1
|
Fidler G, Szilágyi-Rácz AA, Dávid P, Tolnai E, Rejtő L, Szász R, Póliska S, Biró S, Paholcsek M. Circulating microRNA sequencing revealed miRNome patterns in hematology and oncology patients aiding the prognosis of invasive aspergillosis. Sci Rep 2022; 12:7144. [PMID: 35504997 PMCID: PMC9065123 DOI: 10.1038/s41598-022-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are no well-established blood circulating microRNA biomarkers or laboratory tests which can be used to diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) patients to identify biomarkers predisposing disease. We performed an in-depth analysis of high-throughput small transcriptome sequencing data obtained from the whole blood samples of our study cohort of 50 participants including 26 high-risk HO patients and 24 controls. By integrating in silico bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression differences (P < 0.05) were identified between IA-infected patients and non-IA HO patients. Among these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were successfully quantified by qRT-PCR. MiRNA target prediction revealed the involvement of IA related miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell differentiation and apoptosis.
Collapse
Affiliation(s)
- Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Péter Dávid
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Róbert Szász
- Division of Hematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
2
|
Su Z, Chen M, Ding R, Shui L, Zhao Q, Luo W. Long non‑coding RNA HCG11 suppresses the malignant phenotype of non‑small cell lung cancer cells by targeting a miR‑875/SATB2 axis. Mol Med Rep 2021; 24:552. [PMID: 34080031 PMCID: PMC8188752 DOI: 10.3892/mmr.2021.12191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are involved in the development and progression of a variety of diseases. However, the role of the lncRNA HLA complex group 11 (HCG11) in non‑small cell lung cancer (NSCLC) remains unclear. The present study showed that the expression levels of HCG11 were reduced in tumor tissues compared with adjacent normal tissues, and similar results were obtained in experiments using lung cancer cell lines. Additionally, patients with high HCG11 expression had an increased survival rate compared with patients with low HCG11 expression. Further studies have shown that overexpression of HCG11 inhibited NSCLC cell proliferation in vitro and in vivo. Interestingly, it was observed that HCG11 expression was negatively associated with the expression levels of oncogenic microRNA‑875 (miR‑875) in patient specimens. Specifically, HCG11 served as a sponge of miR‑875. Notably, it was determined that special AT‑rich sequence‑binding protein 2 (SATB2) was a direct target gene of miR‑875, and overexpression of miR‑875 largely abrogated the effects of HCG11 in NSCLC cells. In conclusion, HCG11 was shown to suppress the malignant properties of NSCLC cells by targeting a miR‑875/SATB2 axis, and may therefore be a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhou Su
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Mi Chen
- Department of Oncology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| | - Ruilin Ding
- Institute of Drug Clinical Trial/GCP Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lian Shui
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Qingmei Zhao
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Wenjuan Luo
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
3
|
Fancelli S, Caliman E, Mazzoni F, Brugia M, Castiglione F, Voltolini L, Pillozzi S, Antonuzzo L. Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051091. [PMID: 33806299 PMCID: PMC7961559 DOI: 10.3390/cancers13051091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary REarranged during Transfection (RET) is an emerging target for several types of cancer, including non-small cell lung cancer (NSCLC). The recent U.S. FDA approval of pralsetinib and selpercatinib raises issues regarding the emergence of secondary mutations and amplifications involved in parallel signaling pathways and receptors, liable for resistance mechanisms. The aim of this review is to explore recent knowledge on RET resistance in NSCLC in pre-clinic and in clinical settings and accordingly, the state-of-the-art in new drugs or combination of drugs development. Abstract The potent, RET-selective tyrosine kinase inhibitors (TKIs) pralsetinib and selpercatinib, are effective against the RET V804L/M gatekeeper mutants, however, adaptive mutations that cause resistance at the solvent front RET G810 residue have been found, pointing to the need for the development of the next-generation of RET-specific TKIs. Also, as seen in EGFR- and ALK-driven NSCLC, the rising of the co-occurring amplifications of KRAS and MET could represent other escaping mechanisms from direct inhibition. In this review, we summarize actual knowledge on RET fusions, focusing on those involved in NSCLC, the results of main clinical trials of approved RET-inhibition drugs, with particular attention on recent published results of selective TKIs, and finally, pre-clinical evidence regarding resistance mechanisms and suggestion on hypothetical and feasible drugs combinations and strategies viable in the near future.
