1
|
Luo Y, Yuan Y, Liu D, Peng H, Shen L, Chen Y. Targeting novel immune checkpoints in the B7-H family: advancing cancer immunotherapy from bench to bedside. Trends Cancer 2025:S2405-8033(25)00055-X. [PMID: 40113530 DOI: 10.1016/j.trecan.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The B7-H family of immune checkpoint molecules is a crucial component of the immune regulatory network for tumors, offering new opportunities to modulate the tumor microenvironment (TME). The B7-H family - which includes B7-H2 (inducible T cell costimulatory ligand, ICOSL), B7-H3, B7-H4, B7-H5 (V-domain immunoglobulin suppressor of T cell activation, VISTA), B7-H6, and B7-H7 (HHLA2) - is known for its diverse roles in regulating innate and adaptive immunity. These molecules can exhibit co-stimulatory or co-inhibitory effects on T cells, influencing processes such as T cell activation, differentiation, and effector functions, and they are involved in the recruitment and polarization of various immune cells. This review explores the structural characteristics, receptor-ligand interactions, and signaling pathways associated with each B7-H family member. We also discuss the family's impact on tumor immunity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiming Luo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Early Drug Development Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing 102200, China.
| |
Collapse
|
2
|
Peng Y, Wu D, Tang J, Li X. Efficacy and Safety of Anlotinib and PD-1/L1 Inhibitors as Maintenance Therapy for Extensive-Stage Small Cell Lung Cancer Patients who Have Achieved Stable-Disease After First-Line Treatment with Chemotherapy and Immunotherapy: A Retrospective Study. Cancer Control 2025; 32:10732748251318383. [PMID: 39905663 DOI: 10.1177/10732748251318383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
OBJECTIVE To develop personalized treatment strategies for maintenance therapy in patients with extensive-stage small cell lung cancer (ES-SCLC). MATERIALS AND METHODS We analyzed data from ES-SCLC patients who achieved stable disease (SD) following initial chemotherapy combined with immunotherapy. These patients subsequently received maintenance therapy (MT) with a combination of anlotinib and PD-1/L1 inhibitors. The primary endpoints included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events (AEs). RESULTS Preliminary findings suggest that this regimen is highly effective, with a median PFS of 6 months and OS of 13.5 months, alongside a DCR exceeding 60%. Subgroup analysis revealed enhanced efficacy in patients with fewer than three metastatic sites and those who experienced hypertension, proteinuria, or hand-foot syndrome during MT. Mechanistic studies showed a notable increase in the proportion of CD8+ T cells in the peripheral blood post-MT, correlating with improved outcomes. These findings imply that the therapeutic effect of MT may be partly due to the direct activation of CD8+ T cells, producing a synergistic anti-tumor response. Despite the prevalence of AEs, AEs were generally manageable, underscoring anlotinib's potential in this context. CONCLUSION The combination of anlotinib and PD-1/L1 inhibitors offers promising efficacy and manageable AEs in MT, making it a viable option for ES-SCLC patients who achieve SD post-initial therapy. These results justify further prospective studies to validate this approach.
