1
|
Elkrief A, Odintsov I, Smith RS, Vojnic M, Hayashi T, Khodos I, Markov V, Liu Z, Lui AJW, Bloom JL, Offin MD, Rudin CM, de Stanchina E, Riely GJ, Somwar R, Ladanyi M. Combination of MDM2 and Targeted Kinase Inhibitors Results in Prolonged Tumor Control in Lung Adenocarcinomas With Oncogenic Tyrosine Kinase Drivers and MDM2 Amplification. JCO Precis Oncol 2024; 8:e2400241. [PMID: 39259915 PMCID: PMC11404768 DOI: 10.1200/po.24.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE MDM2, a negative regulator of the TP53 tumor suppressor, is oncogenic when amplified. MDM2 amplification (MDM2amp) is mutually exclusive with TP53 mutation and is seen in 6% of patients with lung adenocarcinoma (LUAD), with significant enrichment in subsets with receptor tyrosine kinase (RTK) driver alterations. Recent studies have shown synergistic activity of MDM2 and MEK inhibition in patient-derived LUAD models with MDM2amp and RTK driver alterations. However, the combination of MDM2 and RTK inhibitors in LUAD has not been studied. METHODS We evaluated the combination of MDM2 and RTK inhibition in patient-derived models of LUAD. RESULTS In a RET-fusion LUAD patient-derived model with MDM2amp, MDM2 inhibition with either milademetan or AMG232 combined with selpercatinib resulted in long-term in vivo tumor control markedly superior to either agent alone. Similarly, in an EGFR-mutated model with MDM2amp, combining either milademetan or AMG232 with osimertinib resulted in long-term in vivo tumor control, which was strikingly superior to either agent alone. CONCLUSION These preclinical in vivo data provide a rationale for further clinical development of this combinatorial targeted therapy approach.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Roger S Smith
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Takuo Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Inna Khodos
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vladimir Markov
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zebing Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie L Bloom
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gregory J Riely
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
2
|
Jiang L, Liang R, Luo Q, Chen Z, Song G. Targeting FTO suppresses hepatocellular carcinoma by inhibiting ERBB3 and TUBB4A expression. Biochem Pharmacol 2024; 226:116375. [PMID: 38906227 DOI: 10.1016/j.bcp.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.
Collapse
Affiliation(s)
- Lingli Jiang
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Rui Liang
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Guanbin Song
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Li H, Xu L, Cao H, Wang T, Yang S, Tong Y, Wang L, Liu Q. Analysis on the pathogenesis and treatment progress of NRG1 fusion-positive non-small cell lung cancer. Front Oncol 2024; 14:1405380. [PMID: 38957319 PMCID: PMC11217482 DOI: 10.3389/fonc.2024.1405380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Lung cancer persistently leads as the primary cause of morbidity and mortality among malignancies. A notable increase in the prevalence of lung adenocarcinoma has become evident in recent years. Although targeted therapies have shown in treating certain subsets of non-small cell lung cancers (NSCLC), a significant proportion of patients still face suboptimal therapeutic outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family, initially drew interest due to its distribution within the nascent ventricular endocardium, showcasing an exclusive presence in the endocardium and myocardial microvessels. Recent research has highlighted NRG1's pivotal role in the genesis and progression across a spectrum of tumors, influencing molecular perturbations across various tumor-associated signaling pathways. This review provides a concise overview of NRG1, including its expression patterns, configuration, and fusion partners. Additionally, we explore the unique features and potential therapeutic strategies for NRG1 fusion-positive occurrences within the context of NSCLC.
