1
|
Lackner M, Grossmann F, Perret C, Flueck JL, Hertig-Godeschalk A. Chasing Gold: Heat Acclimation in Elite Handcyclists with Spinal Cord Injury. Int J Sports Med 2024; 45:733-738. [PMID: 38885662 DOI: 10.1055/a-2321-1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Thermoregulation is impaired in individuals with a spinal cord lesion (SCI), affecting sweat capacity, heat loss, and core temperature. This can be particularly problematic for athletes with SCI who exercise in hot and humid conditions, like those during the Tokyo 2020 Paralympic Games. Heat acclimation can support optimal preparation for exercise in such challenging environments, but evidence is limited in endurance athletes with SCI. We evaluated whether seven consecutive days of exercise in the heat would result in heat acclimation. Five elite para-cycling athletes with SCI participated (two females, three males, median (Q1-Q3) 35 (31-51) years, four with paraplegia and one with tetraplegia). All tests and training sessions were performed in a heat chamber (30°C and 75% relative humidity). A time-to-exhaustion test was performed on day 1 (pretest) and day 7 (posttest). On days 2-6, athletes trained daily for one hour at 50-60% of individual peak power (PPeak). Comparing pretest and posttest, all athletes increased their body mass loss (p=0.04), sweat rate (p=0.04), and time to exhaustion (p=0.04). Effects varied between athletes for core temperature and heart rate. All athletes appeared to benefit from our heat acclimation protocol, helping to optimize their preparation for the Tokyo 2020 Paralympic Games.
Collapse
Affiliation(s)
- Mike Lackner
- Sports Therapy, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Fabian Grossmann
- Institute of Sports Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Claudio Perret
- Neuro-Musculoskeletal Functioning and Mobility, Swiss Paraplegic Research, Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Luzern, Switzerland
| | - Joelle L Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | | |
Collapse
|
2
|
Desroches AJ, Aloui F, Deshayes TA, Goulet EDB. Assessment of the Omius™ cooling headband effectiveness during a 70-min submaximal running effort followed by a 5-km time-trial in hot/humid conditions. J Therm Biol 2024; 124:103964. [PMID: 39226790 DOI: 10.1016/j.jtherbio.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Exercise performed under hot/humid conditions can hinder endurance performance. The Omius™ headband (OH) is purported to reduce the perception of heat and improve performance. We examined the impact of OH on selected thermal and cardiovascular functions, subjective perceptions and running performance. Using a randomized crossover protocol, 10 trained male athletes (28 ± 4 years) completed two trials (OH and sham headband (SH), 35.0 ± 0.3 °C, 56 ± 3% relative humidity) comprising 70 min of running (60% V˙O2max) followed by a 5-km running time-trial (TT). Heart rate, perceived exertion and whole-body thermal comfort did not significantly differ between conditions during the submaximal running effort and TT. Rectal temperature was higher with OH (0.11 ± 0.16 °C, p = 0.052) than SH prior to the submaximal running effort, however, no significant differences were observed between conditions regarding the changes in rectal temperature from baseline during the submaximal running effort and TT. Forehead temperature was significantly lower with OH than SH during the submaximal running effort, but no significant differences were observed at the end of the TT. Scores of perceived forehead thermal comfort were only significantly lower with OH than SH during the submaximal running effort. TT performance did not significantly differ between OH (19.8 ± 1.2 min) and SH (20.2 ± 1.0 min). In conclusion, OH improves forehead thermal comfort and reduces forehead temperature but not rectal temperature, heart rate and perceived exertion during, nor 5-km TT performance following, 70 min of submaximal running in the heat.