Collapse
Affiliation(s)
- Yi Peng
- Department of Radiotherapy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Cancer Hospital, Wuhan, China
| | - De Wu
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, Hubei Cancer Hospital, Wuhan, China
| | - Jing Tang
- Department of Lymphoma, Tongji Medical College, Huazhong University of Science and Technology, Hubei Cancer Hospital, Wuhan, China
| | - Xiaobing Li
- Department of Thoracic Oncology, Tongji Medical College, Huazhong University of Science and Technology, Hubei Cancer Hospital, Wuhan, China
| |
Collapse
|
3
|
Li X, Wu D, Peng Y, Tang J, Wu Y. The Efficacy and Safety of Albumin-Bound Paclitaxel Combined With Anlotinib and PD-1/L1 Inhibitors For Treating Patients With Extensive-Stage Small Cell Lung Cancer and Brain Metastasis: A Retrospective Cohort Study. Cancer Med 2024; 13:e70449. [PMID: 39660471 PMCID: PMC11632393 DOI: 10.1002/cam4.70449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Extensive-stage small cell lung cancer (ES-SCLC) suffering from brain metastases (BM) has a poor prognosis and lacks effective treatment selection. In this study, we explored the efficacy and safety of combination treatment of albumin-bound paclitaxel (nab-ptx), anlotinib, and PD-1/L1 inhibitors for such special population. METHODS A total of 55 patients diagnosed with ES-SCLC and BM were enrolled in this retrospective study. Patients received a combination therapy consisting of nab-ptx, anlotinib, and PD-1/L1 inhibitors. The primary endpoints included overall response rate (ORR), progression-free survival (PFS), overall survival (OS), and adverse events (AEs). RESULTS The results demonstrated promising efficacy of the combination therapy for such patients, with an ORR of 36.36%, median PFS and OS of 5.0 and 10.0 m, correspondingly. Subgroup analyses indicated that treatment efficacy closely correlated with patients' Ds-GPA (Diagnosis-specified Graded Prognosis Assessment) scores. Mechanistic studies revealed that this regimen likely operates by reducing immune suppression to activate immune function, thereby exerting synergistic anti-tumor effects. The common AEs include decreased appetite, nausea, leukopenia, hypertension, proteinuria, hand-foot syndrome, peripheral neuropathy, rash, and thyroid toxicity, most of which are generally mild and can be alleviated with symptomatic treatment. CONCLUSION The combination of nab-ptx, anlotinib, and PD-1/L1 inhibitors exhibited substantial efficacy and acceptable safety in the treatment of BM from ES-SCLC. This novel therapeutic approach holds promise for improving the outcomes for patients with this challenging disease. Further studies are needed to validate these findings and investigate the long-term benefits of this combination regimen.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - De Wu
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Peng
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Tang
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuebing Wu
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Lee S, Kim JH, Jang IH, Jo S, Lee SY, Oh SC, Kim SM, Kong L, Ko J, Kim TD. Harnessing B7-H6 for Anticancer Immunotherapy: Expression, Pathways, and Therapeutic Strategies. Int J Mol Sci 2024; 25:10326. [PMID: 39408655 PMCID: PMC11476788 DOI: 10.3390/ijms251910326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapies have evolved from traditional chemotherapy to more precise molecular-targeted immunotherapies, which have been associated with improved side effects and outcomes. These modern strategies rely on cancer-specific biomarkers that differentiate malignant from normal cells. The B7 family of immune checkpoint molecules is crucial for cancer immune evasion and a prime therapeutic target. B7-H6, a recently identified member of the B7 family, has emerged as a promising therapeutic target. Unlike other B7 proteins, B7-H6 is not expressed in healthy tissues but is upregulated in several cancers. It binds to NKp30, activating natural killer (NK) cells and triggering immune responses against cancer cells. This review explores the expression of B7-H6 in different cancers, the factors that regulate its expression, and its intrinsic and extrinsic pathways. Additionally, we discuss potential anticancer therapies targeting B7-H6, highlighting its significance in advancing precision medicine. Understanding the role of B7-H6 in cancer immunity may inform the development of appropriate therapies that exploit its cancer-specific expression.
