1
|
Wu G, Guo L, Gu Y, Huang T, Liu M, Zou X, Yang B, Huang P, Wen C, Yi L, Liao W, Zhao D, Zhu J, Zhang X, Liu Y, Yin Y, Chen S. The genomic characteristics of RET fusion positive tumors in Chinese non-small cell lung cancer (NSCLC) patients. J Cancer Res Clin Oncol 2023; 149:1019-1028. [PMID: 35220468 PMCID: PMC9984339 DOI: 10.1007/s00432-022-03959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Approximately 1-2% of non-small cell lung cancer (NSCLC) patients harbor RET (rearranged during transfection) fusions. The oncogenic RET fusions could lead to constitutive kinase activation and oncogenesis. METHODS 1746 Chinese NSCLC patients were analyzed in this study. Tumor tissues were collected, and were formalin fixed, paraffin-embedded (FFPE) and archived. Peripheral blood (PB) samples were also collected from each patient as control. In addition, we selected 17 of them for cfDNA NGS testing and 14 tumor samples for immunohistochemistry testing using PD-L1 rabbit monoclonal antibody, clones 28-8 (Abcam, Cambridge, UK). RESULTS Of the 1746 NSCLC cases, RET rearrangements were identified in 25 cases (1.43%) with locally advanced or metastatic NSCLC, of which 20 (80%) were female. We found that 14 out of 25 patients had an KIF5B-RET fusion, with KIF5B exon15-RET exon12, KIF5B exon23-RET exon12, and KIF5B exon24-RET exon11 detected in 14, 3, and 1 patients, respectively. We also identified one novel RET fusion partner PLCE1 and 4 intergenic-breakpoint fusions. CONCLUSION In this study, using the hybrid capture based next generation sequencing (NGS) techniques, we revealed the genomic profiling for the patients with RET fusion-positive NSCLC. To the best of our knowledge, this is the first study that exhibited the detailed breakpoints of Chinese NSCLC patients with RET rearrangement, and we found a novel new partner PLCE1. The results provided genomic information for patients with RET fusion which is significant for personalized clinical management in the era of precision medicine.
Collapse
Affiliation(s)
- Guowu Wu
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China.
| | - Longhua Guo
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China.
| | - Yinfang Gu
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | | | - Ming Liu
- HaploX Biotechnology Co., Ltd., Shenzhen, China
| | - Xiaofang Zou
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | - Bo Yang
- HaploX Biotechnology Co., Ltd., Shenzhen, China
| | - Ping Huang
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | - Chunling Wen
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | - Lilan Yi
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | | | - Dongdong Zhao
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | - Junlin Zhu
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), 63 Huangtang Road, Meizhou, China
| | | | | | - Yan Yin
- HaploX Biotechnology Co., Ltd., Shenzhen, China
| | - Shifu Chen
- HaploX Biotechnology Co., Ltd., Shenzhen, China.
| |
Collapse
|
2
|
Mathison CJN, Yang Y, Nelson J, Huang Z, Jiang J, Chianelli D, Rucker PV, Roland J, Xie YF, Epple R, Bursulaya B, Lee C, Gao MY, Shaffer J, Briones S, Sarkisova Y, Galkin A, Li L, Li N, Li C, Hua S, Kasibhatla S, Kinyamu-Akunda J, Kikkawa R, Molteni V, Tellew JE. Antitarget Selectivity and Tolerability of Novel Pyrrolo[2,3- d]pyrimidine RET Inhibitors. ACS Med Chem Lett 2021; 12:1912-1919. [PMID: 34917254 DOI: 10.1021/acsmedchemlett.1c00450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023] Open
Abstract
The selective inhibition of RET kinase as a treatment for relevant cancer types including lung adenocarcinoma has garnered considerable interest in recent years and prompted a variety of efforts toward the discovery of small-molecule therapeutics. Hits uncovered via the analysis of archival kinase data ultimately led to the identification of a promising pyrrolo[2,3-d]pyrimidine scaffold. The optimization of this pyrrolo[2,3-d]pyrimidine core resulted in compound 1, which demonstrated potent in vitro RET kinase inhibition and robust in vivo efficacy in RET-driven tumor xenografts upon multiday dosing in mice. The administration of 1 was well-tolerated at established efficacious doses (10 and 30 mg/kg, po, qd), and plasma exposure levels indicated a minimal risk of KDR or hERG inhibition in vivo, as evaluated by Miles assay and free plasma concentrations, respectively.