Collapse
Affiliation(s)
| | - Fedi Aloui
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas A Deshayes
- School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Québec, Canada; Montreal Heart Institute, Montréal, Québec, Canada
| | - Eric D B Goulet
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Research Centre on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Fan Y, Zhang B, Wang Y, Wu H. Different humidity environments do not affect the subsequent exercise ability of college football players after aerobic high-intensity interval training. Sci Rep 2024; 14:16205. [PMID: 39003355 PMCID: PMC11246416 DOI: 10.1038/s41598-024-66757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Previous studies have explored the effect of differing heat and relative humidity (RH) environments on the performance of multiple anaerobic high-intensity interval training (HIIT). Still, its impact on physiological responses and performance following aerobic HIIT has not been well studied. This study examined the effects of differing RH environments on physiological responses and performance in college football players following HIIT. Twelve college football completed HIIT under four different environmental conditions: (1) 25 °C/20% RH (Control group); (2) 35 °C/20% RH (H20 group); (3) 35 °C/40% RH (H40 group); (4) 35 °C/80% RH (H80 group). The heart rate (HR), mean arterial pressure (MAP), lactate, tympanic temperature (TT), skin temperature (TS), thermal sensation (TS), and rating of perceived exertion (RPE) were recorded continuously throughout the exercise. The heart rate variability (HRV): including root mean squared differences of the standard deviation (RMSSD)、standard deviation differences of the standard deviation (SDNN)、high frequency (HF), low frequency (LF), squat jump height (SJH), cycling time to exhaustion (TTE), and sweat rate (SR) were monitored pre-exercise and post-exercise. The HR, MAP, lactate, TT, Ts, TS, and RPE in the 4 groups showed a trend of rapid increase, then decreased gradually. There was no significant difference in HR, MAP, TT, or RPE between the 4 groups at the same time point (p > 0.05), in addition to this, when compared to the C group, the lactate, Ts, TS in the other 3 groups significant differences were observed at the corresponding time points (p < 0.05). The RMSSD, SDNN, HF, and LF levels in the 4 groups before exercise were not significantly different. The RMSSD and HF in the H40 and H80 groups were significantly decreased and other HRV indicators showed no significant difference after exercise. In sports performance measurement, the SJH and TTE were significantly decreased, but there was no significant difference in the 4 groups. The SR was no significant difference in the 4 groups after exercise. In conclusion, heat and humidity environments elicited generally greater physiological effects compared with the normal environment but did not affect sports performance in college football players.
Collapse
Affiliation(s)
- Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Ben Zhang
- Department of Arts and Physical Education, Shantou Polytechnic, Shantou, 515078, Guangdong, China
| | - Yan Wang
- Department of Physical Education Teaching and Research, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Hao Wu
- Capital University of Physical Education and Sports, Beijing, 100191, China.
| |
Collapse
|
4
|
Alkemade P, Daanen HAM, Janssen TWJ, Broad E, Goosey-Tolfrey VL, Ibusuki T, Kneepkens H, Périard JD, Eijsvogels TMH. Heat preparedness and exertional heat illness in Paralympic athletes: A Tokyo 2020 survey. Temperature (Austin) 2022; 10:264-275. [PMID: 37332304 PMCID: PMC10274519 DOI: 10.1080/23328940.2022.2147364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Paralympic athletes may be at increased risk for exertional heat illness (EHI) due to reduced thermoregulatory ability as a consequence of their impairment. This study investigated the occurrence of heat-stress related symptoms and EHI, and the use of heat mitigation strategies in Paralympic athletes, both in relation to the Tokyo 2020 Paralympic Games and previous events. Paralympic athletes competing in Tokyo 2020 were invited to complete an online survey five weeks prior to the Paralympics and up to eight weeks after the Games. 107 athletes (30 [24-38] years, 52% female, 20 nationalities, 21 sports) completed the survey. 57% of respondents had previously experienced heat-stress related symptoms, while 9% had been medically diagnosed with EHI. In Tokyo, 21% experienced at least one heat-stress related symptom, while none reported an EHI. The most common symptom and EHI were, respectively, dizziness and dehydration. In preparation for Tokyo, 58% of respondents used a heat acclimation strategy, most commonly heat acclimatization, which was more than in preparation for previous events (45%; P = 0.007). Cooling strategies were used by 77% of athletes in Tokyo, compared to 66% during past events (P = 0.18). Cold towels and packs were used most commonly. Respondents reported no medically-diagnosed EHIs during the Tokyo 2020 Paralympic Games, despite the hot and humid conditions in the first seven days of competition. Heat acclimation and cooling strategies were used by the majority of athletes, with heat acclimation being adopted more often than for previous competitions.