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Lingzu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Lopez DC, Fabian KP, Padget MR, Robbins YL, Kowalczyk JT, Lassoued W, Pastor DM, Allen CT, Gallia GL, Gulley JL, Hodge JW, London NR. Chordoma cancer stem cell subpopulation characterization may guide targeted immunotherapy approaches to reduce disease recurrence. Front Oncol 2024; 14:1376622. [PMID: 38741774 PMCID: PMC11089222 DOI: 10.3389/fonc.2024.1376622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Cancer stem cells (CSCs), a group of tumor-initiating and tumor-maintaining cells, may be major players in the treatment resistance and recurrence distinctive of chordoma. Characterizing CSCs is crucial to better targeting this subpopulation. Methods Using flow cytometry, six chordoma cell lines were evaluated for CSC composition. In vitro, cell lines were stained for B7H6, HER2, MICA-B, ULBP1, EGFR, and PD-L1 surface markers. Eighteen resected chordomas were stained using a multispectral immunofluorescence (mIF) antibody panel to identify CSCs in vivo. HALO software was used for quantitative CSC density and spatial analysis. Results In vitro, chordoma CSCs express more B7H6, MICA-B, and ULBP1, assessed by percent positivity and mean fluorescence intensity (MFI), as compared to non-CSCs in all cell lines. PD- L1 percent positivity is increased by >20% in CSCs compared to non-CSCs in all cell lines except CH22. In vivo, CSCs comprise 1.39% of chordoma cells and most are PD-L1+ (75.18%). A spatial analysis suggests that chordoma CSCs cluster at an average distance of 71.51 mm (SD 73.40 mm) from stroma. Discussion To our knowledge, this study is the first to identify individual chordoma CSCs and describe their surface phenotypes using in vitro and in vivo methods. PD-L1 is overexpressed on CSCs in chordoma human cell lines and operative tumor samples. Similarly, potential immunotherapeutic targets on CSCs, including B7H6, MICA-B, ULBP1, EGFR, and HER2 are overexpressed across cell lines. Targeting these markers may have a preferential role in combating CSCs, an aggressive subpopulation likely consequential to chordoma's high recurrence rate.
Collapse
Affiliation(s)
- Diana C. Lopez
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Padget
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yvette L. Robbins
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joshua T. Kowalczyk
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Wiem Lassoued
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle M. Pastor
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clint T. Allen
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gary L. Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine;, Baltimore, MD, United States
| | - James L. Gulley
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James W. Hodge
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nyall R. London
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine;, Baltimore, MD, United States
| |
Collapse
|
6
|
Vocino Trucco G, Righi L, Volante M, Papotti M. Updates on lung neuroendocrine neoplasm classification. Histopathology 2024; 84:67-85. [PMID: 37794655 DOI: 10.1111/his.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Lung neuroendocrine neoplasms (NENs) are a heterogeneous group of pulmonary neoplasms showing different morphological patterns and clinical and biological characteristics. The World Health Organisation (WHO) classification of lung NENs has been recently updated as part of the broader attempt to uniform the classification of NENs. This much-needed update has come at a time when insights from seminal molecular characterisation studies revolutionised our understanding of the biological and pathological architecture of lung NENs, paving the way for the development of novel diagnostic techniques, prognostic factors and therapeutic approaches. In this challenging and rapidly evolving landscape, the relevance of the 2021 WHO classification has been recently questioned, particularly in terms of its morphology-orientated approach and its prognostic implications. Here, we provide a state-of-the-art review on the contemporary understanding of pulmonary NEN morphology and the potential contribution of artificial intelligence, the advances in NEN molecular profiling with their impact on the classification system and, finally, the key current and upcoming prognostic factors.
