1
|
Zhao Y, He Y, Wang W, Cai Q, Ge F, Chen Z, Zheng J, Zhang Y, Deng H, Chen Y, Lao S, Liang H, Liang W, He J. Efficacy and safety of immune checkpoint inhibitors for individuals with advanced EGFR-mutated non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitors: a systematic review, meta-analysis, and network meta-analysis. Lancet Oncol 2024; 25:1347-1356. [PMID: 39159630 DOI: 10.1016/s1470-2045(24)00379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The clinical benefits of immune checkpoint inhibitor (ICI)-based treatments in treating individuals with advanced EGFR-mutated non-small-cell lung cancer (NSCLC) who have progressed on EGFR tyrosine-kinase inhibitors (TKIs) remain controversial. We aimed to review the literature to comprehensively investigate the individual and comparative clinical outcomes of various ICI-based treatment strategies in this population. METHODS In this systematic review and meta-analysis, we used single-arm, pairwise, and network meta-analytical approaches. We searched PubMed, Embase, Cochrane Library, Web of Science, ClinicalTrials.gov, and relevant international conference proceedings from database inception to Jan 31, 2024, without language restrictions, to identify eligible clinical trials that assessed ICI-based treatments for individuals with advanced EGFR-mutated NSCLC who progressed on EGFR-TKIs. Studies considered eligible were published and unpublished phase 1, 2, or 3 clinical trials enrolling participants with histologically or cytologically confirmed advanced EGFR-mutated NSCLC who had progressed after at least one EGFR-TKI treatment, and that evaluated ICI-based treatment strategies on at least one of the clinical outcomes of interest. The primary outcome analysed was progression-free survival. The protocol is registered with PROSPERO, CRD42021292626. FINDINGS 17 single-arm trials and 15 randomised controlled trials, involving 2886 participants and seven ICI-based treatment strategies (ICI monotherapy, ICI plus chemotherapy [ICI-chemo], ICI plus antiangiogenesis [ICI-antiangio], ICI plus antiangiogenesis plus chemotherapy [ICI-antiangio-chemo], dual ICIs [ICI-ICI], dual ICIs plus chemotherapy [ICI-ICI-chemo], and ICI plus EGFR-TKI [ICI-TKI]), were included. Three of these strategies-ICI monotherapy, ICI-antiangio-chemo, and ICI-chemo-had sufficient data across the included studies to perform a pairwise meta-analysis. The pairwise meta-analysis showed that, compared with chemotherapy, ICI monotherapy led to shorter progression-free survival (hazard ratio [HR] 1·73 [95% CI 1·30-2·29], I2=0%), whereas ICI-antiangio-chemo (HR 0·54 [0·44-0·67], I2=0%) and ICI-chemo (HR 0·77 [0·67-0·88], I2=0%) prolonged progression-free survival. The network meta-analysis showed that ICI-antiangio-chemo yielded the best progression-free survival results, with substantial benefits over ICI-chemo (HR 0·71 [95% credible interval 0·59-0·85]), ICI monotherapy (HR 0·30 [0·22-0·41]), and non-ICI treatment strategies including antiangio-chemo (HR 0·76 [0·58-1·00]) and chemotherapy alone (HR 0·54 [0·45-0·64]). ICI-antiangio-chemo was associated with higher risks of both any-grade and grade 3 or worse adverse events over ICI-chemo and chemotherapy in the network meta-analysis. INTERPRETATION For individuals with advanced EGFR-mutated NSCLC who progressed on EGFR-TKIs, ICI-antiangio-chemo was identified as the optimal treatment option. The toxicity of this treatment was acceptable but needs careful attention. ICI-chemo showed appreciably greater efficacy than the standard-of-care chemotherapy. These findings clarified the roles of ICI-based treatment strategies in this difficult-to-treat refractory population, potentially complementing recent guidelines. FUNDING None.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Ying He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China; Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zisheng Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Jianqi Zheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Yuan Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Hongsheng Deng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Ying Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Shen Lao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
2
|
Meyers DE, Rittberg R, Dawe DE, Banerji S. Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer Under-Represented by Clinical Trials. Curr Oncol 2024; 31:5498-5515. [PMID: 39330035 PMCID: PMC11431477 DOI: 10.3390/curroncol31090407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Since the initial US FDA approval of an immune checkpoint inhibitor (ICI) for the treatment of non-oncogene-driven non-small-cell lung cancer (NSCLC) nine years ago, this therapeutic strategy has been cemented as a crucial component of treatment for most of these patients. However, there is a clear efficacy-effectiveness gap whereby patients in the 'real world' seem to have more modest clinical outcomes compared to those enrolled in landmark clinical trials. This gap may be driven by the under-representation of important patient populations, including populations defined by clinical or molecular characteristics. In this review, we summarize the data outlining the evidence of ICIs in patients with poor Eastern Cooperative Oncology Group performance status (ECOG PS), underlying autoimmune disease (AID), older age, active brain metastases (BMs), and molecular aberrations such as EGFR mutations, ALK fusions, BRAF mutations and ROS1 fusions.