Collapse
Affiliation(s)
- Puck Alkemade
- Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Hein A. M. Daanen
- Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Thomas W. J. Janssen
- Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | | | - Victoria L. Goosey-Tolfrey
- Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LeicestershireLE11 3TU, UK
| | - Tatsuru Ibusuki
- Department of Rehabilitation Medicine, Akeno Central Hospital, Oita, Japan
| | - Hiske Kneepkens
- Sport Medisch Centrum Papendal, NOC*NSF, Arnhem, The Netherlands
| | - Julien D. Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, New south wales, Australia
| | - Thijs M. H. Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Tan GCW, Zheng K, Cheong WK, Byrne C, Iversen JN, Lee JKW. Small changes in thermal conditions hinder marathon running performance in the tropics. Temperature (Austin) 2022; 9:373-388. [PMID: 36339089 PMCID: PMC9629073 DOI: 10.1080/23328940.2022.2086777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
We examined marathon performance of the same group of runners in relation to small changes in dry bulb temperature (Tdb) and wet bulb temperature (Twb) across 3 consecutive y, and investigated whether performance was poorer during an evening marathon compared with morning marathons. Marathon results were obtained from the 2017, 2018, and 2019 Standard Chartered Singapore Marathons. Tdb, Twb, Td, relative humidity, and absolute humidity were gathered for each marathon. K-means clustering and linear regressions were performed on 610 runners who participated in all three marathons. Analysis of the 610 runners' marathon performance was contrasted with Tdb and Twb. Linear regressions were also performed on 190 runners filtered by percentile, yielding similar results. For clusters with similar Tdb from all runners K-means clustering, an increase in mean Twb by 1.5°C coincided with an increase in finishing time by 559 s (9.3 min) (p < 0.033). Twb hinders marathon performance more than Tdb, with each percentage rise in Tdb and Twb resulting in an increase in net time by 7.6% and 39.1%, respectively (p < 0.025). Male and female runners' response to Tdb and Twb changes were similar (overlap in 95% confidence intervals for the respective regression coefficients). In conclusion, small variations in environmental parameters affected marathon performance, with Twb impairing marathon performance more than Tdb. Marathon performance was likely better in the morning than evening, possibly due to time of day differences, along with unfavorable Tdb that superseded training effects and the effects of lower Twb.
Collapse
Affiliation(s)
- Glenn C. W. Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kaiyuan Zheng
- Meteorological Service Singapore, Singapore, Singapore
| | - Wee K. Cheong
- Meteorological Service Singapore, Singapore, Singapore
| | - Christopher Byrne
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jan N. Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason K. W. Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Global Asia Institute, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
6
|
Teunissen LPJ, Jansen KMB, Janssen E, Kingma BRM, de Korte JQ, Eijsvogels TMH. Impact of different climatic conditions on peak core temperature of elite athletes during exercise in the heat: a Thermo Tokyo simulation study. BMJ Open Sport Exerc Med 2022; 8:e001313. [PMID: 35813127 PMCID: PMC9234798 DOI: 10.1136/bmjsem-2022-001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/04/2022] Open
Abstract
Objectives To evaluate how separate and combined climatic parameters affect peak core temperature during exercise in the heat using computer simulations fed with individual data. Methods The impact of eight environmental conditions on rectal temperature (Tre) was determined for exercise under heat stress using the Fiala-thermal-Physiology-and-Comfort simulation model. Variations in ambient temperature (Ta±6°C), relative humidity (RH±15%) and solar radiation (SR+921 W/m2) were assessed in isolation and combination (worst-case/best-case scenarios) and compared with baseline (Ta32°C, RH 75%, SR 0 W/m2). The simulation model was fed with personal, anthropometric and individual exercise characteristics. Results 54 athletes exercised for 46±10 min at baseline conditions and achieved a peak core temperature of 38.9±0.5°C. Simulations at a higher Ta (38°C) and SR (921 W/m2) resulted in a higher peak Tre compared with baseline (+0.6±0.3°C and +0.5±0.2°C, respectively), whereas a higher RH (90%) hardly affected peak Tre (+0.1±0.1°C). A lower Ta (26°C) and RH (60%) reduced peak Tre by −0.4±0.2°C and a minor −0.1±0.1°C, respectively. The worst-case simulation yielded a 1.5±0.4°C higher Tre than baseline and 2.0±0.7°C higher than the best-case condition. Conclusion Combined unfavourable climatic conditions produce a greater increase in peak core temperature than the sum of its parts in elite athletes exercising in the heat.