Collapse
Affiliation(s)
| | - Luisella Righi
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Chen Y, Li H, Fan Y. Shaping the tumor immune microenvironment of SCLC: Mechanisms, and opportunities for immunotherapy. Cancer Treat Rev 2023; 120:102606. [PMID: 37579532 DOI: 10.1016/j.ctrv.2023.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Small-cell lung cancer (SCLC) is a very aggressive neuroendocrine tumor with a poor prognosis. Whereas immunotherapy has emerged as a promising approach for treating SCLC, its unique tumor immune microenvironment (TIME) might limit patient responses. To fully characterize the TIME and understand the mechanism of its formation with respect to SCLC is crucial. The recent rapid development of multi-omics technologies has rapidly advanced knowledge of TIME features and the regulatory mechanisms associated with SCLC. This review summarizes the TIME features of SCLC as well as shaping the TIME according to the genomics, epigenomics, and metabolomics of tumors. Future opportunities and challenges for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Yunfei Chen
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Hui Li
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Yun Fan
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
8
|
Ma S, Caligiuri MA, Yu J. Harnessing Natural Killer Cells for Lung Cancer Therapy. Cancer Res 2023; 83:3327-3339. [PMID: 37531223 DOI: 10.1158/0008-5472.can-23-1097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Although natural killer (NK) cells are garnering interest as a potential anticancer therapy because they selectively recognize and eliminate cancer cells, their use in treating solid tumors, including lung cancer, has been limited due to impediments to their efficacy, such as their limited ability to reach tumor tissues, the reduced antitumor activity of tumor-infiltrating NK cells, and the suppressive tumor microenvironment (TME). This comprehensive review provides an in-depth analysis of the cross-talk between the lung cancer TME and NK cells. We highlight the various mechanisms used by the TME to modulate NK-cell phenotypes and limit infiltration, explore the role of the TME in limiting the antitumor activity of NK cells, and discuss the current challenges and obstacles that hinder the success of NK-cell-based immunotherapy for lung cancer. Potential opportunities and promising strategies to address these challenges have been implemented or are being developed to optimize NK-cell-based immunotherapy for lung cancer. Through critical evaluation of existing literature and emerging trends, this review provides a comprehensive outlook on the future of NK-cell-based immunotherapy for treating lung cancer.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, California
| |
Collapse
|
9
|
Brockman AA, Khurana R, Bartkowiak T, Thomas PL, Sivagnanam S, Betts CB, Coussens LM, Lovly CM, Irish JM, Ihrie RA. Alignment, segmentation and neighborhood analysis in cyclic immunohistochemistry data using CASSATT. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:344-355. [PMID: 36748312 PMCID: PMC10404643 DOI: 10.1002/cyto.b.22114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
Cyclic immunohistochemistry (cycIHC) uses sequential rounds of colorimetric immunostaining and imaging for quantitative mapping of location and number of cells of interest. Additionally, cycIHC benefits from the speed and simplicity of brightfield microscopy, making the collection of entire tissue sections and slides possible at a trivial cost compared to other high dimensional imaging modalities. However, large cycIHC datasets currently require an expert data scientist to concatenate separate open-source tools for each step of image pre-processing, registration, and segmentation, or the use of proprietary software. Here, we present a unified and user-friendly pipeline for processing, aligning, and analyzing cycIHC data - Cyclic Analysis of Single-Cell Subsets and Tissue Territories (CASSATT). CASSATT registers scanned slide images across all rounds of staining, segments individual nuclei, and measures marker expression on each detected cell. Beyond straightforward single cell data analysis outputs, CASSATT explores the spatial relationships between cell populations. By calculating the log odds of interaction frequencies between cell populations within tissues and tissue regions, this pipeline helps users identify populations of cells that interact-or do not interact-at frequencies that are greater than those occurring by chance. It also identifies specific neighborhoods of cells based on the assortment of neighboring cell types that surround each cell in the sample. The presence and location of these neighborhoods can be compared across slides or within distinct regions within a tissue. CASSATT is a fully open source workflow tool developed to process cycIHC data and will allow greater utilization of this powerful staining technique.