Collapse
Affiliation(s)
- Hongyan Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Lina Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Hongshun Cao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Tianyi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Siwen Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Yixin Tong
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Qiang Liu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Odintsov I, Makarem M, Nishino M, Bachert SE, Zhang T, LoPiccolo J, Paweletz CP, Gokhale PC, Ivanova E, Saldanha A, Rudin CM, Lockwood WW, Ladanyi M, Somwar R, Jänne PA, Sholl LM. Prevalence and Therapeutic Targeting of High-Level ERBB2 Amplification in NSCLC. J Thorac Oncol 2024; 19:732-748. [PMID: 38154514 DOI: 10.1016/j.jtho.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION ERBB2 amplification in lung cancer remains poorly characterized. HER2 (encoded by ERBB2) is a transmembrane tyrosine kinase capable of ligand-independent dimerization and signaling when overexpressed, and a common cause of HER2 overexpression is ERBB2 amplification. Here, we evaluated the clinicopathologic and genomic characteristics of ERBB2-amplified NSCLC and explored a HER2 antibody-drug conjugate (ADC) therapeutic strategy. METHODS Our institutional next-generation DNA sequencing data (OncoPanel) from 5769 NSCLC samples (5075 patients) were queried for cases having high-level ERBB2 amplification (≥6 copies). Clinical and demographic characteristics were extracted from the electronic medical records. Efficacy of the pan-ERBB inhibitor afatinib or HER2 ADCs (trastuzumab deruxtecan and trastuzumab emtansine) was evaluated in NSCLC preclinical models and patients with ERBB2 amplification. RESULTS High-level ERBB2 amplification was identified in 0.9% of lung adenocarcinomas and reliably predicted overexpression of HER2. ERBB2 amplification events are detected in two distinct clinicopathologic and genomic subsets of NSCLC: as the sole mitogenic driver in tumors arising in patients with a smoking history or as a concomitant alteration with other mitogenic drivers in patients with a light or never smoking history. We further reveal that trastuzumab deruxtecan is effective therapy in in vitro and in vivo preclinical models of NSCLC harboring ERBB2 amplification and report two cases of clinical activity of an anti-HER2 ADC in patients who acquired ERBB2 amplification after previous targeted therapy. CONCLUSIONS High-level ERBB2 amplification reliably predicts HER2 overexpression in patients with NSCLC, and HER2 ADC is effective therapy in this population.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maisam Makarem
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Emily Bachert
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Tom Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; School of Medicine, New York Medical College, Valhalla, New York
| | - Jaclyn LoPiccolo
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prafulla C Gokhale
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elena Ivanova
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aisha Saldanha
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William W Lockwood
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Udagawa H, Nilsson MB, Robichaux JP, He J, Poteete A, Jiang H, Heeke S, Elamin YY, Shibata Y, Matsumoto S, Yoh K, Okazaki S, Masuko T, Odintsov I, Somwar R, Ladanyi M, Goto K, Heymach JV. HER4 and EGFR Activate Cell Signaling in NRG1 Fusion-Driven Cancers: Implications for HER2-HER3-specific Versus Pan-HER Targeting Strategies. J Thorac Oncol 2024; 19:106-118. [PMID: 37678511 PMCID: PMC11161205 DOI: 10.1016/j.jtho.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
INTRODUCTION NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.
Collapse
Affiliation(s)
- Hibiki Udagawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jacqulyne P Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junqin He
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Jiang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuji Shibata
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Elkrief A, Odintsov I, Markov V, Caeser R, Sobczuk P, Tischfield SE, Bhanot U, Vanderbilt CM, Cheng EH, Drilon A, Riely GJ, Lockwood WW, de Stanchina E, Tirunagaru VG, Doebele RC, Quintanal-Villalonga Á, Rudin CM, Somwar R, Ladanyi M. Combination Therapy With MDM2 and MEK Inhibitors Is Effective in Patient-Derived Models of Lung Adenocarcinoma With Concurrent Oncogenic Drivers and MDM2 Amplification. J Thorac Oncol 2023; 18:1165-1183. [PMID: 37182602 PMCID: PMC10524759 DOI: 10.1016/j.jtho.