Collapse
Affiliation(s)
| | | | - David E Dawe
- CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | | |
Collapse
|
3
|
Liu KJ, Li HR, Tan QQ, Jiang T, Peng KC, Chen HJ, Zhou Q, Zhang XC, Zheng Z, Chen SY, Zheng X, Zheng HB, Mao BB, Gong LL, Chen XW, Wu W, Wu YL, Jia J, Yang JJ. Tumor immune microenvironment of NSCLC with EGFR exon 20 insertions may predict efficacy of first-line ICI-combined regimen. Lung Cancer 2024; 195:107933. [PMID: 39191079 DOI: 10.1016/j.lungcan.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) patients with exon 20 insertion mutations (ex20ins) of the epidermal growth factor receptor (EGFR) were resistant to monotherapy of immune checkpoint inhibitor (ICI). However, recent reports have shown that the combination of ICI and chemotherapy (ICI-combined regimen) exhibited certain efficacy for NSCLC with EGFR ex20ins. The mechanisms behind this phenomenon have not been thoroughly clarified. Hence, we conducted this study tofind correlations between the tumor immune microenvironment of EGFR ex20ins and the efficacy of ICI-combined regimen. METHODS We performed single-cell transcriptome sequencing and multiplex immunofluorescence staining (mIF) to investigate the immune microenvironment of NSCLC patients with EGFR ex20ins, L858R, and EGFR wild-type. We analyzed 15 treatment-naïve NSCLC samples utilizing single-cell RNA sequencing (scRNA-seq). Another 30 cases of EGFR L858R and 4 cases of wild-type were recruited to compare the immune microenvironment with that of EGFR ex20ins (28 cases) by mIF. RESULTS We observed that cell components, function and interactions varied between EGFR ex20ins, L858R, and wild-type NSCLC.We discovered similar T cell and CD8+ T cell distributions among groups but found noninferior or even better T cell activation in ex20ins patients. Infiltrating CD8+ FOXP3- T cells were significantly lower in the tumor region of EGFR ex20ins compared to wild-type. T cells from the ex20ins group had a greater tendency to promote cancer cell inflammation and epithelial-mesenchymal transition (EMT) compared to wild-type group. For macrophages, there were more M2-like macrophages in ex20ins patients. M1-like macrophages in ex20ins group produced fewer antitumor cytokines than in other groups. CONCLUSIONS The immune microenvironment of EGFR ex20ins is more suppressive than that of L858R and wild-type, suggesting that ICI monotherapy may not be sufficient for these patients. ICI-combined regimen might be a treatment option for EGFR ex20ins due to tumor-promoting inflammation and noninferior T cell functions in the immune microenvironment.
Collapse
Affiliation(s)
- Ke-Jun Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong-Rui Li
- Berry Oncology Corporation, Fuzhou, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Quan-Quan Tan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Tao Jiang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China; Divamics Inc., Suzhou, China
| | - Kai-Cheng Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Zheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China; Divamics Inc., Suzhou, China
| | - Shi-Yuan Chen
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Xue Zheng
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | | | - Bei-Bei Mao
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | | | | | - Wendy Wu
- Berry Oncology Corporation, Fuzhou, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Jun Jia
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China.
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Wang S, Su D, Chen H, Lai JC, Tang C, Li Y, Wang Y, Yang Y, Qin M, Jia L, Cui W, Yang J, Wang L, Wu C. PD-L2 drives resistance to EGFR-TKIs: dynamic changes of the tumor immune environment and targeted therapy. Cell Death Differ 2024; 31:1140-1156. [PMID: 38816578 PMCID: PMC11369230 DOI: 10.1038/s41418-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
There is a lack of effective treatments to overcome resistance to EGFR-TKIs in EGFR mutant tumors. A deeper understanding of resistance mechanisms can provide insights into reducing or eliminating resistance, and can potentially deliver targeted treatment measures to overcome resistance. Here, we identified that the dynamic changes of the tumor immune environment were important extrinsic factors driving tumor resistance to EGFR-TKIs in EGFR mutant cell lines and syngeneic tumor-bearing mice. Our results demonstrate that the acquired resistance to EGFR-TKIs is accompanied by aberrant expression of PD-L2, leading a dynamic shift from an initially favorable tumor immune environment to an immunosuppressive phenotype. PD-L2 expression significantly affected EGFR mutant cell apoptosis that depended on the proportion and function of CD8+ T cells in the tumor immune environment. Combined with single-cell sequencing and experimental results, we demonstrated that PD-L2 specifically inhibited the proliferation of CD8+ T cells and the secretion of granzyme B and perforin, leading to reduced apoptosis mediated by CD8+ T cells and enhanced immune escape of tumor cells, which drives EGFR-TKIs resistance. Importantly, we have identified a potent natural small-molecule inhibitor of PD-L2, zinc undecylenate. In vitro, it selectively and potently blocks the PD-L2/PD-1 interaction. In vivo, it abolishes the suppressive effect of the PD-L2-overexpressing tumor immune microenvironment by blocking PD-L2/PD-1 signaling. Moreover, the combination of zinc undecylenate and EGFR-TKIs can synergistically reverse tumor resistance, which is dependent on CD8+ T cells mediating apoptosis. Our study uncovers the PD-L2/PD-1 signaling pathway as a driving factor to mediate EGFR-TKIs resistance, and identifies a new naturally-derived agent to reverse EGFR-TKIs resistance.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dongliang Su
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Han Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jia-Cheng Lai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chengfang Tang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yu Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yidong Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yuan Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Wu W, Yu S, Huang J, Qi Q, Wu Y, Dong J. Molecular heterogeneity and treatment outcome of EGFR exon 20 insertion mutations in Chinese patients with advanced non-small cell lung cancer: insights from a large-scale real-world study. BMC Cancer 2024; 24:1010. [PMID: 39143560 PMCID: PMC11323489 DOI: 10.1186/s12885-024-12773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION This retrospective study aimed to investigate treatment patterns and outcomes in patients with NSCLC harboring EGFR20ins in China. EGFR20ins mutations are associated with poor responses to EGFR-TKIs, and limited real-world data exist regarding the efficacy of various treatment modalities. METHODS In this retrospective, single-center study, treatment outcomes, including PFS and ORR, were evaluated for different treatment regimens based on imaging assessments. The impact of mutation heterogeneity on treatment efficacy was also explored. RESULTS Data from 302 patients diagnosed with NSCLC with EGFR20ins were analyzed. EGFR-TKI monotherapy demonstrated suboptimal PFS compared to platinum-based chemotherapy in the first-line setting (3.00 m vs. 6.83 m, HR = 3.674, 95%CI = 2.48-5.44, p < 0.001). Platinum plus pemetrexed plus bevacizumab combination therapy showed improved PFS and ORR compared to platinum plus pemetrexed (7.50m vs. 5.43 m, HR = 0.593, 95%CI = 0.383-0.918, p = 0.019). In later-line treatments, monotherapy with EGFR-TKIs or ICIs exhibited suboptimal efficacy. The specific EGFR20ins subtype, A763_Y764insFQEA, showed favorable responses to EGFR-TKIs in real-world settings. CONCLUSIONS This large-scale real-world study provides valuable insights into the treatment patterns and outcomes of NSCLC patients with EGFR20ins mutations in China. These findings contribute to the understanding of EGFR20ins treatment and provide real-world benchmark for future clinical trials and drug development.
