1
|
Azad TD, Nanjo S, Jin MC, Chabon JJ, Kurtz DM, Chaudhuri AA, Connolly ID, Hui ABY, Liu CL, Merriott D, Ko R, Yoo C, Carter J, Chen E, Bonilla R, Hata A, Katakami N, Irie K, Yano S, Okimoto R, Bivona TG, Newman AM, Iv M, Nagpal S, Gephart MH, Alizadeh AA, Diehn M. Quantification of cerebrospinal fluid tumor DNA in lung cancer patients with suspected leptomeningeal carcinomatosis. NPJ Precis Oncol 2024; 8:121. [PMID: 38806586 PMCID: PMC11133465 DOI: 10.1038/s41698-024-00582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Cerebrospinal fluid tumor-derived DNA (CSF-tDNA) analysis is a promising approach for monitoring the neoplastic processes of the central nervous system. We applied a lung cancer-specific sequencing panel (CAPP-Seq) to 81 CSF, blood, and tissue samples from 24 lung cancer patients who underwent lumbar puncture (LP) for suspected leptomeningeal disease (LMD). A subset of the cohort (N = 12) participated in a prospective trial of osimertinib for refractory LMD in which serial LPs were performed before and during treatment. CSF-tDNA variant allele fractions (VAFs) were significantly higher than plasma circulating tumor DNA (ctDNA) VAFs (median CSF-tDNA, 32.7%; median plasma ctDNA, 1.8%; P < 0.0001). Concentrations of tumor DNA in CSF and plasma were positively correlated (Spearman's ρ, 0.45; P = 0.03). For LMD diagnosis, cytology was 81.8% sensitive and CSF-tDNA was 91.7% sensitive. CSF-tDNA was also strongly prognostic for overall survival (HR = 7.1; P = 0.02). Among patients with progression on targeted therapy, resistance mutations, such as EGFR T790M and MET amplification, were common in peripheral blood but were rare in time-matched CSF, indicating differences in resistance mechanisms based on the anatomic compartment. In the osimertinib cohort, patients with CNS progression had increased CSF-tDNA VAFs at follow-up LP. Post-osimertinib CSF-tDNA VAF was strongly prognostic for CNS progression (HR = 6.2, P = 0.009). Detection of CSF-tDNA in lung cancer patients with suspected LMD is feasible and may have clinical utility. CSF-tDNA improves the sensitivity of LMD diagnosis, enables improved prognostication, and drives therapeutic strategies that account for spatial heterogeneity in resistance mechanisms.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Michael C Jin
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jacob J Chabon
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David M Kurtz
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Ian D Connolly
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Angela Bik-Yu Hui
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Chih Long Liu
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David Merriott
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Ryan Ko
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Christopher Yoo
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Justin Carter
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Emily Chen
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Rene Bonilla
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Akito Hata
- Department of Medical Oncology, Kobe Minimally Invasive Cancer Center, Kobe, Japan
| | - Nobuyuki Katakami
- Department of Medical Oncology, Takarazuka City Hospital, Hyogo, Japan
| | - Kei Irie
- Department of Pharmaceutics, Faculty of Pharmaceutical Science, Kobe Gakuin University, Kobe, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Ross Okimoto
- Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Aaron M Newman
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Ash A Alizadeh
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Ozawa Y, Koh Y, Hase T, Chibana K, Kaira K, Okishio K, Ichihara E, Murakami S, Shimokawa M, Yamamoto N. Prospective observational study to explore genes and proteins predicting efficacy and safety of brigatinib for ALK-gene rearranged non-small-cell lung cancer: study protocol for ABRAID study (WJOG11919L). Ther Adv Med Oncol 2024; 16:17588359231225046. [PMID: 38282663 PMCID: PMC10822087 DOI: 10.1177/17588359231225046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Background ALK-tyrosine kinase inhibitors (ALK-TKIs) are effective for treating non-small-cell lung cancer with ALK gene rearrangement; however, resistance is inevitable. Brigatinib is a unique ALK-TKI that is effective against many resistance mutations. However, data on factors associated with its efficacy and resistance mechanisms are limited. Objectives This study will