1
|
Böhmert B, Chong GLW, Lo K, Algie M, Colbert D, Jordan MD, Stuart G, Wise LM, Lee LEJ, Bols NC, Dowd GC. Isolation and characterisation of two epithelial-like cell lines from the gills of Chrysophrys auratus (Australasian snapper) and Oncorhynchus tshawytscha (Chinook salmon) and their use in aquatic toxicology. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00941-z. [PMID: 38987436 DOI: 10.1007/s11626-024-00941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
In vitro gill models are becoming increasingly important in aquatic toxicology, yet the fish gill invitrome is underrepresented, encompassing approximately 0.1% of extant species. Here, we describe the establishment and characterisation of two gill-derived, epithelial-like cell lines isolated from fish species of significant importance to New Zealand: Chrysophrys auratus (Australasian snapper) and Oncorhynchus tshawytscha (Chinook salmon). Designated CAgill1PFR (Chrysophrys auratus, gill 1, Plant & Food Research) and OTgill1PFR (Oncorhynchus tshawytscha, gill 1, Plant & Food Research), these cell lines have each been passaged greater than each 70 times over several years and are considered spontaneously immortalised. Both cell lines required serum for growth and exhibited differential responses to basal media formulations. CAgill1PFR was sensitive to low temperatures (4 °C) but replicated at high temperatures (30 °C), whereas OTgill1PFR was sensitive to high temperatures but remained viable at low temperatures, mirroring the natural environment of their host species. Immunostaining revealed expression of epithelial cell markers cytokeratin and E-cadherin, alongside positivity for the mesenchymal cell marker, vimentin. CAgill1PFR was more sensitive to the environmental toxin 3,4 dichloroaniline than OTgill1PFR through measurements of metabolic activity, membrane integrity, and lysosomal function. Furthermore, CAgill1PFR produced less CYP1A activity, indicative of ongoing biotransformation processes, in response to beta-naphthoflavone than OTgill1PFR. These cell lines expand the toolbox of resources and emphasise the need for species-specific aquatic toxicology research.
Collapse
Affiliation(s)
- Björn Böhmert
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Gavril L W Chong
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Kim Lo
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, 1142, New Zealand
| | - Michael Algie
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, 1142, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, 1142, New Zealand
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn M Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Georgina C Dowd
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, 293 Akersten Street, Nelson, 7010, New Zealand.
| |
Collapse
|
2
|
Pande A, Thakuria D, Kushwaha B, Kumar R, S M, Rastogi A, Sood N. A cell line derived from heart of rainbow trout is refractory to Tilapia lake virus. Cell Biol Int 2024; 48:347-357. [PMID: 38212941 DOI: 10.1002/cbin.12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Cell lines are important in vitro models to answer biological mechanisms with less genetic variations. The present study was attempted to develop a cell line from rainbow trout, where we obtained a cell line from the heart, named "RBT-H." The cell line was authenticated using karyotyping and cytochrome c oxidase subunit I (COI) gene sequencing. The karyotype demonstrated diploid chromosome number (2n) as 62 and the sequence of partial COI gene was 99.84% similar to rainbow trout COI data set, both suggesting the origin of RBT-H from the rainbow trout. The heart cell line was mycoplasma-free and found to be refractory to infection with the Tilapia lake virus. The RBT-H cell line is deposited in the National Repository of Fish Cell Line (NRFC) at ICAR-NBFGR, Lucknow, India, with Accession no. NRFC0075 for maintenance and distribution to researchers on request for R&D.
Collapse
Affiliation(s)
- Amit Pande
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Basdeo Kushwaha
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Ravindra Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Murali S
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Aakriti Rastogi
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Alak G, Kara A, Akköse A, Gelen SU, Tanas ŞT, Uçar A, Parlak V, Atamanalp M. Effect of climate change on fillet quality and shelf-life of Oncorhynchus mykiss under controlled conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1511-1520. [PMID: 37804144 DOI: 10.1002/jsfa.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Temperature, which affects numerous physiological processes, has been described as the 'main ecological factor' for fish. The aim of this modeling study is to explore the impact of climate-induced temperature changes on fish fillet quality and shelf life. RESULTS Temperature stress in rainbow trout affected ash and moisture, and inhibited myofibril fragmentation in the fillets. However, with the increase in temperature, there was a decrease in the total amount of saturated fatty acids (∑SFA) and there were significant increases in the total amount of omega 3 (∑n3) and 22:6n-3 (DHA). It was determined that temperature increase had a negative effect on color, texture, water-holding capacity, water activity, pH, lactic acid, and glycogen levels in fillets, and it had a positive effect by delaying microbial spoilage, especially in cold storage. CONCLUSION This study suggest that the effects of climate change on product quality and shelf life in fish requires further research. It highlights knowledge gaps to guide future research in this emerging field. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Ayşe Kara
- Department of Seafood Processing, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ahmet Akköse
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Sevda Urçar Gelen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şeyda Tacer Tanas
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| |
Collapse
|
4
|
Alak G, Özgeriş FB, Uçar A, Parlak V, Kocaman EM, Özcan S, Atamanalp M. Effect of climate change on hematotoxicity/hepatoxicity oxidative stress, Oncorhynchus mykiss, under controlled conditions. PLoS One 2023; 18:e0294656. [PMID: 38032944 PMCID: PMC10688713 DOI: 10.1371/journal.pone.0294656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Described as the 'main ecological factor', temperature, strongly affects the physiological stress responses of fish. In order to evaluate the effects of temperature variations on fish culture and food value chain, the present study was designed as a climate change model. Furthermore, the present study provides a theoretical basis for a better understanding of the mechanisms of the environmentally induced changes. In this direction, we examined the blood physiology and oxidative stress responses induced by temperature variation in the rainbow trout, a temperature-sensitive cold-water fish. The obtained results showed that climate changes promoted the inhibited activities' expressions and the development of potential tissue and hematological defense mechanisms against temperature-induced toxic damage. This study showed that climate change could be a subset of the studies on the stress physiology in aquaculture, which can be developed for new experimental designs and research collaborations. Furthermore, it highlights knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkiye
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Sinan Özcan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| |
Collapse
|