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Although targeted therapies have revolutionized the therapeutic landscape of lung adenocarcinomas (LUADs), disease progression on single-agent targeted therapy against known oncogenic drivers is common, and therapeutic options after disease progression are limited. In patients with MDM2 amplification (MDM2amp) and a concurrent oncogenic driver alteration, we hypothesized that targeting of the tumor-suppressor pathway (by means of restoration of p53 using MDM2 inhibition) and simultaneous targeting of co-occurring MAPK oncogenic pathway might represent a more durably effective therapeutic strategy. METHODS We evaluated genomic next-generation sequencing data using the Memorial Sloan Kettering Cancer Center-Integrated Mutation Profiling of Actionable Cancer Targets platform to nominate potential targets for combination therapy in LUAD. We investigated the small molecule MDM2 inhibitor milademetan in cell lines and patient-derived xenografts of LUAD with a known driver alteration and MDM2amp. RESULTS Of 10,587 patient samples from 7121 patients with LUAD profiled by next-generation sequencing, 6% (410 of 7121) harbored MDM2amp. MDM2amp was significantly enriched among tumors with driver alterations in METex14 (36%, p < 0.001), EGFR (8%, p < 0.001), RET (12%, p < 0.01), and ALK (10%, p < 0.01). The combination of milademetan and the MEK inhibitor trametinib was synergistic in growth inhibition of ECLC5-GLx (TRIM33-RET/MDM2amp), LUAD12c (METex14/KRASG12S/MDM2amp), SW1573 (KRASG12C, TP53 wild type), and A549 (KRASG12S) cells and in increasing expression of proapoptotic proteins PUMA and BIM. Treatment of ECLC5-GLx and LUAD12c with single-agent milademetan increased ERK phosphorylation, consistent with previous data on ERK activation with MDM2 inhibition. This ERK activation was effectively suppressed by concomitant administration of trametinib. In contrast, ERK phosphorylation induced by milademetan was not suppressed by concurrent RET inhibition using selpercatinib (in ECLC5-GLx) or MET inhibition using capmatinib (in LUAD12c). In vivo, combination milademetan and trametinib was more effective than either agent alone in ECLC5-GLx, LX-285 (EGFRex19del/MDM2amp), L13BS1 (METex14/MDM2amp), and A549 (KRASG12S, TP53 wild type). CONCLUSIONS Combined MDM2/MEK inhibition was found to have efficacy across multiple patient-derived LUAD models harboring MDM2amp and concurrent oncogenic drivers. This combination, potentially applicable to LUADs with a wide variety of oncogenic driver mutations and kinase fusions activating the MAPK pathway, has evident clinical implications and will be investigated as part of a planned phase 1/2 clinical trial.
Collapse
Affiliation(s)
- Arielle Elkrief
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Igor Odintsov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pawel Sobczuk
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sam E Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umesh Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - William W Lockwood
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
7
|
Miyazaki I, Odintsov I, Ishida K, Lui AJW, Kato M, Suzuki T, Zhang T, Wakayama K, Kurth RI, Cheng R, Fujita H, Delasos L, Vojnic M, Khodos I, Yamada Y, Ishizawa K, Mattar MS, Funabashi K, Chang Q, Ohkubo S, Yano W, Terada R, Giuliano C, Lu YC, Bonifacio A, Kunte S, Davare MA, Cheng EH, de Stanchina E, Lovati E, Iwasawa Y, Ladanyi M, Somwar R. Vepafestinib is a pharmacologically advanced RET-selective inhibitor with high CNS penetration and inhibitory activity against RET solvent front mutations. NATURE CANCER 2023; 4:1345-1361. [PMID: 37743366 PMCID: PMC10518257 DOI: 10.1038/s43018-023-00630-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023]
Abstract
RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.
Collapse
Affiliation(s)
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Tom Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Renate I Kurth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Cheng
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lukas Delasos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Northwell Health Cancer Institute, Lenox Hill Hospital, New York, NY, USA
| | - Inna Khodos
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kota Ishizawa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Marissa S Mattar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wakako Yano
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | | | | | - Yue Christine Lu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Siddharth Kunte
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Cancer Center, Toledo, OH, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
10
|
Song Y, Wang Y, Guan A, Xue J, Li B, Huang Z, Zheng Z, Liang N, Yang Y, Li S. Footprints: Stamping hallmarks of lung cancer with patient-derived models, from molecular mechanisms to clinical translation. Front Bioeng Biotechnol 2023; 11:1132940. [PMID: 36911198 PMCID: PMC9993089 DOI: 10.3389/fbioe.2023.1132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
The conventional two-dimensional (2D) tumor cell lines in Petri dishes have played an important role in revealing the molecular biological mechanism of lung cancer. However, they cannot adequately recapitulate the complex biological systems and clinical outcomes of lung cancer. The three-dimensional (3D) cell culture enables the possible 3D cell interactions and the complex 3D systems with co-culture of different cells mimicking the tumor microenvironments (TME). In this regard, patient-derived models, mainly patient-derived tumor xenograft (PDX) and patient-derived organoids discussed hereby, are with higher biological fidelity of lung cancer, and regarded as more faithful preclinical models. The significant Hallmarks of Cancer is believed to be the most comprehensive coverage of current research on tumor biological characteristics. Therefore, this review aims to present and discuss the application of different patient-derived lung cancer models from molecular mechanisms to clinical translation with regards to the dimensions of different hallmarks, and to look to the prospects of these patient-derived lung cancer models.