evaluate the efficacy and safety of brigatinib in the real world and explore factors related to its efficacy, safety, and resistance mechanisms. Design Prospective observational study. Ethics This study is approved by the Ethics Committee of Wakayama Medical University. Written informed consent will be obtained from all patients before study-related procedures. Methods and analysis This study comprises three cohorts. Cohorts A, B, and 0 will enroll patients receiving alectinib as the first ALK-TKI, receiving alectinib as the first ALK-TKI and subsequently cytotoxic agents and/or lorlatinib after alectinib, and without a history of ALK-TKI, respectively. Overall, 100, 30, and 50 patients will be enrolled in Cohorts A, B, and 0, respectively. Circulating tumor DNA before starting brigatinib and at disease progression will be analyzed in all cohorts using a hypersensitive next-generation sequencing (NGS) PGDx Elio plasma resolve panel. Serum protein levels will be analyzed using the Milliplex xMAP assay system with a Luminex 200 (Luminex, Austin, USA). The enrollment period is 31 months and the patients will be observed for 2 years after enrollment. Archived tissues will be collected for NGS analysis, gene expression analysis, and immunohistochemistry staining 1 year after completion of registration. Quality of life and safety evaluation using electronic patient-reported outcomes will be investigated. Discussion This study will elucidate predictors of ALK-TKI efficacy and resistance mechanisms and evaluate the efficacy and safety of brigatinib in a real-world setting. The results will provide crucial information for establishing treatment strategies, discovering novel biomarkers, and developing new therapeutic agents. Trial registration UMIN000042439.
Collapse
Affiliation(s)
- Yuichi Ozawa
- Department of Respiratory Medicine, Hamamatsu Medical Center, 328 Tomitsuka-cho, Naka-ku, Hamamatsu, Shizuoka 432-8580, Japan
- Internal Medicine III, Wakayama Medical University, Wakayama City, Wakayama 641-0012, Japan
| | - Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, Wakayama City, Wakayama, Japan
- Center for Biomedical Sciences, Wakayama Medical University, Wakayama City, Wakayama, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Chibana
- Department of Respiratory Medicine, National Hospital Organization Okinawa National Hospital, Ginowan, Okinawa, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kyoichi Okishio
- Department of Internal Medicine, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Okayama, Japan
| | - Shuji Murakami
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, Wakayama City, Wakayama, Japan
| |
Collapse
|
4
|
Roy-O'Reilly MA, Lanman T, Ruiz A, Rogawski D, Stocksdale B, Nagpal S. Diagnostic and Therapeutic Updates in Leptomeningeal Disease. Curr Oncol Rep 2023; 25:937-950. [PMID: 37256537 PMCID: PMC10326117 DOI: 10.1007/s11912-023-01432-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a devastating complication of advanced metastatic cancer associated with a poor prognosis and limited treatment options. This study reviews the current understanding of the clinical presentation, pathogenesis, diagnosis, and treatment of LMD. We highlight opportunities for advances in this disease. RECENT FINDINGS In recent years, the use of soluble CSF biomarkers has expanded, suggesting improved sensitivity over traditional cytology, identification of targetable mutations, and potential utility for monitoring disease burden. Recent studies of targeted small molecules and intrathecal based therapies have demonstrated an increase in overall and progression-free survival. In addition, there are several ongoing trials evaluating immunotherapy in LMD. Though overall prognosis of LMD remains poor, studies suggest a potential role for soluble CSF biomarkers in diagnosis and management and demonstrate promising findings in patient outcomes with targeted therapies for specific solid tumors. Despite these advances, there continues to be a gap of knowledge in this disease, emphasizing the importance of inclusion of LMD patients in clinical trials.
Collapse
Affiliation(s)
| | - Tyler Lanman
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - Amber Ruiz
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - David Rogawski
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - Brian Stocksdale
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA
| | - Seema Nagpal
- Department of Neurology, Stanford Medicine, Palo Alto, CA, 94305, USA.