Collapse
Affiliation(s)
- Asa A. Brockman
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rohit Khurana
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Todd Bartkowiak
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Departments of Pathology, Microbiology, & Immunology
| | - Portia L. Thomas
- Department of Microbiology, Immunology & Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee
- Department of School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee
| | - Shamilene Sivagnanam
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Department of Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Courtney B Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Department of Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Department of Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Christine M. Lovly
- Department of School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee
- Departments of Division of Hematology-Oncology, Department of Medicine
| | - Jonathan M. Irish
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Departments of Pathology, Microbiology, & Immunology
- Departments of Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rebecca A. Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of School of Graduate Studies & Research, Meharry Medical College, Nashville, Tennessee
- Neurological Surgery
- Departments of Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
10
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
11
|
Fousek K, Horn LA, Qin H, Dahut M, Iida M, Yacubovich D, Hamilton DH, Thomas A, Schlom J, Palena C. An Interleukin-15 Superagonist Enables Antitumor Efficacy of Natural Killer Cells Against All Molecular Variants of SCLC. J Thorac Oncol 2023; 18:350-368. [PMID: 36410696 PMCID: PMC9974560 DOI: 10.1016/j.jtho.2022.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION SCLC is a highly aggressive tumor with a 5-year survival rate of less than 6%. A heterogeneous disease, SCLC is classified into four subtypes that include tumors with neuroendocrine and non-neuroendocrine features. Immune checkpoint blockade has been recently added for the frontline treatment of SCLC; however, this therapy has only led to modest clinical improvements. The lack of clinical benefit in a cancer type known to have a high tumor mutational burden has been attributed to poor T-cell infiltration and low expression of MHC-class I in most SCLC tumors. In an attempt to devise a more effective immunotherapeutic regimen, this study investigated an alternate approach on the basis of the use of the clinical-stage interleukin-15 superagonist, N-803. METHODS Preclinical models of SCLC spanning all molecular subtypes were used to evaluate the susceptibility of SCLC to natural killer (NK)-mediated lysis in vitro, including NK cells activated by N-803. Antitumor activity of N-803 was evaluated in vivo with a xenograft model of SCLC. RESULTS In vitro and in vivo data revealed differences in susceptibility of SCLC subtypes to lysis by NK cells and that NK cells activated by N-803 effectively lyse SCLC tumor cells across all variant subtypes, regardless of their expression of MHC-class I. CONCLUSIONS These findings highlight the potential of a novel immune-based intervention using a cytokine-based therapeutic option for the treatment of SCLC. We hypothesize that N-803 may provide benefit to most patients with SCLC, including those with immunologically cold tumors lacking MHC expression.
Collapse
Affiliation(s)
- Kristen Fousek
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lucas A. Horn
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haiyan Qin
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline Dahut
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Masafumi Iida
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dan Yacubovich
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Duane H. Hamilton
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia Palena
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Sun C, Yin M, Cheng Y, Kuang Z, Liu X, Wang G, Wang X, Yuan K, Min W, Dong J, Hou Y, Hu L, Zhang G, Pei W, Wang L, Sun Y, Yu X, Xiao Y, Deng H, Yang P. Novel Small-Molecule PD-L1 Inhibitor Induces PD-L1 Internalization and Optimizes the Immune Microenvironment. J Med Chem 2023; 66:2064-2083. [PMID: 36579489 DOI: 10.1021/acs.jmedchem.2c01801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blocking the PD-1/PD-L1 interaction has become an important strategy for tumor therapy, which has shown outstanding therapeutic effects in clinical settings. However, unsatisfactory response rates and immune-related adverse effects limit the use of anti-PD1/PD-L1 antibodies. Here, we report the discovery and identification of S4-1, an innovative small-molecule inhibitor of PD-L1. In vitro, S4-1 effectively altered the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, improved its localization to endoplasmic reticulum, and thus enhanced the cytotoxicity of peripheral blood mononuclear cells toward tumor cells. In vivo, S4-1 significantly inhibited tumor growth in both lung and colorectal cancer models, particularly in colorectal cancer, where it led to complete clearance of a portion of the tumor cells. Furthermore, S4-1 induced T-cell activation and inversed the inhibitory tumor microenvironment, consistent with the PD-L1/PD-1 pathway blockade. These data support the continued evaluation of S4-1 as an alternative ICB therapeutic strategy.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zean Kuang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