Collapse
Affiliation(s)
- Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ai Guan
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
May AJ, Mattingly AJ, Gaylord EA, Griffin N, Sudiwala S, Cruz-Pacheco N, Emmerson E, Mohabbat S, Nathan S, Sinada H, Lombaert IMA, Knox SM. Neuronal-epithelial cross-talk drives acinar specification via NRG1-ERBB3-mTORC2 signaling. Dev Cell 2022; 57:2550-2565.e5. [PMID: 36413949 PMCID: PMC9727910 DOI: 10.1016/j.devcel.2022.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown. Here, we demonstrate that neuronal-epithelial cross-talk drives acinar specification through neuregulin (NRG1)-ERBB3-mTORC2 signaling. Using single-cell and global RNA sequencing of developing murine salivary glands, we identified NRG1-ERBB3 to precisely overlap with acinar specification during gland development. Genetic deletion of Erbb3 prevented cell lineage progression and the establishment of lumenized, secretory acini. Conversely, NRG1 treatment of isolated epithelia was sufficient to recapitulate the development of secretory acini. Mechanistically, we found that NRG1-ERBB3 regulates each developmental program through an mTORC2 signaling pathway. Thus, we reveal that a neuronal-epithelial (NRG1/ERBB3/mTORC2) mechanism orchestrates the creation of functional acini.
Collapse
Affiliation(s)
- Alison J May
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Aaron J Mattingly
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eliza A Gaylord
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Nathan Griffin
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sonia Sudiwala
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Noel Cruz-Pacheco
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Elaine Emmerson
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Seayar Mohabbat
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sara Nathan
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Hanan Sinada
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Isabelle M A Lombaert
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Xiao XY, Guo Q, Tong S, Wu CY, Chen JL, Ding Y, Wan JH, Chen SS, Wang SH. TRAT1 overexpression delays cancer progression and is associated with immune infiltration in lung adenocarcinoma. Front Oncol 2022; 12:960866. [PMID: 36276113 PMCID: PMC9582843 DOI: 10.3389/fonc.2022.960866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The roles and mechanisms of T-cell receptor (TCR)-associated transmembrane adaptor 1 (TRAT1) in lung adenocarcinoma (LAC) have not yet been reported in the relevant literature. Therefore, this study aimed to understand the roles and mechanisms of TRAT1 in LAC using bioinformatics and in vitro experiments. TRAT1 expression levels in LAC samples were analysed using various databases. TRAT1 co-expressed genes were acquired by the correlation analysis of LAC tissues. The functional mechanisms and protein network of TRAT1 co-expressed genes were analysed using bioinformatics analysis. The expression of TRAT1 was activated in LAC cells, and the roles of TRAT1 overexpression in the growth and migration of cancer cells was investigated using flow cytometry, Cell Counting Kit-8 (CCK-8), and migration and invasion assays. The relationship between TRAT1 overexpression, the immune microenvironment, and RNA modification was evaluated using correlation analysis. TRAT1 expression levels were significantly abnormal at multiple mutation sites and were related to the prognosis of LAC. TRAT1 co-expressed genes were involved in cell proliferation, adhesion, and differentiation, and TRAT1 overexpression significantly inhibited cell viability, migration, and invasion and promoted apoptosis of A549 and H1299 cells, which might be related to the TCR, B cell receptor (BCR), MAPK, and other pathways. TRAT1 expression levels were significantly correlated with the ESTIMATE, immune, and stromal scores in the LAC microenvironment. Additionally, TRAT1 expression levels were significantly correlated with the populations of B cells, CD8 T cells, cytotoxic cells, and other immune cells. TRAT1 overexpression was significantly correlated with the expression of immune cell markers (such as PDCD1, CD2, CD3E) and genes involved in RNA modification (such as ALKBH1, ALKBH3, ALKBH5). In conclusions, TRAT1 overexpression inhibited the growth and migration of LAC cells, thereby delaying cancer progression, and was correlated with the LAC microenvironment and RNA modifications.