| |
Collapse
|
5
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Leptomeningeal metastases in non-small cell lung cancer: Diagnosis and treatment. Lung Cancer 2022; 174:1-13. [PMID: 36206679 DOI: 10.1016/j.lungcan.2022.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023]
Abstract
Leptomeningeal metastasis (LM) is a rare complication of non-small cell lung cancer (NSCLC) with highly mortality. LM will occur once tumor cells spread to the cerebrospinal fluid (CSF) space. Patients may suffer blindness, paralysis, and mental disorders that seriously affect their quality of life. There is a clear unmet need to improve the efficacy of diagnosis and treatment of LM. To better solve this problem, it is helpful to clarify the potential mechanisms of LM. Clinical manifestations, magnetic resonance imaging, and CSF biopsy are the key components in the diagnosis of NSCLC with LM. CSF cytology is insufficient and should be combined with liquid biology. The application of radiotherapy, intrathecal treatment, targeted therapy and immunotherapy provides more options for LM patients. Each treatment has a particular level of efficacy and can be used alone or in combination for individual patients. New technologies in radiotherapy, drug repositioning in intrathecal treatment, and the higher CSF permeability in TKIs have brought new breakthroughs in the treatment of LM. This review focused on clarifying the potential mechanisms, discussing the major clinical challenges, and summarizing recent advances in the diagnosis and treatment of LM from NSCLC. Future research is essential to improve the efficiency of diagnosis, to optimize therapy and to enhance patient prognosis.
Collapse
|
7
|
Baba K, Goto Y. Lorlatinib as a treatment for ALK-positive lung cancer. Future Oncol 2022; 18:2745-2766. [PMID: 35787143 DOI: 10.2217/fon-2022-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, has been approved as a treatment for ALK-positive lung cancer. This review provides information regarding the pharmacology and clinical features of lorlatinib, including its efficacy and associated adverse events. Pivotal clinical trials are discussed along with the current status of lorlatinib as a treatment for ALK-positive lung cancer and future therapeutic challenges.
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
8
|
STAT3 inhibition suppresses adaptive survival of ALK-rearranged lung cancer cells through transcriptional modulation of apoptosis. NPJ Precis Oncol 2022; 6:11. [PMID: 35228642 PMCID: PMC8885877 DOI: 10.1038/s41698-022-00254-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with advanced anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer who are prescribed ALK-tyrosine kinase inhibitors (ALK-TKIs) rarely have complete responses, with residual tumors relapsing as heterogeneous resistant phenotypes. Herein, we investigated new therapeutic strategies to reduce and eliminate residual tumors in the early treatment phase. Functional genomic screening using small guide RNA libraries showed that treatment-induced adaptive survival of ALK-rearranged lung cancer cells was predominantly dependent on STAT3 activity upon ALK inhibition. STAT3 inhibition effectively suppressed the adaptive survival of ALK-rearranged lung cancer cells by enhancing ALK inhibition-induced apoptosis. The combined effects were characterized by treatment-induced STAT3 dependence and transcriptional regulation of anti-apoptotic factor BCL-XL. In xenograft study, the combination of YHO-1701 (STAT3 inhibitor) and alectinib significantly suppressed tumor regrowth after treatment cessation with near tumor remission compared with alectinib alone. Hence, this study provides new insights into combined therapeutic strategies for patients with ALK-rearranged lung cancer.
Collapse
|
9
|
Review of Therapeutic Strategies for Anaplastic Lymphoma Kinase-Rearranged Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14051184. [PMID: 35267492 PMCID: PMC8909087 DOI: 10.3390/cancers14051184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) was first reported in 2007. Following the development of crizotinib as a tyrosine kinase inhibitor (TKI) targeting ALK, the treatment of advanced NSCLC with ALK-rearrangements has made remarkable progress. Currently, there are five ALK-TKIs approved by the FDA, and the development of new agents, including fourth-generation TKI, is ongoing. Clinical trials with angiogenesis inhibitors and immune checkpoint inhibitors are also underway, and further progress in the treatment of ALK-rearranged advanced NSCLC is expected. The purpose of this manuscript is to provide information on the recent clinical trials of ALK-TKIs, angiogenesis inhibitors, immune checkpoint inhibitors, and chemotherapy, to describe tissue and liquid biopsy as a method to investigate the mechanisms of resistance against ALK-TKIs and suggest a proposed treatment algorithm. Abstract Non-small cell lung cancer (NSCLC) with anaplastic lymphoma kinase rearrangement (ALK) was first reported in 2007. ALK-rearranged NSCLC accounts for about 3–8% of NSCLC. The first-line therapy for ALK-rearranged advanced NSCLC is tyrosine kinase inhibitors (TKI) targeting ALK. Following the development of crizotinib, the first ALK-TKI, patient prognosis has been greatly improved. Currently, five TKIs are approved by the FDA. In addition, clinical trials of the novel TKI, ensartinib, and fourth-generation ALK-TKI for compound ALK mutation are ongoing. Treatment with angiogenesis inhibitors and immune checkpoint inhibitors is also being studied. However, as the disease progresses, cancers tend to develop resistance mechanisms. In addition to ALK mutations, other mechanisms, including the activation of bypass signaling pathways and histological transformation, cause resistance, and the identification of these mechanisms is important in selecting subsequent therapy. Studies on tissue and liquid biopsy have been reported and are expected to be useful tools for identifying resistance mechanisms. The purpose of this manuscript is to provide information on the recent clinical trials of ALK-TKIs, angiogenesis inhibitors, immune checkpoint inhibitors, and chemotherapy to describe tissue and liquid biopsy as a method to investigate the mechanisms of resistance against ALK-TKIs and suggest a proposed treatment algorithm.