Collapse
Affiliation(s)
- Casey J. N. Mathison
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yang Yang
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - John Nelson
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Zhihong Huang
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jiqing Jiang
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Donatella Chianelli
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Paul V. Rucker
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jason Roland
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yun Feng Xie
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Robert Epple
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Badry Bursulaya
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Christian Lee
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Mu-Yun Gao
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jennifer Shaffer
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sergio Briones
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yelena Sarkisova
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Anna Galkin
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Lintong Li
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Nanxin Li
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Chun Li
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Su Hua
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shailaja Kasibhatla
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jacqueline Kinyamu-Akunda
- Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Rie Kikkawa
- Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Valentina Molteni
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - John E. Tellew
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
3
|
Das D, Wang J, Hong J. Next-Generation Kinase Inhibitors Targeting Specific Biomarkers in Non-Small Cell Lung Cancer (NSCLC): A Recent Overview. ChemMedChem 2021; 16:2459-2479. [PMID: 33929777 DOI: 10.1002/cmdc.202100166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes many deaths globally. Mutations in regulatory genes, irregularities in specific signal transduction events, or alterations of signalling pathways are observed in cases of non-small cell lung cancer (NSCLC). Over the past two decades, a few kinases have been identified, validated, and studied as biomarkers for NSCLC. Among them, EGFR, ALK, ROS1, MET, RET, NTRK, and BRAF are regarded as targetable biomarkers to cure and/or control the disease. In recent years, the US Food and Drug Administration (FDA) approved more than 15 kinase inhibitors targeting these NSCLC biomarkers. The kinase inhibitors significantly improved the progression-free survival (PFS) of NSCLC patients. Challenges still remain for metastatic diseases and advanced NSCLC cases. New discoveries of potent kinase inhibitors and rapid development of modern medical technologies will help to control NSCLC cases. This article provides an overview of the discoveries of various types of kinase inhibitors against NSCLC, along with medicinal chemistry aspects and related developments in next-generation kinase inhibitors that have been reported in recent years.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| | - Jingbing Wang
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| |
Collapse
|
4
|
De Toma A, Lo Russo G, Signorelli D, Pagani F, Randon G, Galli G, Prelaj A, Ferrara R, Proto C, Ganzinelli M, Zilembo N, de Braud F, Garassino MC. Uncommon targets in non-small cell lung cancer: Everyone wants a slice of cake. Crit Rev Oncol Hematol 2021; 160:103299. [PMID: 33722699 DOI: 10.1016/j.critrevonc.2021.103299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2020] [Accepted: 03/10/2021] [Indexed: 01/15/2023] Open
Abstract
Target therapies completely changed the clinical approach in EGFR mutated and ALK rearranged non-small cell lung cancer, ensuring these patients exceptional outcomes with a better toxicity profile compared to conventional chemotherapy. In recent years, beyond EGFR and ALK alterations, new data are emerging about less common alterations, new drugs have been already approved and others agents have been recently investigated or are currently under investigation. In this review we will discuss some uncommon alterations in non-small cell lung cancer such as ROS1, BRAF, RET, HER2, NTRK, MET and other targets that are in an early evaluation phase. We will summarize the characteristics of patients harboring these alterations, the already approved or under investigation therapies and the related resistance mechanisms.
Collapse
Affiliation(s)
- Alessandro De Toma
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diego Signorelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nicoletta Zilembo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
5
|
Management of Brain Metastases. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Loh Z, Mitchell P, John T, Arulananda S. RET-rearranged non-small-cell lung cancer and therapeutic implications. Intern Med J 2020; 49:1541-1545. [PMID: 31808254 DOI: 10.1111/imj.14654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022]
Abstract
First-line tyrosine kinase inhibitors are standard of care for non-small-cell lung cancers (NSCLC) harbouring an epidermal growth factor receptor mutation, anaplastic lymphoma kinase fusion or c-ros oncogene 1 rearrangement. Other targetable oncogenic drivers have been identified but testing for these is neither funded nor commonly performed in Australia. Using a case example, we discuss the importance of considering several other genomic aberrations in our population, such as rearrangements in the RET proto-oncogene, which occur in 1-2% of lung adenocarcinoma. New oncogenic drivers and corresponding targeted agents are constantly being discovered; these will continue to refine the treatment of non-small-cell lung cancer in the era of precision medicine.