Collapse
Affiliation(s)
- Sara Fancelli
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Enrico Caliman
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Francesca Mazzoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Francesca Castiglione
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Thoraco-Pulmonary Surgery Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Correspondence: ; Tel.: +39-055-7948406
| |
Collapse
|
4
|
Ou SHI, Zhu VW. Catalog of 5' fusion partners in RET+ NSCLC Circa 2020. JTO Clin Res Rep 2020; 1:100037. [PMID: 34589933 PMCID: PMC8474217 DOI: 10.1016/j.jtocrr.2020.100037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of RET fusion-positive (RET+) NSCLC around late 2011 to early 2012, clinical trials of multikinase inhibitors and highly potent and selective RET tyrosine kinase inhibitors have indicated that RET fusion is an actionable oncogenic driver in NSCLC. There seems to be a differential response to multikinase inhibitors depending on the fusion partner (KIF5B-RET versus non-KIF5B-RET); thus, knowledge of the fusion partners in RET+ NSCLC is important. To date, we identified 48 unique fusion partners in RET from published literature and congress proceedings. Two of the novel fusion partners (CCNYL2 and TRIM24) were identified in RET fusions that emerged as resistant to EGFR tyrosine kinase inhibitors. In addition, multiple intergenic rearrangements were identified.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology and Oncology, University of California Irvine School of Medicine, Orange, California
| | - Viola W. Zhu
- Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology and Oncology, University of California Irvine School of Medicine, Orange, California
| |
Collapse
|
5
|
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes (Basel) 2020; 11:genes11040424. [PMID: 32326537 PMCID: PMC7230609 DOI: 10.3390/genes11040424] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer.
Collapse
|
6
|
Qin Y, Qin ZD, Chen J, Cai CG, Li L, Feng LY, Wang Z, Duns GJ, He NY, Chen ZS, Luo XF. From Antimicrobial to Anticancer Peptides: The Transformation of Peptides. Recent Pat Anticancer Drug Discov 2019; 14:70-84. [PMID: 30663573 DOI: 10.2174/1574892814666190119165157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Antimicrobial peptides play an important role in the innate immune system. Possessing broad-spectrum antibacterial activity, antimicrobial peptides can quickly treat and kill various targets, including gram-negative bacteria, gram-positive bacteria, fungi, and tumor cells. OBJECTIVE An overview of the state of play with regard to the research trend of antimicrobial peptides in recent years and the situation of targeting tumor cells, and to make statistical analysis of the patents related to anticancer peptides published in recent years, is important both from toxicological and medical tumor therapy point of view. METHODS Based on the Science Citation Index Expanded version, the Derwent Innovation Index and Innography as data sources, the relevant literature and patents concerning antimicrobial peptides and anticancer peptides were analyzed through the Thomson Data Analyzer. Results of toxicologic and pharmacologic studies that brought to the development of patents for methods to novel tumor drugs were analyzed and sub-divided according to the specific synthesis of anticancer peptides. RESULTS The literature and patent search data show that the research and development of global antimicrobial peptides and anticancer peptides has been in an incremental mode. Growing patent evidence indicate that bioinformatics technology is a valuable strategy to modify, synthesize or recombine existing antimicrobial peptides to obtain tumor drugs with high activity, low toxicity and multiple targets. CONCLUSION These findings may have important clinical implications for cancer treatment, especially in patients with conditions that are not currently treatable by other drugs, or that are resistant to existing cancer drugs.
Collapse
Affiliation(s)
- Yuan Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China.,Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zuo D Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Jing Chen
- College of Business Administration, Hunan University, Changsha, 410082, China
| | - Che G Cai
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Ling Li
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Lu Y Feng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Zheng Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Gregory J Duns
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Nong Y He
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhe S Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Xiao F Luo
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| |
Collapse
|
7
|
A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer 2019; 138:124-130. [DOI: 10.1016/j.lungcan.2019.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
|
8
|
Takeuchi K. Discovery Stories of RET Fusions in Lung Cancer: A Mini-Review. Front Physiol 2019; 10:216. [PMID: 30941048 PMCID: PMC6433883 DOI: 10.3389/fphys.2019.00216] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
In 2004, a chemical inhibitor of the kinase activity of EGFR was reported to be effective in a subset of lung cancer patients with activating somatic mutations of EGFR. It remained unclear, however, whether kinase fusion genes also play a major role in the pathogenesis of lung cancers. The discovery of the EML4-ALK fusion kinase in 2007 was a breakthrough for this situation, and kinase fusion genes now form a group of relevant targetable oncogenes in lung cancer. In this mini-review article, the discovery of REarrangement during Transfection fusions, the third kinase fusion gene in lung cancer, is briefly described.
Collapse
Affiliation(s)
- Kengo Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|