Collapse
Affiliation(s)
- Weirui Wu
- Department of Intergrated Therapy in Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, East Dong Feng Road, Guangzhou, Guangdong, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhong Shan Er Lu, Guangzhou, Guangdong, 510060, China
| | - Silin Yu
- Department of Intergrated Therapy in Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, East Dong Feng Road, Guangzhou, Guangdong, 510060, China
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Jinsheng Huang
- Department of Intergrated Therapy in Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, East Dong Feng Road, Guangzhou, Guangdong, 510060, China
| | - Qi Qi
- Department of Intergrated Therapy in Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, East Dong Feng Road, Guangzhou, Guangdong, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhong Shan Er Lu, Guangzhou, Guangdong, 510060, China
| | - Yongyi Wu
- Department of Intergrated Therapy in Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, East Dong Feng Road, Guangzhou, Guangdong, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhong Shan Er Lu, Guangzhou, Guangdong, 510060, China
| | - Jun Dong
- Department of Intergrated Therapy in Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651, East Dong Feng Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
6
|
Huang Z, Xie T, Xie W, Chen Z, Wen Z, Yang L. Research trends in lung cancer and the tumor microenvironment: a bibliometric analysis of studies published from 2014 to 2023. Front Oncol 2024; 14:1428018. [PMID: 39144829 PMCID: PMC11322073 DOI: 10.3389/fonc.2024.1428018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Lung cancer (LC) is one of the most common malignant tumors in the world and the leading cause of cancer-related deaths, which seriously threatens human life and health as well as brings a heavy burden to the society. In recent years, the tumor microenvironment (TME) has become an emerging research field and hotspot affecting tumor pathogenesis and therapeutic approaches. However, to date, there has been no bibliometric analysis of lung cancer and the tumor microenvironment from 2014 to 2023.This study aims to comprehensively summarize the current situation and development trends in the field from a bibliometric perspective. Methods The publications about lung cancer and the tumor microenvironment from 2014 to 2023 were extracted from the Web of Science Core Collection (WoSCC). The Microsoft Excel, Origin, R-bibliometrix, CiteSpace, and VOSviewer software are comprehensively used to scientifically analyze the data. Results Totally, 763 publications were identified in this study. A rapid increase in the number of publications was observed after 2018. More than 400 organizations published these publications in 36 countries or regions. China and the United States have significant influence in this field. Zhou, CC and Frontiers in Immunology are the most productive authors and journals respectively. Besides, the most frequently cited references were those on lung cancer pathogenesis, clinical trials, and treatment modalities. It suggests that novel lung cancer treatment models mainly based on the TME components, such as cancer-associated fibroblasts (CAFs) may lead to future research trends. Conclusions The field of lung cancer and the tumor microenvironment research is still in the beginning stages. Gene expression, molecular pathways, therapeutic modalities, and novel detection technologies in this field have been widely studied by researchers. This is the first bibliometric study to comprehensively summarize the research trend and development regarding lung cancer and tumor microenvironment over the last decade. The result of our research provides the updated perspective for scholars to understand the key information and cutting-edge hotspots in this field, as well as to identify future research directions.
Collapse
Affiliation(s)
- Zhilan Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tingyi Xie
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Xie
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhuni Chen
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhiyuan Wen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lin Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sulabh Singhal
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Huang H, Zhu X, Yu Y, Li Z, Yang Y, Xia L, Lu S. EGFR mutations induce the suppression of CD8 + T cell and anti-PD-1 resistance via ERK1/2-p90RSK-TGF-β axis in non-small cell lung cancer. J Transl Med 2024; 22:653. [PMID: 39004699 PMCID: PMC11246587 DOI: 10.1186/s12967-024-05456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with EGFR mutations exhibit an unfavorable response to immune checkpoint inhibitor (ICI) monotherapy, and their tumor microenvironment (TME) is usually immunosuppressed. TGF-β plays an important role in immunosuppression; however, the effects of TGF-β on the TME and the efficacy of anti-PD-1 immunotherapy against EGFR-mutated tumors remain unclear. METHODS Corresponding in vitro studies used the TCGA database, clinical specimens, and self-constructed mouse cell lines with EGFR mutations. We utilized C57BL/6N and humanized M-NSG mouse models bearing EGFR-mutated NSCLC to investigate the effects of TGF-β on the TME and the combined efficacy of TGF-β blockade and anti-PD-1 therapy. The changes in immune cells were monitored by flow cytometry. The correlation between TGF-β and immunotherapy outcomes of EGFR-mutated NSCLC was verified by clinical samples. RESULTS We identified that TGF-β was upregulated in EGFR-mutated NSCLC by EGFR activation and subsequent ERK1/2-p90RSK phosphorylation. TGF-β directly inhibited CD8+ T cell infiltration, proliferation, and cytotoxicity both in vitro and in vivo, but blocking TGF-β did not suppress the growth of EGFR-mutated tumors in vivo. Anti-TGF-β antibody combined with anti-PD-1 antibody significantly inhibited the proliferation of recombinant EGFR-mutated tumors in C57BL/6N mice, which was superior to their monotherapy. Mechanistically, the combination of anti-TGF-β and anti-PD-1 antibodies significantly increased the infiltration of CD8+ T cells and enhanced the anti-tumor function of CD8+ T cells. Moreover, we found that the expression of TGF-β1 in EGFR-TKI resistant cell lines was significantly higher than that in parental cell lines. The combination of anti-TGF-β and nivolumab significantly inhibited the proliferation of EGFR-TKI resistant tumors in humanized M-NSG mice and prolonged their survival. CONCLUSIONS Our results reveal that TGF-β expression is upregulated in NSCLC with EGFR mutations through the EGFR-ERK1/2-p90RSK signaling pathway. High TGF-β expression inhibits the infiltration and anti-tumor function of CD8+ T cells, contributing to the "cold" TME of EGFR-mutated tumors. Blocking TGF-β can reshape the TME and enhance the therapeutic efficacy of anti-PD-1 in EGFR-mutated tumors, which provides a potential combination immunotherapy strategy for advanced NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Huayan Huang
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Xiaokuan Zhu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Ziming Li
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Yi Yang
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China
| | - Liliang Xia
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China.
