
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
- Correspondence:
| |
Collapse
|
42
|
Effect of high temperature on physiological parameters of Nelore (Bos taurus indicus) and Caracu (Bos taurus taurus) cattle breeds. Trop Anim Health Prod 2020; 52:2233-2241. [DOI: 10.1007/s11250-020-02249-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
|
43
|
Pinto S, Hoffmann G, Ammon C, Amon T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J Therm Biol 2020; 88:102523. [PMID: 32125999 DOI: 10.1016/j.jtherbio.2020.102523] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 11/18/2022]
Abstract
The severity of heat stress conditions in high-yielding dairy cows is currently underestimated. The present study aimed to determine the heat load threshold of the temperature-humidity index (THI) on physiological parameters of lactating Holstein-Friesian cows under a continental climatic zone in Germany. Physiological parameter measurements, such as respiration rate (RR), measured hourly, and heart rate (HR) and rectal temperature (RT), both measured twice daily, were performed in a total of 139 multiparous cows on three randomly chosen measurement days per week. In addition, the ambient temperature and relative humidity of the barn were recorded every 5 min to calculate the current THI. The physiological parameter data were linked to the THI, and the heat load thresholds were determined using the broken-stick model. The heat load duration effect of each physiological parameter was obtained by regression analysis. Considering the increases in the physiological parameters, our study provided reliable data to determine heat load thresholds for lactating high-yielding dairy cows in a moderate climatic zone. The heat load threshold could be determined for RR in standing cows (THI = 70) and lying cows (THI = 65) and for HR (THI = 72) and RT (THI = 70) in standing cows. The heat load duration also demonstrated a significant effect on the increases in physiological parameters among dairy cows. In particular, the present study enabled a strategy to be devised to initiate heat mitigation in high-yielding dairy cows when they are exposed to THIs above 65.
Collapse
Affiliation(s)
- Severino Pinto
- Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy, ATB, Potsdam, 14469, Germany.
| | - Gundula Hoffmann
- Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy, ATB, Potsdam, 14469, Germany.
| | - Christian Ammon
- Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy, ATB, Potsdam, 14469, Germany
| | - Thomas Amon
- Department of Engineering for Livestock Management, Leibniz Institute for Agricultural Engineering and Bioeconomy, ATB, Potsdam, 14469, Germany; Institute of Animal Hygiene and Environmental Health, College of Veterinary Medicine, Free University Berlin, Berlin, 14163, Germany
| |
Collapse
|
44
|
Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals (Basel) 2019; 9:ani9121089. [PMID: 31817620 PMCID: PMC6940919 DOI: 10.3390/ani9121089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Animal monitoring normally requires procedures that are time- and labour-consuming. The implementation of novel non-invasive technologies could be a good approach to monitor animal health and welfare. This study aimed to evaluate the use of images and computer-based methods to track specific features of the face and to assess temperature; respiration rate and heart rate in cattle. The measurements were compared with measures obtained with conventional methods during the same time period. The data were collected from ten dairy cows that were recorded during six handling procedures across two consecutive days. The results from this study show over 92% of accuracy from the computer algorithm that was developed to track the areas selected on the videos collected. In addition, acceptable correlation was observed between the temperature calculated from thermal infrared images and temperature collected using intravaginal loggers. Moreover, there was acceptable correlation between the respiration rate calculated from infrared videos and from visual observation. Furthermore, a low to high relationship was found between the heart rate obtained from videos and from attached monitors. The study also showed that both the position of the cameras and the area analysed on the images are very important, as both had large impact on the accuracy of the methods. The positive outcomes and the limitations observed in this study suggest the need for further research Abstract Precision livestock farming has emerged with the aim of providing detailed information to detect and reduce problems related to animal management. This study aimed to develop and validate computer vision techniques to track required features of cattle face and to remotely assess eye temperature, ear-base temperature, respiration rate, and heart rate in cattle. Ten dairy cows were recorded during six handling procedures across two consecutive days using thermal infrared cameras and RGB (red, green, blue) video cameras. Simultaneously, core body temperature, respiration rate and heart rate were measured using more conventional ‘invasive’ methods to be compared with the data obtained with the proposed algorithms. The feature tracking algorithm, developed to improve image processing, showed an accuracy between 92% and 95% when tracking different areas of the face of cows. The results of this study also show correlation coefficients up to 0.99 between temperature measures obtained invasively and those obtained remotely, with the highest values achieved when the analysis was performed within individual cows. In the case of respiration rate, a positive correlation (r = 0.87) was found between visual observations and the analysis of non-radiometric infrared videos. Low to high correlation coefficients were found between the heart rates (0.09–0.99) obtained from attached monitors and from the proposed method. Furthermore, camera location and the area analysed appear to have a relevant impact on the performance of the proposed techniques. This study shows positive outcomes from the proposed computer vision techniques when measuring physiological parameters. Further research is needed to automate and improve these techniques to measure physiological changes in farm animals considering their individual characteristics.
Collapse
|
45
|
Jeelani R, Konwar D, Khan A, Kumar D, Chakraborty D, Brahma B. Reassessment of temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. J Therm Biol 2019; 82:99-106. [PMID: 31128665 DOI: 10.1016/j.jtherbio.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
Abstract
The temperature-humidity index (THI) has been extensively applied for assessing heat stress in moderate to hot conditions in dairy cattle. However, there exist wide variation between researchers in defining an appropriate range of THI values for denoting different levels of stress. The present study was aimed to reassess previously described heat stress indicators of dairy cattle of sub-tropical region of India. From comparative evaluation of meteorological data over previous four years (2014-2017) the period of year when high THI prevailed in the region was determined. Accordingly, the time period of sample collection and observation on animals was decided, so that a THI range of 68-86 could be covered. After analyzing physiological, biochemical parameters and expression profile of heat shock response (HSR) genes of animals in response to different THI, it was evident from the study that animal undergoes few or little changes at THI 72, but major physiological changes occurred after THI reached 74. At THI range 74-79, no drastic change in these parameters occurred suggesting animals undergo transient acclimatization in this range to maintain homeostasis. Once THI reached and crossed 80, this homeostasis was perturbed and animals experienced major physiological changes again. Overall, the study suggests that THI values indicating level of heat stress are dependent on the geographic location, as well as type of animal and therefore, existing THI should be recalibrated for different climatic region for accurate assessment of the heat stress.
Collapse
Affiliation(s)
- Rakhshan Jeelani
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Dipanjali Konwar
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Asma Khan
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Dhirendra Kumar
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Dibyendu Chakraborty
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India
| | - Biswajit Brahma
- Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, 181104, India.
| |
Collapse
|
46
|
Abecia JA, María GA, Estévez-Moreno LX, Miranda-De La Lama GC. Daily rhythms of body temperature around lambing in sheep measured non-invasively. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1592352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- José A. Abecia
- Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - Gustavo A. María
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Laura X Estévez-Moreno
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Genaro C. Miranda-De La Lama
- Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| |
Collapse
|