Collapse
|
10
|
Pan Y, Deng C, Qiu Z, Cao C, Wu F. The Resistance Mechanisms and Treatment Strategies for ALK-Rearranged Non-Small Cell Lung Cancer. Front Oncol 2021; 11:713530. [PMID: 34660278 PMCID: PMC8517331 DOI: 10.3389/fonc.2021.713530] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target for non-small-cell lung cancer (NSCLC). The use of tyrosine kinase inhibitors (TKIs) has led to significantly improved survival benefits. However, the clinical benefits of targeting ALK using TKIs are limited due to the emergence of drug resistance. The landscape of resistance mechanisms and treatment decisions has become increasingly complex. Therefore, continued research into new drugs and combinatorial therapies is required to improve outcomes in NSCLC. In this review, we explore the resistance mechanisms of ALK TKIs in advanced NSCLC in order to provide a theoretical basis and research ideas for solving the problem of ALK drug resistance.
Collapse
Affiliation(s)
- Yue Pan
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Deng
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Qiu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Fang Wu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Fukuda K, Otani S, Takeuchi S, Arai S, Nanjo S, Tanimoto A, Nishiyama A, Naoki K, Yano S. Trametinib overcomes KRAS-G12V-induced osimertinib resistance in a leptomeningeal carcinomatosis model of EGFR-mutant lung cancer. Cancer Sci 2021; 112:3784-3795. [PMID: 34145930 PMCID: PMC8409422 DOI: 10.1111/cas.15035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Leptomeningeal carcinomatosis (LMC) occurs frequently in non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations and is associated with acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, the mechanism by which LMC acquires resistance to osimertinib, a third-generation EGFR-TKI, is unclear. In this study, we elucidated the resistance mechanism and searched for a novel therapeutic strategy. We induced osimertinib resistance in a mouse model of LMC using an EGFR-mutant NSCLC cell line (PC9) via continuous oral osimertinib treatment and administration of established resistant cells and examined the resistance mechanism using next-generation sequencing. We detected the Kirsten rat sarcoma (KRAS)-G12V mutation in resistant cells, which retained the EGFR exon 19 deletion. Experiments involving KRAS knockdown in resistant cells and KRAS-G12V overexpression in parental cells revealed the involvement of KRAS-G12V in osimertinib resistance. Cotreatment with trametinib (a MEK inhibitor) and osimertinib resensitized the cells to osimertinib. Furthermore, in the mouse model of LMC with resistant cells, combined osimertinib and trametinib treatment successfully controlled LMC progression. These findings suggest a potential novel therapy against KRAS-G12V-harboring osimertinib-resistant LMC in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Sakiko Otani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Medicine, Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Bhambhvani HP, Rodrigues AJ, Umeh-Garcia MC, Hayden Gephart M. Leptomeningeal Carcinomatosis: Molecular Landscape, Current Management, and Emerging Therapies. Neurosurg Clin N Am 2021; 31:613-625. [PMID: 32921356 DOI: 10.1016/j.nec.2020.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leptomeningeal carcinomatosis is a devastating consequence of late-stage cancer, and despite multimodal treatment, remains rapidly fatal. Definitive diagnosis requires identification of malignant cells in the cerebrospinal fluid (CSF), or frank disease on MRI. Therapy is generally palliative and consists primarily of radiotherapy and/or chemotherapy, which is administered intrathecally or systemically. Immunotherapies and novel experimental therapies have emerged as promising options for decreasing patient morbidity and mortality. In this review, the authors discuss a refined view of the molecular pathophysiology of leptomeningeal carcinomatosis, current approaches to disease management, and emerging therapies.