Collapse
Affiliation(s)
- Zoe Loh
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia
| | - Paul Mitchell
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia
| | - Thomas John
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia.,Cancer Immuno-Biology Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Surein Arulananda
- Department of Medical Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, Victoria, Australia.,Cancer Immuno-Biology Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Mathison CJN, Chianelli D, Rucker PV, Nelson J, Roland J, Huang Z, Yang Y, Jiang J, Xie YF, Epple R, Bursulaya B, Lee C, Gao MY, Shaffer J, Briones S, Sarkisova Y, Galkin A, Li L, Li N, Li C, Hua S, Kasibhatla S, Kinyamu-Akunda J, Kikkawa R, Molteni V, Tellew JE. Efficacy and Tolerability of Pyrazolo[1,5- a]pyrimidine RET Kinase Inhibitors for the Treatment of Lung Adenocarcinoma. ACS Med Chem Lett 2020; 11:558-565. [PMID: 32292564 DOI: 10.1021/acsmedchemlett.0c00015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
RET (REarranged during Transfection) kinase gain-of-function aberrancies have been identified as potential oncogenic drivers in lung adenocarcinoma, along with several other cancer types, prompting the discovery and assessment of selective inhibitors. Internal mining and analysis of relevant kinase data informed the decision to investigate a pyrazolo[1,5-a]pyrimidine scaffold, where subsequent optimization led to the identification of compound WF-47-JS03 (1), a potent RET kinase inhibitor with >500-fold selectivity against KDR (Kinase insert Domain Receptor) in cellular assays. In subsequent mouse in vivo studies, compound 1 demonstrated effective brain penetration and was found to induce strong regression of RET-driven tumor xenografts at a well-tolerated dose (10 mg/kg, po, qd). Higher doses of 1, however, were poorly tolerated in mice, similar to other pyrazolo[1,5-a]pyrimidine compounds at or near the efficacious dose, and indicative of the narrow therapeutic windows seen with this scaffold.
Collapse
Affiliation(s)
- Casey J. N. Mathison
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Donatella Chianelli
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Paul V. Rucker
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - John Nelson
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jason Roland
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Zhihong Huang
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yang Yang
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jiqing Jiang
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yun Feng Xie
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Robert Epple
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Badry Bursulaya
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Christian Lee
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Mu-Yun Gao
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jennifer Shaffer
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Sergio Briones
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yelena Sarkisova
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Anna Galkin
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Lintong Li
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Nanxin Li
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Chun Li
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Su Hua
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shailaja Kasibhatla
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jacqueline Kinyamu-Akunda
- Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Rie Kikkawa
- Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Valentina Molteni
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - John E. Tellew
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
8
|
Venur VA, Cohen JV, Brastianos PK. Targeting Molecular Pathways in Intracranial Metastatic Disease. Front Oncol 2019; 9:99. [PMID: 30886831 PMCID: PMC6409309 DOI: 10.3389/fonc.2019.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
The discovery and clinical application of agents targeting pivotal molecular pathways in malignancies such as lung, breast, renal cell carcinoma, and melanoma have led to impressive improvements in clinical outcomes. Mutations in epidermal growth factor receptor (EGFR), and rearrangements of anaplastic lymphoma kinase (ALK) are targetable in lung cancer, while BRAF mutations have been successfully targeted in metastatic melanoma. Targeting estrogen receptors, cyclin dependent kinases, and HER2 (Human Epidermal Receptor) have resulted in improvement in survival in breast cancer. Major strides have been made in the management of metastatic renal cell carcinoma by targeting the vascular endothelial growth factor (VEGF) pathway. However, intracranial metastases remain a major hurdle in the setting of targeted therapies. Traditional treatment options for brain metastases include surgery, whole brain radiation therapy (WBRT), and stereotactic radiosurgery (SRS). Surgery is effective in symptomatic patients with dominant lesions or solitary intracranial metastases, however, recovery time can be prolonged, often requiring an interruption in systemic treatment. WBRT and SRS provide symptomatic relief and local control but data on improving overall survival is limited. Most targeted therapies which provide extracranial control have limited penetration through the blood brain barrier. Given the limited therapeutic options and increasing prevalence of brain metastases, finding new strategies for the management of intracranial metastatic disease is critical. Genomic analysis of brain metastases has led to a better understanding of variations in the driver mutations compared to the primary malignancy. Furthermore, newer generations of targeted agents have shown promising intracranial activity. In this review, we will discuss the major molecular alterations in brain metastases from melanoma, lung, breast, and renal cell carcinoma. We will provide an in-depth review of the completed and ongoing clinical trials of drugs targeting the molecular pathways enriched in brain metastases.