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, West Huaihai Road 241, Shanghai, 200030, China.
| |
Collapse
|
9
|
Cheng J, Xiao M, Meng Q, Zhang M, Zhang D, Liu L, Jin Q, Fu Z, Li Y, Chen X, Xie H. Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction. World J Surg Oncol 2024; 22:156. [PMID: 38872167 PMCID: PMC11170806 DOI: 10.1186/s12957-024-03435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critical for improving the diagnosis and treatment outcomes of this disease. METHODS In this study, we conducted single-cell transcriptome analysis on 93,406 cells from 22 NSCLC patients to characterize malignant NSCLC cancer cells. Utilizing cNMF, we classified these cells into distinct modules, thus identifying the diverse molecular profiles within NSCLC. Through pseudotime analysis, we delineated temporal gene expression changes during NSCLC evolution, thus demonstrating genes associated with disease progression. Using the XGBoost model, we assessed the significance of these genes in the pseudotime trajectory. Our findings were validated by using transcriptome sequencing data from The Cancer Genome Atlas (TCGA), supplemented via LASSO regression to refine the selection of characteristic genes. Subsequently, we established a risk score model based on these genes, thus providing a potential tool for cancer risk assessment and personalized treatment strategies. RESULTS We used cNMF to classify malignant NSCLC cells into three functional modules, including the metabolic reprogramming module, cell cycle module, and cell stemness module, which can be used for the functional classification of malignant tumor cells in NSCLC. These findings also indicate that metabolism, the cell cycle, and tumor stemness play important driving roles in the malignant evolution of NSCLC. We integrated cNMF and XGBoost to select marker genes that are indicative of both early and advanced NSCLC stages. The expression of genes such as CHCHD2, GAPDH, and CD24 was strongly correlated with the malignant evolution of NSCLC at the single-cell data level. These genes have been validated via histological data. The risk score model that we established (represented by eight genes) was ultimately validated with GEO data. CONCLUSION In summary, our study contributes to the identification of temporal heterogeneous biomarkers in NSCLC, thus offering insights into disease progression mechanisms and potential therapeutic targets. The developed workflow demonstrates promise for future applications in clinical practice.
Collapse
Affiliation(s)
- Junpeng Cheng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Meizhu Xiao
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Qingkang Meng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Min Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Qing Jin
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Zhijin Fu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Yanjiao Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China.
| | - Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, P. R. China.
| |
Collapse
|
10
|
Chen Q, Xia L, Wang J, Zhu S, Wang J, Li X, Yu Y, Li Z, Wang Y, Zhu G, Lu S. EGFR-mutant NSCLC may remodel TME from non-inflamed to inflamed through acquiring resistance to EGFR-TKI treatment. Lung Cancer 2024; 192:107815. [PMID: 38754276 DOI: 10.1016/j.lungcan.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND EGFR-TKI represent the standard first-line therapy for advanced NSCLC harboring EGFR mutations. However, resistance to EGFR-TKI inevitably develops in nearly all patients. Previous clinical study have demonstrated that, some patients that failed EGFR-TKI therapy show a benefit outcome from immunotherapy. Our objective is to explore the immune microenviroment remodeling induced by EGFR-TKI treatment in EGFR mutant lung cancer patients and to investigate the immune cell types and potential molecular signatures involved. METHODS A cohort of 37 EGFR mutant advanced-stage NSCLC patients, who are resistant to at least one type of TKI treatment, was retrospectively established. Both pre-treatment and TKI resistance tumor FFPE samples of each pairs were collected. Transcriptional profiling and bioinformatics analysis were employed to evaluate the change of immune associated hallmarks before and after EGFR-TKI therapy. RESULTS Tumor samples after EGFR-TKI treatment displayed enrichment of proinflammatory signaling like interferon-γ, allograft rejection and inflammatory response. Of note, cytotoxic factor granzyme A as well as PD-L1 were found to be more expressed in EGFR-TKI resistance samples. Approximately 33.3 % (11/33) of EGFR-TKI treated samples were classified as "hot" tumor, especially for EGFR L858R mutated NSCLC patients (46.7 %,7/15). Effector cells were significantly overexpressed in 'hot' tumors feature following TKI resistance. In addition, we found that four effector genes (CD8A, CDB8, GZMB, GZMK) showed higher expression in 'hot' tumors post-TKI resistance, and its 4-gene effector cell signature was found to have a good correlation with survival benefit in external immunotherapy database. CONCLUSIONS TKI treatment may initiate immune activation in EGFR mutant NSCLC, leading to changes in immune cell infiltration following TKI resistance. We mechanistically explored that this might be due to an increased immune response caused by the rise in effector cells post-TKI resistance.
Collapse
Affiliation(s)
- Qianqian Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China; Department of Postdoctoral Centre, Amoy Diagnostics, Xiamen, China
| | - Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China
| | - Jingze Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China
| | - Shuxin Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China
| | - Jing Wang
- Department of Translational Medicine, Amoy Diagnostics, Xiamen, China
| | - Xing Li
- Department of Translational Medicine, Amoy Diagnostics, Xiamen, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China
| | - Ying Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Guanshan Zhu
- Department of Postdoctoral Centre, Amoy Diagnostics, Xiamen, China; Department of Translational Medicine, Amoy Diagnostics, Xiamen, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20030, China.