Collapse
Affiliation(s)
- Hriday P Bhambhvani
- Department of Neurosurgery, Stanford University Medical Center, 300 Pasteur Drive, Palo Alto, CA, 94305 USA
| | - Adrian J Rodrigues
- Department of Neurosurgery, Stanford University Medical Center, 300 Pasteur Drive, Palo Alto, CA, 94305 USA
| | - Maxine C Umeh-Garcia
- Department of Neurosurgery, Stanford University Medical Center, 300 Pasteur Drive, Palo Alto, CA, 94305 USA
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University Medical Center, 300 Pasteur Drive, Palo Alto, CA, 94305 USA; Department of Neurosurgery, Brain Tumor Center, Stanford University School of Medicine, 300 Pasteur Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
13
|
Haratake N, Toyokawa G, Seto T, Tagawa T, Okamoto T, Yamazaki K, Takeo S, Mori M. The mechanisms of resistance to second- and third-generation ALK inhibitors and strategies to overcome such resistance. Expert Rev Anticancer Ther 2021; 21:975-988. [PMID: 34110954 DOI: 10.1080/14737140.2021.1940964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) inhibitors are widely known to contribute to the long-term survival of ALK-rearranged non-small cell lung cancer (NSCLC) patients. Based on clinical trial data, treatment with second- or third-generation ALK inhibitors can be initiated after crizotinib therapy without analyzing resistance mechanisms, and some randomized trials have recently shown the superiority of second- or third-generation ALK inhibitors over crizotinib as the initial treatment; however, the optimal treatment for patients who relapse while on second- or third-generation ALK inhibitors is not well-defined. AREAS COVERED This review provides an overview of the mechanisms of resistance to second- or third-generation ALK inhibitors that have been identified in both clinical and pre-clinical settings, and introduces strategies for overcoming resistance and discusses ongoing clinical trials. EXPERT OPINION The comprehensive elucidation of both ALK-dependent and ALK-independent resistance mechanisms is necessary to improve the prognosis of patients with ALK-rearranged NSCLC. Liquid biopsy to clarify these mechanisms of resistance might play an important role in the near future.
Collapse
Affiliation(s)
- Naoki Haratake
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Tasuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Sadanori Takeo
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Sun K, Nie L, Nong L, Cheng Y. Primary resistance to alectinib in a patient with STRN-ALK-positive non-small cell lung cancer: A case report. Thorac Cancer 2021; 12:1927-1930. [PMID: 33960639 PMCID: PMC8201540 DOI: 10.1111/1759-7714.13983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements are drivers of a subset of non‐small cell lung cancer (NSCLC). The rapid progression of ALK inhibitors has significantly prolonged the progression‐free survival of patients with ALK gene‐sensitive mutations. However, the response of patients with rare ALK rearrangements to tyrosine kinase inhibitors remains unknown. Here, we report a rare case of striatin (STRN)‐ALK‐positive NSCLC showing primary resistance to first‐line therapy alectinib and limited clinical activity of crizotinib in the alectinib‐resistant setting.
Collapse
Affiliation(s)
- Kunyan Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Ligong Nie
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Successful management of a lung cancer patient harbouring both EGFR mutation and EML4-ALK fusion gene with disseminated intravascular coagulation. Respir Med Case Rep 2021; 33:101393. [PMID: 33854939 PMCID: PMC8024693 DOI: 10.1016/j.rmcr.2021.101393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Lung cancer patients harbouring driver oncogene alterations are markedly responsive to molecular target agents, such as epidermal growth factor receptor (EGFR), tyrosine kinase inhibitor (TKI), and echinoderm microtubule-associated protein like 4 - anaplastic lymphoma kinase (EML4-ALK)-TKI. We encountered an exceptionally rare case, harbouring both EGFR mutation and EML4-ALK fusion gene, and suffering from severe disseminated intravascular coagulation. In this case report, we present two notable points. First, our patient was successfully treated with a third-generation EGFR-TKI, osimertinib. Second, osimertinib could manage severe conditions, such as disseminated intravascular coagulation. Third-generation EGFR-TKIs may be a viable option for patients harbouring both EGFR mutations and EML4-ALK fusion genes, even in severe conditions.