Collapse
Affiliation(s)
| | | | - Priscilla K. Brastianos
- Divisions of Neuro-Oncology and Hematology/Oncology, Departments of Neurology and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Drilon A, Lin JJ, Filleron T, Ni A, Milia J, Bergagnini I, Hatzoglou V, Velcheti V, Offin M, Li B, Carbone DP, Besse B, Mok T, Awad MM, Wolf J, Owen D, Camidge DR, Riely GJ, Peled N, Kris MG, Mazieres J, Gainor JF, Gautschi O. Frequency of Brain Metastases and Multikinase Inhibitor Outcomes in Patients With RET-Rearranged Lung Cancers. J Thorac Oncol 2018; 13:1595-1601. [PMID: 30017832 PMCID: PMC6434708 DOI: 10.1016/j.jtho.2018.07.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In ret proto-oncogene (RET)-rearranged lung cancers, data on the frequency of brain metastases and, in particular, the outcomes of multikinase inhibitor therapy in patients with intracranial disease are not well characterized. METHODS A global, multi-institutional registry (cohort A, n = 114) and a bi-institutional data set (cohort B, n = 71) of RET-rearranged lung cancer patients were analyzed. Patients were eligible if they had stage IV lung cancers harboring a RET rearrangement by local testing. The incidence of brain metastases and outcomes with multikinase inhibitor therapy were determined. RESULTS The frequency of brain metastases at the time of diagnosis of stage IV disease was 25% (95% confidence interval [CI]: 18%-32%) in all patients from both cohorts. The lifetime prevalence of brain metastasis in stage IV disease was 46% (95% CI: 34%-58%) in patients for whom longitudinal data was available. The cumulative incidence of brain metastases was significantly different (p = 0.0039) between RET-, ROS1-, and ALK receptor tyrosine kinase (ALK)-rearranged lung cancers, with RET intermediate between the other two groups. Although intracranial response data was not available in cohort A, the median progression-free survival of multikinase inhibitor therapy (cabozantinib, vandetanib, or sunitinib) in patients with brain metastases was 2.1 months (95% CI: 1.3-2.9 months, n = 10). In cohort B, an intracranial response was observed in 2 of 11 patients (18%) treated with cabozantinib, vandetanib (± everolimus), ponatinib, or alectinib; the median overall progression-free survival (intracranial and extracranial) was 3.9 months (95% CI: 2.0-4.9 months). CONCLUSIONS Brain metastases occur frequently in RET-rearranged lung cancers, and outcomes with multikinase inhibitor therapy in general are suboptimal. Novel RET-directed targeted therapy strategies are needed.
Collapse
Affiliation(s)
- Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY.