| |
Collapse
|
11
|
Shields MD, Lovly CM. Refining neoadjuvant immunotherapy for resectable lung cancer. Nat Med 2024; 30:1535-1536. [PMID: 38740995 DOI: 10.1038/s41591-024-03001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Misty D Shields
- Department of Medicine, Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christine M Lovly
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
González-Cao M, Cai X, Bracht JWP, Han X, Yang Y, Pedraz-Valdunciel C, Morán T, García-Corbacho J, Aguilar A, Bernabé R, De Marchi P, Sussuchi da Silva L, Leal LF, Reis RM, Codony-Servat J, Jantus-Lewintre E, Molina-Vila MA, Cao P, Rosell R. HMGB1 Expression Levels Correlate with Response to Immunotherapy in Non-Small Cell Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:55-67. [PMID: 38741920 PMCID: PMC11090191 DOI: 10.2147/lctt.s455034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Purpose High-mobility group box 1 protein (HMGB1) is subject to exportin 1 (XPO1)-dependent nuclear export, and it is involved in functions implicated in resistance to immunotherapy. We investigated whether HMGB1 mRNA expression was associated with response to immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Patients and Methods RNA was isolated from pretreatment biopsies of patients with advanced NSCLC treated with ICI. Gene expression analysis of several genes, including HMGB1, was conducted using the NanoString Counter analysis system (PanCancer Immune Profiling Panel). Western blotting analysis and cell viability assays in EGFR and KRAS mutant cell lines were carried out. Evaluation of the antitumoral effect of ICI in combination with XPO1 blocker (selinexor) and trametinib was determined in a murine Lewis lung carcinoma model. Results HMGB1 mRNA levels in NSCLC patients treated with ICI correlated with progression-free survival (PFS) (median PFS 9.0 versus 18.0 months, P=0.008, hazard ratio=0.30 in high versus low HMGB1). After TNF-α stimulation, HMGB1 accumulates in the cytoplasm of PC9 cells, but this accumulation can be prevented by using selinexor or antiretroviral drugs. Erlotinib or osimertinib with selinexor in EGFR-mutant cells and trametinib plus selinexor in KRAS mutant abolish tumor cell proliferation. Selinexor with a PD-1 inhibitor with or without trametinib abrogates the tumor growth in the murine Lewis lung cancer model. Conclusion An in-depth exploration of the functions of HMGB1 mRNA and protein is expected to uncover new potential targets and provide a basis for treating metastatic NSCLC in combination with ICI.
Collapse
Affiliation(s)
- Maria González-Cao
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Xueting Cai
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | | | - Xuan Han
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Yang
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | | | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Javier García-Corbacho
- Medical Oncology Department (Hospital Clinic)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPs), Barcelona, Spain
| | - Andrés Aguilar
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Reyes Bernabé
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pedro De Marchi
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
- Oncoclinicas, Rio de Janeiro, Brazil
| | | | - Leticia Ferro Leal
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center; Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3b’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Eloisa Jantus-Lewintre
- Valencian Community Foundation Principe Felipe Research Center, Laboratory of Molecular Oncology, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Madrid, Spain
- Universitat Politècnica de Valencia, Biotechnology Department, Valencia, Spain
| | | | - Peng Cao
- Integrated Traditional Chinese and Western Medicine Department of Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Rafael Rosell
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Badalona, Spain
| |
Collapse
|
13
|
Chinese expert consensus on immunotherapy for advanced non-small cell lung cancer with oncogenic driver mutations (2023 edition). Chin Med J (Engl) 2024; 137:1016-1018. [PMID: 38454303 PMCID: PMC11062745 DOI: 10.1097/cm9.0000000000003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 03/09/2024] Open
|
14
|
Zhao J, Zhuang W, Sun B, Bai H, Wang Z, Zhong J, Wan R, Liu L, Duan J, Wang J. Prediction performance comparison of biomarkers for response to immune checkpoint inhibitors in advanced non-small cell lung cancer. Thorac Cancer 2024; 15:1050-1059. [PMID: 38528429 PMCID: PMC11062874 DOI: 10.1111/1759-7714.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The aim of the present study was to compare the predictive accuracy of PD-L1 immunohistochemistry (IHC), tissue or blood tumor mutation burden (tTMB, bTMB), gene expression profile (GEP), driver gene mutation, and combined biomarkers for immunotherapy response of advanced non-small cell lung cancer (NSCLC). METHODS In part 1, clinical trials involved with predictive biomarker exploration for immunotherapy in advanced NSCLC were included. The area under the curve (AUC) of the summary receiver operating characteristic (SROC), sensitivity, specificity, likelihood ratio and predictive value of the biomarkers were evaluated. In part 2, public datasets of immune checkpoint inhibitor (ICI)-treated NSCLC involved with biomarkers were curated (N = 871). Odds ratio (OR) of the positive versus negative biomarker group for objective response rate (ORR) was measured. RESULTS In part 1, the AUC of combined biomarkers (0.75) was higher than PD-L1 (0.64), tTMB (0.64), bTMB (0.68), GEP (0.67), and driver gene mutation (0.51). Combined biomarkers also had higher specificity, positive likelihood ratio and positive predictive value than single biomarkers. In part 2, the OR of combined biomarkers of PD-L1 plus TMB (PD-L1 cutoff 1%, 0.14; cutoff 50% 0.13) was lower than that of PD-L1 (cutoff 1%, 0.33; cutoff 50% 0.24), tTMB (0.28), bTMB (0.48), EGFR mutation (0.17) and KRAS mutation (0.47), for distinguishing ORR of patients after immunotherapy. Furthermore, positive PD-L1, tTMB-high, wild-type EGFR, and positive PD-L1 plus TMB were associated with prolonged progression-free survival (PFS). CONCLUSION Combined biomarkers have superior predictive accuracy than single biomarkers for immunotherapy response of NSCLC. Further investigation is warranted to select optimal biomarkers for various clinical settings.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Boyang Sun
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lihui Liu
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
Tsuji K, Mizugaki H, Yokoo K, Kobayashi M, Kawashima Y, Kimura N, Yokouchi H, Kikuchi H, Sumi T, Kawai Y, Kobashi K, Morita R, Ito K, Kitamura Y, Minemura H, Nakamura K, Aso M, Honjo O, Tanaka H, Takashina T, Tsurumi K, Sugisaka J, Tsukita Y, Konno S, Oizumi S. Durvalumab after chemoradiotherapy in non-small cell lung cancer with EGFR mutation: A real-world study (HOT2101). Cancer Sci 2024; 115:1273-1282. [PMID: 38287788 PMCID: PMC11006989 DOI: 10.1111/cas.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
Durvalumab has been administered to patients with unresectable stage III non-small cell lung cancer (NSCLC). However, it remains unclear whether durvalumab benefits these patients with epidermal growth factor receptor (EGFR) mutation. We conducted a retrospective, multicenter study of patients with EGFR mutation who received chemoradiotherapy (CRT) between June 2018 and March 2021. We assessed patient characteristics, efficacy of durvalumab, and durvalumab safety before and after targeted therapy. We collected data on a total of 673 patients, of whom 401 (59.6%) underwent EGFR mutation testing. Fifty-one patients were EGFR positive and 311 were EGFR negative. In the EGFR-positive group, there were higher proportions of females, never-smokers, and patients with adenocarcinoma histology. Of the 51 patients in the positive group and 311 in the negative group who received CRT, 45 (88.2%) and 247 (79.4%) received durvalumab, with median progression-free survival of 23.0 and 24.2 months in the positive and negative groups, respectively (hazard ratio 1.03; 95% confidence interval: 0.64-1.67). The main adverse event was pneumonitis (positive group: 62.2%; 4.4% grade 3; negative group: 62.3%; 6.9% grade 3). No treatment-related deaths were observed. Of the 45 patients in the positive group who received durvalumab, 14 (31.1%) received targeted therapy after durvalumab at the data cutoff. One patient discontinued targeted therapy after developing pneumonitis. In patients with unresectable stage III NSCLC with EGFR mutation, durvalumab after CRT is potentially safe and effective. This may be a suitable treatment sequence for these patients.