Collapse
|
16
|
Harada D, Isozaki H, Kozuki T, Yokoyama T, Yoshioka H, Bessho A, Hosokawa S, Takata I, Takigawa N, Hotta K, Kiura K. Crizotinib for recurring non-small-cell lung cancer with EML4-ALK fusion genes previously treated with alectinib: A phase II trial. Thorac Cancer 2021; 12:643-649. [PMID: 33470536 PMCID: PMC7919114 DOI: 10.1111/1759-7714.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The efficacy of crizotinib treatment for recurring EML4-ALK-positive non-small cell lung cancer (NSCLC) previously treated with alectinib is unclear. Based on our preclinical findings regarding hepatocyte growth factor/mesenchymal epithelial transition (MET) pathway activation as a potential mechanism of acquired resistance to alectinib, we conducted a phase II trial of the anaplastic lymphoma kinase/MET inhibitor, crizotinib, in patients with alectinib-refractory, EML4-ALK-positive NSCLC. METHODS Patients with ALK-rearranged tumors treated with alectinib immediately before enrolling in the trial received crizotinib monotherapy. The objective response rate was the primary outcome of interest. RESULTS Nine (100%) patients achieved a partial response with alectinib therapy with a median treatment duration of 6.7 months. Crizotinib was administered with a median treatment interval of 50 (range, 20-433) days. The overall response rate was 33.3% (90% confidence interval [CI]: 9.8-65.5 and 95% CI: 7.5-70.1), which did not reach the predefined criteria of 50%. Two (22%) patients who achieved a partial response had brain metastases at baseline. Progression-free survival (median, 2.2 months) was not affected by the duration of treatment with alectinib. The median survival time was 24.1 months. The most common adverse events were an increased aspartate transaminase/alanine transaminase (AST/ALT) ratio (44%) and appetite loss (33%); one patient developed transient grade 4 AST/ALT elevation, resulting in treatment discontinuation. Other adverse events were consistent with those previously reported; no treatment-related deaths occurred. CONCLUSIONS Although the desired response rate was not achieved, crizotinib monotherapy following treatment with alectinib showed efficacy alongside previously described adverse events.
Collapse
Affiliation(s)
- Daijiro Harada
- Department of Thoracic OncologyNational Hospital Organization Shikoku Cancer CenterMatsuyamaJapan
| | - Hideko Isozaki
- Department of Clinical PharmaceuticsOkayama University HospitalOkayamaJapan
- Department of Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Toshiyuki Kozuki
- Department of Thoracic OncologyNational Hospital Organization Shikoku Cancer CenterMatsuyamaJapan
| | - Toshihide Yokoyama
- Department of Respiratory MedicineKurashiki Central HospitalKurashikiJapan
| | - Hiroshige Yoshioka
- Department of Respiratory MedicineKurashiki Central HospitalKurashikiJapan
- Department of Thoracic OncologyKansai Medical University HospitalHirakataJapan
| | - Akihiro Bessho
- Department of Respiratory MedicineJapanese Red Cross Okayama HospitalOkayamaJapan
| | - Shinobu Hosokawa
- Department of Respiratory MedicineJapanese Red Cross Okayama HospitalOkayamaJapan
| | - Ichiro Takata
- Department of Internal MedicineFukuyama City HospitalFukuyamaJapan
| | - Nagio Takigawa
- Department of General Internal Medicine 4Kawasaki Medical SchoolOkayamaJapan
| | - Katsuyuki Hotta
- Department of Respiratory MedicineOkayama University HospitalOkayamaJapan
- Center for Clinical Innovative MedicineOkayama University HospitalOkayamaJapan
| | - Katsuyuki Kiura
- Department of Respiratory MedicineOkayama University HospitalOkayamaJapan
| | | |
Collapse
|
17
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Tabbò F, Reale ML, Bironzo P, Scagliotti GV. Resistance to anaplastic lymphoma kinase inhibitors: knowing the enemy is half the battle won. Transl Lung Cancer Res 2021; 9:2545-2556. [PMID: 33489817 PMCID: PMC7815358 DOI: 10.21037/tlcr-20-372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anaplastic lymphoma kinase (ALK) translocations are responsible of neoplastic transformation in a limited subset of non-small cell lung cancer (NSCLC) patients. In recent years outcomes of these patients improved due to the development and clinical availability of specific and extremely active targeted therapies [i.e., next-generation Tyrosine Kinase Inhibitors (TKI)]: ALK+ patients are now reaching impressive results when treated with more potent inhibitors upfront with an average median progression-free survival (mPFS) around 35 months. However, under