Collapse
Affiliation(s)
- Xiao-Yue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Hao Wan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Shan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si-Hua Wang, ; Shan-Shan Chen,
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si-Hua Wang, ; Shan-Shan Chen,
| |
Collapse
|
13
|
Werr L, Plenker D, Dammert MA, Lorenz C, Brägelmann J, Tumbrink HL, Klein S, Schmitt A, Büttner R, Persigehl T, Shokat KM, Wunderlich FT, Schram AM, Peifer M, Sos ML, Reinhardt HC, Thomas RK. CD74-NRG1 Fusions Are Oncogenic In Vivo and Induce Therapeutically Tractable ERBB2:ERBB3 Heterodimerization. Mol Cancer Ther 2022; 21:821-830. [PMID: 35247925 PMCID: PMC9377738 DOI: 10.1158/1535-7163.mct-21-0820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
NRG1 fusions are recurrent somatic genome alterations occurring across several tumor types, including invasive mucinous lung adenocarcinomas and pancreatic ductal adenocarcinomas and are potentially actionable genetic alterations in these cancers. We initially discovered CD74-NRG1 as the first NRG1 fusion in lung adenocarcinomas, and many additional fusion partners have since been identified. Here, we present the first CD74-NRG1 transgenic mouse model and provide evidence that ubiquitous expression of the CD74-NRG1 fusion protein in vivo leads to tumor development at high frequency. Furthermore, we show that ERBB2:ERBB3 heterodimerization is a mechanistic event in transformation by CD74-NRG1 binding physically to ERBB3 and that CD74-NRG1-expressing cells proliferate independent of supplemented NRG1 ligand. Thus, NRG1 gene fusions are recurrent driver oncogenes that cause oncogene dependency. Consistent with these findings, patients with NRG1 fusion-positive cancers respond to therapy targeting the ERBB2:ERBB3 receptors.
Collapse
Affiliation(s)
- Lisa Werr
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dennis Plenker
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marcel A. Dammert
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carina Lorenz
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Cologne, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Hannah L. Tumbrink
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Klein
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Department of Radiology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kevan M. Shokat
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - F. Thomas Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, Cologne, Germany
| | - Alison M. Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Martin Peifer
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin L. Sos
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - H. Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Roman K. Thomas
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
14
|
Schram AM, Odintsov I, Espinosa-Cotton M, Khodos I, Sisso WJ, Mattar MS, Lui AJ, Vojnic M, Shameem SH, Chauhan T, Torrisi J, Ford J, O'Connor MN, Geuijen CA, Schackmann RC, Lammerts van Bueren JJ, Wasserman E, de Stanchina E, O'Reilly EM, Ladanyi M, Drilon A, Somwar R. Zenocutuzumab, a HER2xHER3 Bispecific Antibody, Is Effective Therapy for Tumors Driven by NRG1 Gene Rearrangements. Cancer Discov 2022; 12:1233-1247. [PMID: 35135829 PMCID: PMC9394398 DOI: 10.1158/2159-8290.cd-21-1119] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
NRG1 rearrangements are recurrent oncogenic drivers in solid tumors. NRG1 binds to HER3, leading to heterodimerization with other HER/ERBB kinases, increased downstream signaling, and tumorigenesis. Targeting ERBBs, therefore, represents a therapeutic strategy for these cancers. We investigated zenocutuzumab (Zeno; MCLA-128), an antibody-dependent cellular cytotoxicity-enhanced anti-HER2xHER3 bispecific antibody, in NRG1 fusion-positive isogenic and patient-derived cell lines and xenograft models. Zeno inhibited HER3 and AKT phosphorylation, induced expression of apoptosis markers, and inhibited growth. Three patients with chemotherapy-resistant NRG1 fusion-positive metastatic cancer were treated with Zeno. Two patients with ATP1B1-NRG1-positive pancreatic cancer achieved rapid symptomatic, biomarker, and radiographic responses and remained on treatment for over 12 months. A patient with CD74-NRG1-positive non-small cell lung cancer who had progressed on six prior lines of systemic therapy, including afatinib, responded rapidly to treatment with a partial response. Targeting HER2 and HER3 simultaneously with Zeno is a novel therapeutic paradigm for patients with NRG1 fusion-positive cancers. SIGNIFICANCE NRG1 rearrangements encode chimeric ligands that activate the ERBB receptor tyrosine kinase family. Here we show that targeting HER2 and HER3 simultaneously with the bispecific antibody Zeno leads to durable clinical responses in patients with NRG1 fusion-positive cancers and is thus an effective therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Alison M. Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York.,Corresponding Authors: Alison M. Schram, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065. Phone: 646-888-5388; E-mail: ; and Romel Somwar, Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065. Phone: 212-639-2000; E-mail:
| | - Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Inna Khodos
- Anti-tumor Core Facility, Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Whitney J. Sisso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marissa S. Mattar
- Anti-tumor Core Facility, Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allan J.W. Lui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara H. Shameem
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thrusha Chauhan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jim Ford
- Merus N.V., Utrecht, the Netherlands
| | | | | | | | | | | | - Elisa de Stanchina
- Anti-tumor Core Facility, Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M. O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Corresponding Authors: Alison M. Schram, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065. Phone: 646-888-5388; E-mail: ; and Romel Somwar, Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065. Phone: 212-639-2000; E-mail:
| |
Collapse
|
15
|
Li Y, Sun X. An Effective Hypoxia-Related Long Non-Coding RNA Assessment Model for Prognosis of Lung Adenocarcinoma. Front Genet 2022; 13:768971. [PMID: 35368654 PMCID: PMC8966506 DOI: 10.3389/fgene.2022.768971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) represents one of the highest incidence rates worldwide. Hypoxia is a significant biomarker associated with poor prognosis of LUAD. However, there are no definitive markers of hypoxia-related long non-coding RNAs (lncRNAs) in LUAD. Methods: From The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB), we acquired the expression of hypoxia-related lncRNAs and corresponding clinical information of LUAD patients. The hypoxia-related prognostic model was constructed by univariable COX regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariable Cox regression analysis. To assess the performance of the model, the Kaplan–Meier (KM) survival and receiver operating characteristic (ROC) curve analyses were performed. Results: We found seven lncRNAs, AC022613.1, AC026355.1, GSEC, LINC00941, NKILA, HSPC324, and MYO16-AS1, as biomarkers of the potential hypoxia-related prognostic signature. In the low-risk group, patients had a better overall survival (OS). In addition, the results of ROC analysis indicated that the risk score predicted LUAD prognosis exactly. Furthermore, combining the expression of lncRNAs with clinical features, two predictive nomograms were constructed, which could accurately predict OS and had high clinical application value. Conclusion: In summary, the seven-lncRNA prognostic signature related to hypoxia might be useful in predicting clinical outcomes and provided new molecular targets for the research of LUAD patients.
Collapse
Affiliation(s)
- Yuanshuai Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- *Correspondence: Xiaofang Sun,
| |
Collapse
|
16
|
Zhang C, Mei W, Zeng C. Oncogenic Neuregulin 1 gene (NRG1) fusions in cancer: A potential new therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2022; 1877:188707. [PMID: 35247506 DOI: 10.1016/j.bbcan.2022.188707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
It is widely established that chromosomal rearrangements induce oncogenesis in solid tumors. However, discovering chromosomal rearrangements that are targetable and actionable remains a difficulty. Targeting gene fusion or chromosomal rearrangement seems to be a powerful strategy to address malignancies characterized by gene rearrangement. Oncogenic NRG1 fusions are relatively rare drivers that infrequently occur across most tumor types. NRG1 fusions exhibit unique biological properties and are difficult to identify owing to their large intronic regions. NRG1 fusions can be detected using a variety of techniques, including fluorescence in situ hybridization, immunohistochemistry, or next-generation sequencing (NGS), with NGS-based RNA sequencing being the most sensitive. Previous studies have shown that NRG1 fusion protein induces tumorigenesis, and numerous therapies targeting the ErbB signaling pathway, such as ErbB kinase inhibitors and monoclonal antibodies, have initially demonstrated encouraging anticancer efficacy in malignant tumors carrying NRG1 fusions. In this review, we present the characteristics and prevalence of NRG1 fusions in solid tumors. Additionally, we discuss the laboratory approaches for diagnosing NRG1 gene fusions. More importantly, we outline promising strategies for treating malignancies with NRG1 fusion.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China
| | - Wuxuan Mei
- Clinical Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
17
|
Dermawan JK, Zou Y, Antonescu CR. Neuregulin 1 (NRG1) fusion-positive high-grade spindle cell sarcoma: A distinct group of soft tissue tumors with metastatic potential. Genes Chromosomes Cancer 2022; 61:123-130. [PMID: 34747541 PMCID: PMC8804874 DOI: 10.1002/gcc.23008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