Collapse
Affiliation(s)
- Lennart P J Teunissen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Kaspar M B Jansen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Emiel Janssen
- Department of Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Boris R M Kingma
- Department of Training & Performance Innovations, TNO, Unit Defence, Safety & Security, Soesterberg, The Netherlands
| | - Johannus Q de Korte
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Nakamura M, Naito T, Saito T, Takahashi A, Muraishi K, Hakamada N, Otomo M, Iizuka S, Nakamura D, Takahashi H. Case Report: Countermeasures Against Heat and Coronavirus for Japanese Athletes at the Tokyo 2020 Olympics and Paralympic Games. Front Sports Act Living 2022; 4:878022. [PMID: 35734239 PMCID: PMC9208275 DOI: 10.3389/fspor.2022.878022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Tokyo 2020 Olympics and Paralympic Games were held in the hottest environment in the history of the games. Additionally, the worldwide coronavirus disease 2019 (COVID-19) pandemic necessitated daily polymerase chain reaction (PCR) testing during the games, wearing a mask became mandatory publicly, and it was an unheard and unique Olympic with no spectators. Heat acclimation, hydration, and body cooling are essential for safe and high-performance activities in hot environments. In 2015, the Japan Institute of Sports Sciences launched the “Heat Countermeasure Project” to conduct experiments and practical research on heat countermeasures and investigate issues related to heat countermeasures in each athletic event. The results obtained were proposed to various Japan national sports teams, and support for heat countermeasures for the Tokyo 2020 games was promoted in consultation with national federations. Furthermore, due to the COVID-19 pandemic, infectious disease countermeasures for the Tokyo 2020 Games during support were a must. Moreover, athletes, coaches, and team staff could not avoid implementing heat countermeasures while adopting measures against infectious diseases. This study aimed to clarify the issues faced with heat countermeasures and report on heat acclimation training and cooling support efforts, considering measures against infectious diseases.