drug pressure, cancer cells develop resistance and patients eventually progress. Multiple mechanisms of intrinsic or acquired resistance have been extensively characterized. Less potent ALK inhibitors (ALKi)—like crizotinib—usually tend to induce a large spectrum of secondary intra-kinase mutations; however, these alterations may be observed also after sequential administration of multiple ALKi. Noteworthy, neoplastic cells may evade ALK targeting through a myriad of different mechanisms involving cell-stroma interaction, activation of parallel signaling pathways, intracellular downstream adaptation and histological reshaping, as relevant molecular events. Often these phenomena are restricted to a limited number of cases or even can be patient-specific, thus hindering the development of therapeutic strategies largely applicable. Consequently, the recognition of specific resistance mechanisms seldom translates in clinical opportunities. Management of ALK+ patients is drastically changed and deciphering the molecular biology underlying this disease during treatment is of paramount relevance. The bedrock of resistance to TKI is that, after the diagnosis, we face with a different disease that needs to be re-characterized through tissue or/and liquid biopsies. Understanding molecular pathways driving the resistant phenotype will give us the chance to know what we are dealing with and, rather than choose an empirical approach, will help us to properly define the best targeted treatment for these patients.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| |
Collapse
|
19
|
Wang S, Shi Y, Han X. [Advances in Drug Resistance Mechanisms and Prognostic Markers of Targeted Therapy in ALK-positive Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:1014-1022. [PMID: 33203201 PMCID: PMC7679215 DOI: 10.3779/j.issn.1009-3419.2020.101.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
棘皮动物微管相关类蛋白4-间变性淋巴瘤激酶(echinoderm microtubule-associated protein like 4-anaplastic lymphoma kinase, EML4-ALK)融合占非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的3%-5%。随着对该驱动基因的深入研究,以Crizotinib为代表的ALK抑制剂逐渐被开发并应用于临床。然而,不同患者对ALK靶向治疗的反应存在差异,且多数ALK靶向治疗患者最终会不可避免地出现耐药,导致肿瘤进展。利用预后标志物监测患者疗效及时改变治疗方案,以及根据耐药机制选择个体化的后续治疗,可以有效地改善患者的预后。本文将对ALK抑制剂的耐药机制以及相关的预后标志物展开综述,探讨ALK靶向治疗疗效预测以及耐药患者后续治疗方案的选择。
Collapse
Affiliation(s)
- Shasha Wang
- Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,
Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College,
Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
20
|
Liu Y, Ye G, Huang L, Zhang C, Sheng Y, Wu B, Han L, Wu C, Dong B, Qi Y. Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma. Aging (Albany NY) 2020; 12:21559-21581. [PMID: 33170151 PMCID: PMC7695431 DOI: 10.18632/aging.103945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
In this study, we performed single-cell transcriptome data analysis of fifty primary and metastatic lung adenocarcinoma (LUAD) samples from the GSE123902 and GSE131907 datasets to determine the landscape of inter-patient and intra-tumoral heterogeneity. The gene expression profiles and copy number variations (CNV) showed significant heterogeneity in the primary and metastatic LUAD samples. We observed upregulation of pathways related to translational initiation, endoplasmic reticulum stress, exosomes, and unfolded protein response in the brain metastasis samples as compared to the primary tumor samples. Pathways related to exosomes, cell adhesion and metabolism were upregulated and the epithelial-to-mesenchymal-transition (EMT) pathway was downregulated in brain metastasis samples from chemotherapy-treated LUAD patients as compared to those from the untreated LUAD patients. Tumor cell subgroups in the brain metastasis samples showed differential expression of genes related to type II alveolar cells, chemoresistance, glycolysis and oxidative phosphorylation (metabolic reprogramming), and EMT. Thus, single-cell transcriptome analysis demonstrated intra-patient and intra-tumor heterogeneity in the regulation of pathways related to tumor progression, chemoresistance and metabolism in the primary and metastatic LUAD tissues. Moreover, our study demonstrates that single cell transcriptome analysis is a potentially useful tool for accurate diagnosis and personalized targeted treatment of LUAD patients.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guanchao Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinliang Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Han
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|