Neuregulin 1 (NRG1) is an epidermal growth factor (EGF)-like ligand that activates receptor tyrosine kinases of the ErbB family of receptors. NRG1 gene fusions, which are rare (<1%) but recurrent events in solid tumors, are an emerging oncogenic driver that is potentially actionable using ErbB-targeted tyrosine kinase inhibitors. Largely characterized only in carcinomas, we describe three cases of NRG1-rearranged sarcomas. The patients were all female, aged 32-47 years old. Two cases were deep-seated tumors in the lower extremities (right thigh and calf); one case presented as a uterine mass. The tumors measured 9-11.5 cm in the greatest dimensions. Histologically, all three tumors were high-grade spindle cell sarcomas composed of monomorphic spindle cells arranged in interlacing fascicles. The tumor cells were set in the loose collagenous stroma with branching, curvilinear thin-walled vasculature in the background. Cytologically, the neoplastic cells displayed ovoid to fusiform nuclei with finely stippled chromatin, inconspicuous nucleoli, scant to moderate clear to eosinophilic cytoplasm, occasional cytoplasmic vacuoles, and elongated cytoplasmic processes. Mitotic activity was elevated (> 20/10 high power fields) and tumor necrosis was present. None of the tumors expressed lineage-specific immunophenotypical markers. Targeted RNA-sequencing uncovered gene fusions involving NRG1 and the 5' untranslated regions of PPHLN1, HMBOX1, or MTUS1. In all cases, the C-terminal EGF-like domain of NRG1 was preserved in the predicted chimeric protein product. All three patients developed metastatic disease within 2 years from initial presentation and were alive with disease at last follow-up (mean follow-up period = 19 months). In conclusion, we present the first case series of NRG1-rearranged sarcomas characterized by high-grade fascicular spindle cell morphology, non-specific immunoprofile, and aggressive clinical behavior. Further studies are needed to determine whether this distinct subgroup of spindle cell sarcomas are amenable to targeted therapies.
Collapse
Affiliation(s)
| | - Youran Zou
- Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California
| | | |
Collapse
|
18
|
Kazdal D, Hofman V, Christopoulos P, Ilié M, Stenzinger A, Hofman P. Fusion-positive non-small cell lung carcinoma: Biological principles, clinical practice, and diagnostic implications. Genes Chromosomes Cancer 2022; 61:244-260. [PMID: 34997651 DOI: 10.1002/gcc.23022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Based on superior efficacy and tolerability, targeted therapy is currently preferred over chemotherapy and/or immunotherapy for actionable gene fusions that occur in late-stage non-small cell lung carcinoma (NSCLC). Consequently, current clinical practice guidelines mandate testing for ALK, ROS1, NTRK, and RET gene fusions in all patients with newly diagnosed advanced non-squamous NSCLC (NS-NSCLC). Gene fusions can be detected using different approaches, but today RNA next-generation sequencing (NGS) or combined DNA/RNA NGS is the method of choice. The discovery of other gene fusions (involving, eg, NRG1, NUT, FGFR1, FGFR2, MET, BRAF, EGFR, SMARC fusions) and their partners has increased progressively in recent years, leading to the development of new and promising therapies and mandating the development and implementation of comprehensive detection methods. The purpose of this review is to focus on recent data concerning the main gene fusions identified in NSCLC, followed by the discussion of major challenges in this domain.
Collapse
Affiliation(s)
- Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Thoraxklinik and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| |
Collapse
|
19
|
Trombetta D, Sparaneo A, Fabrizio FP, Di Micco CM, Rossi A, Muscarella LA. NRG1 and NRG2 fusions in non-small cell lung cancer (NSCLC): seven years between lights and shadows. Expert Opin Ther Targets 2021; 25:865-875. [PMID: 34706602 DOI: 10.1080/14728222.2021.1999927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Fusions in neuregulin 1 (NRG1) and neuregulin 2 (NRG2) genes are molecular features of non-small cell lung cancer (NSCLC). These rearrangements enhance ectopic expression of the NRG/ErbB receptor-ligand and induce the triggering of downstream pathways. Evidence suggests the involvement of the NRG1/ErbB3 axis deregulation in the progression and treatment resistance of NSCLC cancer (NSCLC) and that NRG1 fusions are prognostic/predictive markers for targeted therapy. AREAS COVERED Biological and prognostic/predictive value of NRG1 and NRG2 fusions in NSCLC and their related cellular pathways are described and discussed. Publications in English language, peer-reviewed, high-quality international journals were identified on PubMed, as well as scientific official sites were used to update the international clinical trials progress. EXPERT OPINION NRG1 and NRG2 fusions should be considered as novel markers for biological therapy targeting ErbB2/ErbB3. There is evidence for the involvement of the NRG1/ErbB3 axis deregulation in cancer stem cell phenotype, tumor progression, and resistance to NSCLC therapy. Neuregulin fusions are very complex, hence many question marks must be tackled before translating these molecular lesions into clinical practice. Biology, and aggressiveness of the NRG1 and NRG2 fusions warrant further investigations.