Collapse
Affiliation(s)
- Mariko Nakamura
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- *Correspondence: Mariko Nakamura
| | - Takashi Naito
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- Faculty of Law, Hokkai-Gakuen University, Sapporo, Japan
| | - Tatsuya Saito
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- Faculty of Medicine, Tottori University, Tottori, Japan
| | - Akari Takahashi
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
| | - Koji Muraishi
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- Faculty of Economics, Kanto Gakuen University, Ohta, Japan
| | - Noriko Hakamada
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
| | - Mana Otomo
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
| | - Satoshi Iizuka
- Department of Sports Science, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
| | - Daisuke Nakamura
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- Weathersnews Inc., Makuhari Techno Garden, Chiba, Japan
| | - Hideyuki Takahashi
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Bayne F, Racinais S, Mileva KN, Hunter S, Gaoua N. The Type of Per-Cooling Strategies Currently Employed by Competitive and Professional Cyclists-Triathletes During Training and Competition Are Condition (Dry vs. Humid) Dependant. Front Sports Act Living 2022; 4:845427. [PMID: 35694320 PMCID: PMC9174669 DOI: 10.3389/fspor.2022.845427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate cooling strategies employed by athletes (cyclists-triathletes) during training and competition in hot and dry (HD) and hot and humid (HH) conditions. Methods Thirty-five athletes completed an online questionnaire on the type, timing, and justification of cooling strategies employed during past training and/or competitions in HD and HH conditions. In addition, 3 athletes also completed a one-to-one follow-up interview. Results Comparisons between strategies employed in all conditions were based on N = 14 (40%). Cold-water pouring was the most employed (N = 4; 21%) strategy during training and/or competing in hot conditions. The timing of the strategies employed was based on pitstops only (N = 7; 50%). The justification for strategies employed was based on trial and error (N = 9, 42.85%: N = 10, 47.61%). All athletes rated strategies employed as 1 (“not effective for minimising performance impairments and heat-related illnesses”). Comparisons between HD and HH were based on N = 21 (60%), who employed different strategies based on condition. Cold-water ingestion was the most employed (N = 9, 43%) strategy in HD, whereas a combination of cold-water ingestion and pouring was the most employed (N = 9, 43%) strategy in HH. The timing of strategies employed in the HD split was pre-planned by distance but was modified based on how athletes felt during (N = 8, 38%), and pre-planned by distance and pit stops (N = 8, 38%). The timing of strategies employed in HH was pre-planned based on distance and how athletes felt during (N = 9, 42%). About 57% (N = 12) of the 60% (N = 21) perceived effectiveness in HD and HH as 3 (“Sometimes effective and sometimes not effective”), whereas 43% (N = 9) of the 60% (N = 21) perceived effectiveness in HD and HH as 4 (“Effective for minimising performance impairments”). Conclusion Cold-water ingestion is the preferred strategy by athletes in HD compared to a combination of cold-water ingestion and pouring in HH conditions. All strategies were pre-planned and trialled based on distance and how athletes felt during training and/or competition. These strategies were perceived as effective for minimising performance impairments, but not heat-related illnesses. Future studies should evaluate the effectiveness of these cooling strategies on performance and thermoregulatory responses in HD and HH conditions.
Collapse
Affiliation(s)
- Freya Bayne
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
- *Correspondence: Freya Bayne
| | | | - Katya N. Mileva
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Steve Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Nadia Gaoua
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
9
|
Cao Y, Lei TH, Wang F, Yang B, Mündel T. Head, Face and Neck Cooling as Per-cooling (Cooling During Exercise) Modalities to Improve Exercise Performance in the Heat: A Narrative Review and Practical Applications. SPORTS MEDICINE - OPEN 2022; 8:16. [PMID: 35092517 PMCID: PMC8800980 DOI: 10.1186/s40798-022-00411-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/16/2022] [Indexed: 11/10/2022]
Abstract
It is well known that uncompensable heat stress greatly impairs endurance and team sport-related performance because an increase in the core temperature directly induces a greater magnitude of the central fatigue in the heat than in thermal neutral environments. Numerous studies have been conducted in an attempt to discover reliable cooling strategies for improving endurance performance and repeated sprint ability while exercising in the heat. Whole-body pre-cooling has been shown to improve endurance performance in both dry and humid heat. Despite this, the reduction in thermal perceptions associated with pre-cooling gradually narrows during intense exercise. Hence, effective per-cooling strategies to improve athletic performance in the heat are required. Unfortunately, due to practical issues, adopting pre-cooling approaches as a per-cooling (cooling during exercise) modality to improve athletic performance is impractical. Thus, we sought to examine the impact of head, neck and face cooling on athletic performance in heat. According to current evidence, cooling the head, neck and face reduced local skin temperature in the areas where cooling was applied, resulting in improved local perceptual sensations. In the heat, neck cooling during exercise improves athletic performance in both endurance and team sports athletes. Furthermore, from a practical standpoint, neck cooling is preferred over head, face and combined head/face and neck cooling for both endurance and team sport athletes in the heat. Nonetheless, for all athletes who have access to water, face cooling is a recommended cooling strategy. There is a lack of research on the systematic selection of per-cooling modalities to improve athletic performance based on environmental conditions and the nature of sports. In addition, powerful but portable head, neck and face cooling systems are urgently needed to assist athletes in improving their performance in hot conditions.