13
|
Zhang W, Auguste A, Liao X, Walterskirchen C, Bauer K, Lin YH, Yang L, Sayedian F, Fabits M, Bergmann M, Binder C, Corrales L, Vogt AB, Hudson LJ, Barnes MP, Bisht A, Giragossian C, Voynov V, Adam PJ, Hipp S. A Novel B7-H6-Targeted IgG-Like T Cell-Engaging Antibody for the Treatment of Gastrointestinal Tumors. Clin Cancer Res 2022; 28:5190-5201. [PMID: 36166004 PMCID: PMC9713360 DOI: 10.1158/1078-0432.ccr-22-2108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage gastrointestinal cancers represent a high unmet need requiring new effective therapies. We investigated the antitumor activity of a novel T cell-engaging antibody (B7-H6/CD3 ITE) targeting B7-H6, a tumor-associated antigen that is expressed in gastrointestinal tumors. EXPERIMENTAL DESIGN Membrane proteomics and IHC analysis identified B7-H6 as a tumor-associated antigen in gastrointestinal tumor tissues with no to very little expression in normal tissues. The antitumor activity and mode of action of B7-H6/CD3 ITE was evaluated in in vitro coculture assays, in humanized mouse tumor models, and in colorectal cancer precision cut tumor slice cultures. RESULTS B7-H6 expression was detected in 98% of colorectal cancer, 77% of gastric cancer, and 63% of pancreatic cancer tissue samples. B7-H6/CD3 ITE-mediated redirection of T cells toward B7-H6-positive tumor cells resulted in B7-H6-dependent lysis of tumor cells, activation and proliferation of T cells, and cytokine secretion in in vitro coculture assays, and infiltration of T cells into tumor tissues associated with tumor regression in in vivo colorectal cancer models. In primary patient-derived colorectal cancer precision-cut tumor slice cultures, treatment with B7-H6/CD3 ITE elicited cytokine secretion by endogenous tumor-infiltrating immune cells. Combination with anti-PD-1 further enhanced the activity of the B7-H6/CD3 ITE. CONCLUSION These data highlight the potential of the B7-H6/CD3 ITE to induce T cell-redirected lysis of tumor cells and recruitment of T cells into noninflamed tumor tissues, leading to antitumor activity in in vitro, in vivo, and human tumor slice cultures, which supports further evaluation in a clinical study.
Collapse
Affiliation(s)
- Wei Zhang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Aurélie Auguste
- Boehringer Ingelheim Pharma, GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach an der Riß, Germany
| | - Xiaoyun Liao
- Boehringer Ingelheim Pharmaceuticals, Inc., Oncology Translational Science, Ridgefield, Connecticut
| | | | - Kathrin Bauer
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Yu-Hsi Lin
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Ling Yang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | | | - Markus Fabits
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leticia Corrales
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Anne B. Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Arnima Bisht
- Oxford BioTherapeutics, Inc., San Jose, California
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.,Boehringer Ingelheim Pharmaceuticals, Inc., Translational Medicine and Clinical Pharmacology, Ridgefield, Connecticut.,Corresponding Author: Susanne Hipp, Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877-0368. Phone: 203-798-4567; E-mail:
| |
Collapse
|
14
|
Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol 2022; 86:273-285. [PMID: 35288298 DOI: 10.1016/j.semcancer.2022.03.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer characterized by dismal prognosis. Although SCLC may initially respond well to platinum-based chemotherapy, it ultimately relapses and is almost universally resistant to this treatment. Immune checkpoint inhibitors (ICIs) have been approved as the first- and third-line therapeutic regimens for extensive-stage or relapsed SCLC, respectively. Despite this, only a minority of patients with SCLC respond to ICIs partly due to a lack of tumor-infiltrating lymphocytes (TILs). Transforming the immune "cold" tumors into "hot" tumors that are more likely to respond to ICIs is the main challenge for SCLC therapy. Ferroptosis, necroptosis, and pyroptosis represent the newly discovered immunogenic cell death (ICD) forms. Promoting ICD may alter the tumor microenvironment (TME) and the influx of TILs, and combination of their inducers and ICIs plays a synergistical role in enhancing antitumor effects. Nevertheless, the combination of the above two modalities has not been systematically discussed in SCLC therapy. In the present review, we summarize the roles of distinct ICD mechanisms on antitumor immunity and recent advances of ferroptosis-, necroptosis- and pyroptosis-inducing agents, and present perspectives on these cell death mechanisms in immunotherapy of SCLC.