Collapse
Affiliation(s)
- Domenico Trombetta
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Concetta Martina Di Micco
- Unit of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Unit of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione Irccs Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
20
|
Gan HK, Millward M, Jalving M, Garrido-Laguna I, Lickliter JD, Schellens JHM, Lolkema MP, Van Herpen CLM, Hug B, Tang L, O'Connor-Semmes R, Gagnon R, Ellis C, Ganji G, Matheny C, Drilon A. A Phase I, First-in-Human Study of GSK2849330, an Anti-HER3 Monoclonal Antibody, in HER3-Expressing Solid Tumors. Oncologist 2021; 26:e1844-e1853. [PMID: 34132450 PMCID: PMC8488777 DOI: 10.1002/onco.13860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND GSK2849330, an anti-HER3 monoclonal antibody that blocks HER3/Neuregulin 1 (NRG1) signaling in cancer cells, is engineered for enhanced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. This phase I, first-in-human, open-label study assessed the safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of GSK2849330 in patients with HER3-expressing advanced solid tumors. PATIENTS AND METHODS Patients with various tumor types were prospectively selected for HER3 expression by immunohistochemistry; a subset was also screened for NRG1 mRNA expression. In the dose-escalation phase, patients received GSK2849330 1.4-30 mg/kg every 2 weeks, or 3 mg/kg or 30 mg/kg weekly, intravenously (IV). In the dose-expansion phase, patients received 30 mg/kg GSK2849330 IV weekly. RESULTS Twenty-nine patients with HER3-expressing cancers, of whom two expressed NRG1, received GSK2849330 (dose escalation: n = 18, dose expansion: n = 11). GSK2849330 was well tolerated. No dose-limiting toxicities were observed. The highest dose, of 30 mg/kg weekly, expected to provide full target engagement, was selected for dose expansion. Treatment-emergent adverse events (AEs) were mostly grade 1 or 2. The most common AEs were diarrhea (66%), fatigue (62%), and decreased appetite (31%). Dose-proportional plasma exposures were achieved, with evidence of HER3 inhibition in paired tissue biopsies. Of 29 patients, only 1 confirmed partial response, lasting 19 months, was noted in a patient with CD74-NRG1-rearranged non-small cell lung cancer (NSCLC). CONCLUSION GSK2849330 demonstrated a favorable safety profile, dose-proportional PK, and evidence of target engagement, but limited antitumor activity in HER3-expressing cancers. The exceptional response seen in a patient with CD74-NRG1-rearranged NSCLC suggests further exploration in NRG1-fusion-positive cancers. IMPLICATIONS FOR PRACTICE This first-in-human study confirms that GSK2849330 is well tolerated. Importantly, across a variety of HER3-expressing advanced tumors, prospective selection by HER3/NRG1 expression alone was insufficient to identify patients who could benefit from treatment with this antibody-dependent cell-mediated cytotoxicity- and complement-dependent cytotoxicity-enhanced anti-HER3 antibody. The only confirmed durable response achieved was in a patient with CD74-NRG1-rearranged lung cancer. This highlights the potential utility of screening for NRG1 fusions prospectively across tumor types to enrich potential responders to anti-HER3 agents in ongoing trials.
Collapse
Affiliation(s)
- Hui K Gan
- Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Medicine, Latrobe University School of Cancer Medicine, Melbourne, Victoria, Australia.,Department of Medicine, Melbourne University, Melbourne, Victoria, Australia
| | - Michael Millward
- Linear Clinical Research and University of Western Australia, Perth, Western Australia, Australia
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, Oncology Division, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Carla L M Van Herpen
- Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Bruce Hug
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Lihua Tang
- Independent Consultant, North Carolina, USA
| | - Robin O'Connor-Semmes
- Clinical Pharmacology, Modeling and Simulation, Parexel International, Durham, North Carolina, USA
| | | | | | | | | | - Alexander Drilon
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|