Collapse
Affiliation(s)
- Kosuke Tsuji
- Department of Respiratory Medicine, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Hidenori Mizugaki
- Department of Respiratory Medicine, Faculty of MedicineHokkaido UniversitySapporoJapan
- Department of Advanced Medical DevelopmentThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of Respiratory MedicineNHO Hokkaido Cancer CenterSapporoJapan
| | - Keiki Yokoo
- Department of Respiratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Maki Kobayashi
- Department of Respiratory MedicineMiyagi Cancer CenterNatoriJapan
| | - Yosuke Kawashima
- Department of Pulmonary MedicineSendai Kousei HospitalSendaiJapan
| | - Nozomu Kimura
- Department of Respiratory MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Yokouchi
- Department of Respiratory MedicineNHO Hokkaido Cancer CenterSapporoJapan
| | - Hajime Kikuchi
- Department of Respiratory MedicineObihiro‐Kousei General HospitalObihiroJapan
| | - Toshiyuki Sumi
- Department of Respiratory MedicineHakodate Goryoukaku HospitalHakodateJapan
| | - Yasutaka Kawai
- Department of Respiratory MedicineOji General HospitalTomakomaiJapan
| | - Kenta Kobashi
- Department of Pulmonary MedicineSteel Memorial Muroran HospitalMuroranJapan
| | - Ryo Morita
- Department of Respiratory MedicineAkita Kousei Medical CenterAkitaJapan
| | - Kenichiro Ito
- Department of Respiratory MedicineKKR Sapporo Medical CenterSapporoJapan
| | - Yasuo Kitamura
- Department of Respiratory MedicineKushiro City General HospitalKushiroJapan
| | - Hiroyuki Minemura
- Department of Pulmonary MedicineFukushima Medical University School of MedicineFukushimaJapan
| | - Keiichi Nakamura
- Department of Respiratory MedicineNational Hospital Organization Asahikawa Medical CenterAsahikawaJapan
| | - Mari Aso
- Department of Respiratory MedicineYamagata Prefectural Central HospitalYamagataJapan
| | - Osamu Honjo
- Department of Respiratory MedicineSapporo Minami‐Sanjo HospitalSapporoJapan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Graduate School of MedicineHirosaki UniversityHirosakiJapan
| | - Taichi Takashina
- Department of Respiratory MedicineIwamizawa Municipal General HospitalIwamizawaJapan
| | - Kyoji Tsurumi
- Department of Respiratory MedicineMiyagi Cancer CenterNatoriJapan
| | - Jun Sugisaka
- Department of Pulmonary MedicineSendai Kousei HospitalSendaiJapan
| | - Yoko Tsukita
- Department of Respiratory MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Satoshi Oizumi
- Department of Respiratory MedicineNHO Hokkaido Cancer CenterSapporoJapan
| |
Collapse
|
16
|
Wu Z, Zhang Z, Zhang D, Li Z. Remarkable response to third-generation EGFR-TKI plus crizotinib in a patient with pulmonary adenocarcinoma harboring EGFR and ROS1 co-mutation: a case report. Front Oncol 2024; 14:1357230. [PMID: 38476366 PMCID: PMC10927992 DOI: 10.3389/fonc.2024.1357230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background Driver oncogene mutations, such as c-ros oncogene 1 (ROS1) and epidermal growth factor receptor (EGFR) were previously believed to be mutually exclusive in non-small cell lung cancer (NSCLC). Only sporadic cases of ROS1 and EGFR co-mutations have been reported. Hence, appropriate treatment options for these patients are still controversial. Case presentation A 48-year-old female patient presented at our hospital complaining of a persistent cough that had been ongoing for a month. A chest computed tomography showed a mass in the left lung along with hilar and mediastinal lymphadenopathy. Pathological analysis of bronchoscopic biopsy and lung mass puncture confirmed the presence of lung adenocarcinoma. The patient was diagnosed with stage IIIC left lung adenocarcinoma with a clinical stage of cT2N3M0. Next-generation sequencing analysis conducted at both puncture sites revealed an EFGR 19 deletion mutation combined with ROS1 rearrangement. The lung mass exhibited a higher mutation abundance. Treatment with a combination of third-generation EGFR tyrosine kinase inhibitors (TKIs) and crizotinib yielded satisfactory results. During the follow-up period, the mass significantly reduced and almost disappeared. Conclusion The co-mutation of EGFR and ROS1 is a rare phenomenon. Nevertheless, the combination of EGFR-TKI and crizotinib treatment appears to hold promise in providing positive results for patients, with manageable side effects. This therapeutic approach has the potential to enhance patients' overall prognosis.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Orthopedics, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zelin Zhang
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zengyan Li
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
17
|