Collapse
|
15
|
Luo H, Shan J, Zhang H, Song G, Li Q, Xu CX. Targeting the epigenetic processes to enhance antitumor immunity in small cell lung cancer. Semin Cancer Biol 2022; 86:960-970. [PMID: 35189321 DOI: 10.1016/j.semcancer.2022.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Dysregulation of the epigenetic processes, such as DNA methylation, histone modifications, and modulation of chromatin states, drives aberrant transcription that promotes initiation and progression of small cell lung cancer (SCLC). Accumulating evidence has proven crucial roles of epigenetic machinery in modulating immune cell functions and antitumor immune response. Epigenetics-targeting drugs such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and histone methyltransferase inhibitors involved in preclinical and clinical trials may trigger antitumor immunity. Herein, we summarize the impact of epigenetic processes on tumor immunogenicity and antitumor immune cell functions in SCLC. Furthermore, we review current clinical trials of epigenetic therapy against SCLC and the mechanisms of epigenetic inhibitors to boost antitumor immunity. Eventually, we discuss the opportunities of developing therapeutic regimens combining epigenetic agents with immunotherapy for SCLC.
Collapse
Affiliation(s)
- Hao Luo
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China; School of Medicine, Chongqing University, Chongqing 400030, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jinlu Shan
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hong Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Guanbin Song
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Qing Li
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
16
|
Dowlati A, Abbas A, Chan T, Henick B, Wang X, Doshi P, Fu P, Patel J, Kuo F, Chang H, Balli D. Immune Checkpoint Blockade Outcome in Small-Cell Lung Cancer and Its Relationship With Retinoblastoma Mutation Status and Function. JCO Precis Oncol 2022; 6:e2200257. [PMID: 36044718 PMCID: PMC9489185 DOI: 10.1200/po.22.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Immune checkpoint blockade (ICB) in conjunction with chemotherapy is approved for the treatment of extensive-stage small-cell lung cancer (SCLC). Although specific genomic abnormalities such as KEAP1 and STK11 gene mutations are associated with resistance to ICB in non-SCLC, no genomic abnormality has been found in association with resistance to ICB in SCLC. MATERIALS AND METHODS We first analyzed a retrospective cohort of 42 patients with SCLC treated with single-agent ICB or ICB combination (data set A). We then validated our results in a large prospective clinical trial of 460 patients (CheckMate 032, data set B). DNA and RNA sequencing were performed. RESULTS In data set A, patients treated with ICB with RB1 wild-type (WT) had a median overall survival (OS) of 23.1 months (95% CI, 9 to 37.5), whereas the RB1 mutant OS was 5 months (95% CI, 2.5 to 26; P = .04). Differentially expressed gene analysis between RB1 mutant and RB1 WT samples indicated the enrichment of downregulated immune-related genes and an immune exclusion phenotype among RB1 mutant but not in the RB1 WT tumor samples. We then assessed results from 460 patients enrolled in CheckMate 032, a trial of nivolumab (NIVO) or NIVO + ipilimumab only in SCLC. In this large cohort, RB1 WT patients had significantly improved outcome with NIVO therapy compared with mutant patients (hazard ratio, 1.41; 95% CI, 1.02 to 2.01; P = .041). High RB1 loss-of-function (LOF) signature scores significantly associated with neuroendocrine subtypes (ASCL1 and NeuroD1). However, neuroendocrine subtypes did not associate with OS. Remarkably, patients with lower RB1 LOF scores had longer OS following treatment with NIVO. CONCLUSION SCLC patients with RB1 WT status or lower RB1 LOF signature scores by transcriptomics have better outcomes with ICB monotherapy.