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Thomas Filleron
- Department of Medicine, Oncopole University Cancer Institute, Toulouse, France
| | - Ai Ni
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie Milia
- Department of Medicine, France Larrey Center University Hospital Toulouse, Toulouse, France
| | - Isabella Bergagnini
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vaios Hatzoglou
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vamsidhar Velcheti
- Department of Medicine, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Bob Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - David P Carbone
- Department of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Benjamin Besse
- Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Mok
- Department of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Mark M Awad
- Department of Medicine, Dana Farber Cancer Institute, Cambridge, MA
| | - Jurgen Wolf
- Department of Medicine, Lung Cancer Group Cologne, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Dwight Owen
- Department of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - D Ross Camidge
- Department of Medicine, University of Colorado-Denver, Aurora, CO
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Nir Peled
- Department of Medicine, Davidoff Cancer Center, Petah Tikva, Israel
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Julien Mazieres
- Department of Medicine, Oncopole University Cancer Institute, Toulouse, France
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Oliver Gautschi
- Department of Medicine, Cantonal Hospital Lucerne, Luzern, Switzerland
| |
Collapse
|
10
|
Velcheti V, Madison R, Ali SM, Schrock AB. WAC/RET: A Novel RET Oncogenic Fusion Variant in Non–Small Cell Lung Carcinoma. J Thorac Oncol 2018; 13:e122-e123. [DOI: 10.1016/j.jtho.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
|
11
|
Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, Hu W, Cao Q, Sheets MP, Wilson D, Wilson KJ, DiPietro L, Fleming P, Palmer M, Hu MI, Wirth L, Brose MS, Ou SHI, Taylor M, Garralda E, Miller S, Wolf B, Lengauer C, Guzi T, Evans EK. Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov 2018; 8:836-849. [DOI: 10.1158/2159-8290.cd-18-0338] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
|
12
|
Remon J, Besse B. Brain Metastases in Oncogene-Addicted Non-Small Cell Lung Cancer Patients: Incidence and Treatment. Front Oncol 2018; 8:88. [PMID: 29696132 PMCID: PMC5904204 DOI: 10.3389/fonc.2018.00088] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Brain metastases (BM) are common in non-small cell lung cancer patients including in molecularly selected populations, such as EGFR-mutant and ALK-rearranged tumors. They are associated with a reduced quality of life, and are commonly the first site of progression for patients receiving tyrosine kinase inhibitors (TKIs). In this review, we summarize incidence of BM and intracranial efficacy with TKI agents according to oncogene driver mutations, focusing on important clinical issues, notably optimal first-line treatment in oncogene-addicted lung tumors with upfront BM (local therapies followed by TKI vs. TKI monotherapy). We also discuss the potential role of newly emerging late-generation TKIs as new standard treatment in oncogene-addicted lung cancer tumors compared with sequential strategies.
Collapse
Affiliation(s)
- J. Remon
- Medical Oncology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Benjamin Besse
- Cancer Medicine Department, Institut Gustave Roussy, Villejuif, France
- University Paris-Sud, Orsay, France
| |
Collapse
|
13
|
Progress in the Management of Advanced Thoracic Malignancies in 2017. J Thorac Oncol 2018; 13:301-322. [PMID: 29331646 DOI: 10.1016/j.jtho.2018.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
The treatment paradigm of NSCLC underwent a major revolution during the course of 2017. Immune checkpoint inhibitors (ICIs) brought remarkable improvements in response and overall survival both in unselected pretreated patients and in untreated patients with programmed death ligand 1 expression of 50% or more. Furthermore, compelling preliminary results were reported for new combinations of anti-programmed cell death 1/programmed death ligand 1 agents with chemotherapy or anti-cytotoxic T-lymphocyte associated protein 4 inhibitors. The success of the ICIs appeared to extend to patients with SCLC, mesothelioma, or thymic tumors. Furthermore, in SCLC, encouraging activity was reported for an experimental target therapy (rovalpituzumab teserine) and a new chemotherapeutic agent (lurbinectedin). For oncogene-addicted NSCLC, next-generation tyrosine kinase inhibitors (TKIs) (such as osimertinib or alectinib) have demonstrated increased response rates and progression-free survival compared with first-generation TKIs in patients with both EGFR-mutated and ALK receptor tyrosine kinase gene (ALK)-rearranged NSCLC. However, because of the lack of mature overall survival data and considering the high efficacy of these drugs in patients with NSCLC previously exposed to first- or second-generation TKIs, definitive conclusions concerning the best treatment sequence cannot yet be drawn. In addition, new oncogenes such as mutant BRAF, tyrosine-protein kinase met gene (MET) and erb-b2 receptor tyrosine kinase 2 gene (HER2), and ret proto-oncogene (RET) rearrangements have joined the list of potential targetable drivers. In conclusion, the field of thoracic oncology is on the verge of a breakthrough that will open up many promising new therapeutic options for physicians and patients. The characterization of biomarkers predictive of sensitivity or resistance to immunotherapy and the identification of the optimal therapeutic combinations (for ICIs) and treatment sequence (for oncogene-addicted NSCLC) represent the toughest upcoming challenges in the domain of thoracic oncology.
Collapse
|