Kuribayashi T, Ohashi K, Nishii K, Ninomiya K, Tsubata Y, Ishikawa N, Kodani M, Kanaji N, Yamasaki M, Fujitaka K, Kuyama S, Takigawa N, Fujimoto N, Kubota T, Inoue M, Fujiwara K, Harita S, Takata I, Takada K, Okawa S, Kiura K, Hotta K. Clinical characteristics of patients treated with immune checkpoint inhibitors in EGFR-mutant non-small cell lung cancer: CS-Lung-003 prospective observational registry study. J Cancer Res Clin Oncol 2024; 150:89. [PMID: 38347279 PMCID: PMC10861387 DOI: 10.1007/s00432-024-05618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) are ineffective against epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). This study aimed to investigate the clinical characteristics of patients who were treated or not treated with ICIs, and of those who benefit from immunotherapy in EGFR-mutant NSCLC. METHODS We analyzed patients with unresectable stage III/IV or recurrent NSCLC harboring EGFR mutations using a prospective umbrella-type lung cancer registry (CS-Lung-003). RESULTS A total of 303 patients who met the eligibility criteria were analyzed. The median age was 69 years; 116 patients were male, 289 had adenocarcinoma, 273 had major mutations, and 67 were treated with ICIs. The duration of EGFR-TKI treatment was longer in the Non-ICI group than in the ICI group (17.1 vs. 12.7 months, p < 0.001). Patients who received ICIs for more than 6 months were categorized into the durable clinical benefit (DCB) group (24 patients), and those who received ICIs for less than 6 months into the Non-DCB group (43 patients). The overall survival in the DCB group exhibited longer than the Non-DCB group (69.3 vs. 47.1 months), and an equivalent compared to that in the Non-ICI group (69.3 vs. 68.9 months). Multivariate analysis for time to next treatment (TTNT) of ICIs showed that a poor PS was associated with a shorter TTNT [hazard ratio (HR) 3.309; p < 0.001]. Patients who were treated with ICIs and chemotherapy combination were associated with a longer TTNT (HR 0.389; p = 0.003). In addition, minor EGFR mutation was associated with a long TTNT (HR 0.450; p = 0.046). CONCLUSION ICIs were administered to only 22% of patients with EGFR-mutated lung cancer, and they had shorter TTNT of EGFR-TKI compared to other patients. ICI treatment should be avoided in EGFR mutated lung cancer with poor PS but can be considered for lung cancer with EGFR minor mutations. Pathological biomarker to predict long-term responders to ICI are needed.
Collapse
Affiliation(s)
- Tadahiro Kuribayashi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Nobuhisa Ishikawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Masahiro Kodani
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology, Rheumatology, and Respiratory Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Masahiro Yamasaki
- Department of Respiratory Medicine, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoichi Kuyama
- Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Nagio Takigawa
- Department of Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Nobukazu Fujimoto
- Department of Medical Oncology, Okayama Rosai Hospital, Okayama, Japan
| | - Tetsuya Kubota
- Department of Respiratory Medicine and Allergology, Kochi University Hospital, Kochi, Japan
| | - Masaaki Inoue
- Department of Chest Surgery, Shimonoseki City Hospital, Shimonoseki, Japan
| | - Keiichi Fujiwara
- Department of Respiratory Medicine, NHO Okayama Medical Center, Okayama, Japan
| | - Shingo Harita
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Ichiro Takata
- Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Kenji Takada
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
- Internal Medicine, Kajiki Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
18
|
Zhu ZF, Bao XX, Shi HY, Gu XX. Case report: A lung squamous cell carcinoma patient with a rare EGFR G719X mutation and high PD-L1 expression showed a good response to anti- PD1 therapy. Front Oncol 2024; 14:1283008. [PMID: 38357203 PMCID: PMC10864480 DOI: 10.3389/fonc.2024.1283008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Lung cancer treatment has transitioned fully into the era of immunotherapy, yielding substantial improvements in survival rate for patients with advanced non-small cell lung cancer (NSCLC). In this report, we present a case featuring a rare epidermal growth factor receptor (EGFR) mutation accompanied by high programmed death-ligand 1 (PD-L1) expression, demonstrating remarkable therapeutic efficacy through a combination of immunotherapy and chemotherapy. A 77-year-old male with no family history of cancer suffered from upper abdominal pain for more than half months in August 2020 and was diagnosed with stage IV (cT3N3M1c) lung squamous cell carcinoma (LUSC) harboring both a rare EGFR p.G719C mutation and high expression of PD-L1 (tumor proportion score [TPS] = 90%). Treatment with the second-generation targeted therapy drug Afatinib was initiated on September 25, 2020. However, resistance ensued after 1.5 months of treatment. On November 17, 2020, immunotherapy was combined with chemotherapy (Sintilimab + Albumin-bound paclitaxel + Cisplatin), and a CT scan conducted three months later revealed significant tumor regression with a favorable therapeutic effect. Subsequently, the patient received one year of maintenance therapy with Sintilimab, with follow-up CT scans demonstrating subtle tumor shrinkage (stable disease). This case provides evidence for the feasibility and efficacy of immunotherapy combined with chemotherapy in the treatment of EGFR-mutated and PD-L1 highly expressed LUSC.