Collapse
Affiliation(s)
- Afshin Dowlati
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH
| | - Ata Abbas
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH
| | - Timothy Chan
- Cleveland Clinic, Cleveland, OH
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian Henick
- Columbia University Medical Center, New York, NY
| | | | - Parul Doshi
- Bristol Myers Squibb, New York, NY
- Gilead Sciences, Foster City, CA
| | - Pingfu Fu
- University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH
| | | | - Fengshen Kuo
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | |
Collapse
|
17
|
Zhu Z, Teng KY, Zhou J, Xu Y, Zhang L, Zhao H, Zhang X, Tian L, Li Z, Lu T, Ma S, Li Z, Dai Z, Wang J, Chen X, Wu X, Pan Y, Shi W, You Z, Chen H, Chung V, Yu J, He S, Zhao X, Cao L, Li D. B7H6 Serves as a Negative Prognostic Marker and an Immune Modulator in Human Pancreatic Cancer. Front Oncol 2022; 12:814312. [PMID: 35311080 PMCID: PMC8929685 DOI: 10.3389/fonc.2022.814312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer (PC), the third leading cause of cancer-related death in the U.S., is frequently found too late to be cured by traditional chemotherapy. Expression of B7 homolog 6 (B7H6), a member of the B7 family of immunoreceptors, has been found in PC and several other cancers. B7H6 is a ligand for cytotoxicity triggering receptor 3 (NKp30), which is expressed on NK cells. Here, we demonstrate that B7H6 can be detected in PC tissues but not normal organs. Its expression in patients associated significantly with tumor differentiation grade and lymphatic metastasis. The soluble form of B7H6 was detected in the PC patients’ sera, and its concentration associated with tumor differentiation grade and tumor, node, metastasis (TNM) stages. Also, higher levels of B7H6 in PC patients’ malignant tissues or serum correlated with shorter overall survival. In vitro, downregulation of B7H6 by CRISPR/Cas9 or siRNA technology had no significant impact on the viability or mobility of PC cells. Instead, knocking out B7H6 sensitized PC cells to NK-mediated cytotoxicity and cytokine production. These results indicate that B7H6 not only serves as a negative prognostic marker but also acts as an immune modulator in PC.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunyun Xu
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, China
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Zhiyao Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Zhenyu Dai
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Jing Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Xingyu Chen
- Department of General Surgery, Taizhou Fourth People's Hospital, Taizhou, China
| | - Xing Wu
- Department of General Surgery, The First People's Hospital of Huzhou, Huzhou, China
| | - Yihan Pan
- College of Liberal Arts, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiqun You
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hanyu Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Plaja A, Moran T, Carcereny E, Saigi M, Hernández A, Cucurull M, Domènech M. Small-Cell Lung Cancer Long-Term Survivor Patients: How to Find a Needle in a Haystack? Int J Mol Sci 2021; 22:ijms222413508. [PMID: 34948300 PMCID: PMC8707503 DOI: 10.3390/ijms222413508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive malignancy characterized by a rapid progression and a high resistance to treatments. Unlike other solid tumors, there has been a scarce improvement in emerging treatments and survival during the last years. A better understanding of SCLC biology has allowed for the establishment of a molecular classification based on four transcription factors, and certain therapeutic vulnerabilities have been proposed. The universal inactivation of TP53 and RB1, along with the absence of mutations in known targetable oncogenes, has hampered the development of targeted therapies. On the other hand, the immunosuppressive microenvironment makes the success of immune checkpoint inhibitors (ICIs), which have achieved a modest improvement in overall survival in patients with extensive disease, difficult. Currently, atezolizumab or durvalumab, in combination with platinum–etoposide chemotherapy, is the standard of care in first-line setting. However, the magnitude of the benefit is scarce and no predictive biomarkers of response have yet been established. In this review, we describe SCLC biology and molecular classification, examine the SCLC tumor microenvironment and the challenges of predictive biomarkers of response to new treatments, and, finally, assess clinical and molecular characteristics of long-term survivor patients in order to identify possible prognostic factors and treatment vulnerabilities.
Collapse
|
19
|
Dowlati A, Chan T. Pursuing Immunotherapeutic Targets in SCLC. J Thorac Oncol 2021; 16:1056-1057. [PMID: 34154789 DOI: 10.1016/j.jtho.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Timothy Chan
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|