Collapse
Affiliation(s)
- Yinhang Cao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, 200438, China
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Faming Wang
- School of Energy and Environment, Southeast University, Jiulong Lake Campus, Nanjing, 211189, China.
| | - Bin Yang
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Rojas-Valverde D, Tomás-Carús P, Timón R, Batalha N, Sánchez-Ureña B, Gutiérrez-Vargas R, Olcina G. Short-Term Skin Temperature Responses to Endurance Exercise: A Systematic Review of Methods and Future Challenges in the Use of Infrared Thermography. Life (Basel) 2021; 11:1286. [PMID: 34947817 PMCID: PMC8704093 DOI: 10.3390/life11121286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Body temperature is often assessed in the core and the skin. Infrared thermography has been used to measure skin temperature (Tsk) in sport research and clinical practice. This study aimed to explore the information reported to date on the use of infrared thermography to detect short-term Tsk responses to endurance exercise and to identify the methodological considerations and knowledge gaps, and propose future directions. METHOD A web search (PubMed, Science Direct, Google Scholar, and Web of Science) was conducted following systematic review guidelines, and 45 out of 2921 studies met the inclusion criteria (endurance sports, since 2000, English, full text available). RESULTS A total of 45 publications were extracted, in which most of the sample were runners (n = 457, 57.9%). Several differences between IRT imaging protocols and ROI selection could lead to potential heterogeneity of interpretations. These particularities in the methodology of the studies extracted are widely discussed in this systematic review. CONCLUSIONS More analyses should be made considering different sports, exercise stimuli and intensities, especially using follow-up designs. Study-derived data could clarify the underlying thermo physiological processes and assess whether Tsk could be used a reliable proxy to describe live thermal regulation in endurance athletes and reduce their risk of exertional heat illness/stroke. Also more in-depth analyses may elucidate the Tsk interactions with other tissues during exercise-related responses, such as inflammation, damage, or pain.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
- Clínica de Lesiones Deportivas (Rehab & Readapt), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Pablo Tomás-Carús
- Comprehensive Health Research Center (CHRC), Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia-Universidade de Évora, 7000-727 Évora, Portugal
| | - Rafael Timón
- Grupo en Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte, Universidad de Extremadura, 10005 Cáceres, Spain
| | - Nuno Batalha
- Comprehensive Health Research Center (CHRC), Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia-Universidade de Évora, 7000-727 Évora, Portugal
| | - Braulio Sánchez-Ureña
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Guillermo Olcina
- Grupo en Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte, Universidad de Extremadura, 10005 Cáceres, Spain
| |
Collapse
|
11
|
Vanos JK, Marie Thomas W, Grundstein A, Hosokawa Y, Casa D. Bracing for heat and humidity amidst new challenges in Tokyo: Comment on: Vanos JK, Thomas WM, Grundstein AJ, Hosokawa Y, Liu Y, Casa DJ. A multi-scalar climatological analysis in preparation for extreme heat at the Tokyo 2020 Olympic and Paralympic Games. Temperature 2020;7(2):191-214, DOI: 10.1080/23328940.2020.1737479. Temperature (Austin) 2021; 8:206-208. [PMID: 34595324 DOI: 10.1080/23328940.2021.1960104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Jennifer K Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | | | - Andy Grundstein
- Department of Geography, University of Georgia, Athens, GA, USA
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University: Tokorozawa, Saitama, JP, USA
| | - Doug Casa
- Korey Stringer Institute, Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
12
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|