Collapse
Affiliation(s)
- Zhen-feng Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu-xia Bao
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-yan Shi
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xi-xi Gu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wang R, Liu Z, Wang T, Zhang J, Liu J, Zhou Q. Landscape of adenosine pathway and immune checkpoint dual blockade in NSCLC: progress in basic research and clinical application. Front Immunol 2024; 15:1320244. [PMID: 38348050 PMCID: PMC10859755 DOI: 10.3389/fimmu.2024.1320244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer poses a global threat to human health, while common cancer treatments (chemotherapy and targeted therapies) have limited efficacy. Immunotherapy offers hope of sustained remission for many patients with lung cancer, but a significant proportion of patients fail to respond to treatment owing to immune resistance. There is extensive evidence to suggest the immunosuppressive microenvironment as the cause of this treatment failure. Numerous studies have suggested that the adenosine (ADO) pathway plays an important role in the formation of an immunosuppressive microenvironment and may be a key factor in the development of immune resistance in EGFR-mutant cell lung cancer. Inhibition of this pathway may therefore be a potential target to achieve effective reversal of ADO pathway-mediated immune resistance. Recently, an increasing number of clinical trials have begun to address the broad prospects of using the ADO pathway as an immunotherapeutic strategy. However, few researchers have summarized the theoretical basis and clinical rationale of the ADO pathway and immune checkpoint dual blockade in a systematic and detailed manner, particularly in lung cancer. As such, a timely review of the potential value of the ADO pathway in combination with immunotherapy strategies for lung cancer is warranted. This comprehensive review first describes the role of ADO in the formation of a lung tumor-induced immunosuppressive microenvironment, discusses the key mechanisms of ADO inhibitors in reversing lung immunosuppression, and highlights recent evidence from preclinical and clinical studies of ADO inhibitors combined with immune checkpoint blockers to improve the lung cancer immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Rulan Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Arter ZL, Nagasaka M. The Nail in the Coffin?: Examining the KEYNOTE-789 Clinical Trial's Impact. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:1-8. [PMID: 38298470 PMCID: PMC10825580 DOI: 10.2147/lctt.s443099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Targeted therapies, such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), have revolutionized the treatment landscape for EGFR-mutant non-small cell lung cancer (NSCLC). However, the emergence of resistance to EGFR TKIs especially the third generation TKIs such as osimertinib remains a major clinical challenge. As a broader strategy for combating resistance, several clinical trials have explored the efficacy of immune checkpoint inhibitors (ICIs)+chemotherapy in EGFR-mutated NSCLC. Until now, the ORIENT-31 and IMpower150 trials suggested that ICIs+ chemotherapy may be more effective than chemotherapy alone after failure of EGFR-TKIs (although ORIENT-31 was negative for overall survival [OS] and IMpower150 was a subset analysis, so the study was not powered to detect a difference); however, the CheckMate-722 trial yielded disappointing results. Thus, the results of this global trial KEYNOTE-789 were highly anticipated.
Collapse
Affiliation(s)
- Zhaohui Liao Arter
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
21
|
Soo RA, de Marinis F, Han JY, Ho JCM, Martin E, Servidio L, Sandelin M, Popat S. TARGET: A Phase II, Open-Label, Single-Arm Study of 5-Year Adjuvant Osimertinib in Completely Resected EGFR-Mutated Stage II to IIIB NSCLC Post Complete Surgical Resection. Clin Lung Cancer 2024; 25:80-84. [PMID: 37914594 DOI: 10.1016/j.cllc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION Osimertinib is a central nervous system (CNS)-active, third generation, irreversible, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that potently and selectively inhibits EGFR-TKI sensitizing and EGFR T790M resistance mutations, with demonstrated efficacy in EGFR-mutated (EGFRm) non-small cell lung cancer (NSCLC). We present the rationale and design for TARGET (NCT05526755), which will evaluate the efficacy and safety of 5 years of adjuvant osimertinib in patients with completely resected EGFRm stage II to IIIB NSCLC. MATERIALS AND METHODS TARGET is a phase II, multinational, open-label, single-arm study. Adults aged ≥18 years (Taiwan ≥20 years), with resected stage II to IIIB NSCLC are eligible; prior adjuvant chemotherapy is allowed. Eligible patients must have locally confirmed common (exon 19 deletion or L858R) or uncommon (G719X, L861Q, and/or S768I) EGFR-TKI sensitizing mutations, alone or in combination. Patients will receive osimertinib 80 mg once daily for 5 years or until disease recurrence, discontinuation or death. The primary endpoint is investigator-assessed disease-free survival (DFS) at 5 years (common EGFR mutations cohort). Secondary endpoints include: investigator-assessed DFS at 3 and 4 years; overall survival at 3, 4, and 5 years (common EGFR mutations cohort); DFS at 3, 4, and 5 years (uncommon EGFR mutations cohort); safety and tolerability, type of recurrence and CNS metastases (both cohorts). Exploratory endpoints include: tissue/plasma concordance; analysis of circulating molecules in plasma samples using different profiling approaches to detect minimal residual disease; incidence and change over time of incidental pulmonary nodules. RESULTS TARGET is currently recruiting, and completion is expected in 2029.
Collapse
Affiliation(s)
- Ross Andrew Soo
- National University Hospital, Singapore, Singapore; National Cancer Institute Singapore, Singapore, Singapore.
| | - Filippo de Marinis
- Thoracic Oncology Division, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - James Chung-Man Ho
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Emma Martin
- Oncology Biometrics, AstraZeneca, Cambridge, UK
| | - Leslie Servidio
- Global Medical Affairs, Oncology Business Unit, AstraZeneca, Gaithersburg, MD
| | - Martin Sandelin
- Oncology Business Unit, AstraZeneca, Södertälje, Stockholm, Sweden
| | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital, Chelsea, London, UK; Division of Clinical Studies, Institute of Cancer Research, London, UK
| |
Collapse
|
22
|
Cen W, Yan Q, Zhou W, Mao M, Huang Q, Lin Y, Jiang N. miR-4739 promotes epithelial-mesenchymal transition and angiogenesis in "driver gene-negative" non-small cell lung cancer via activating the Wnt/β-catenin signaling. Cell Oncol (Dordr) 2023; 46:1821-1835. [PMID: 37500965 DOI: 10.1007/s13402-023-00848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE "Driver gene-negative" non-small cell lung cancer (NSCLC) currently has no approved targeted drug, due to the lack of common actionable driver molecules. Even though miRNAs play crucial roles in various malignancies, their roles in "driver gene-negative" NSCLC keep unclear. METHODS miRNA expression microarrays were utilized to screen miRNAs associated with "driver gene-negative" NSCLC malignant progression. Quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH) were employed to validate the expression of miR-4739, and its correlation with clinicopathological characteristics was analyzed in tumor specimens using univariate and multivariate analyses. The biological functions and underlying mechanisms of miR-4739 were investigated both in vitro and in vivo. RESULTS our research demonstrated, for the first time, that miR-4739 was substantially increased in "driver gene-negative" NSCLC tumor tissues and cell lines, and overexpression of miR-4739 was related to clinical staging, metastasis, and unfavorable outcomes. Functional experiments discovered that miR-4739 dramatically enhanced tumor cell proliferation, migration, and metastasis by promoting the epithelial-to-mesenchymal transition (EMT). Meanwhile, miR-4739 can be transported from cancer cells to the site of vascular epithelial cells through exosomes, consequently facilitating the proliferation and migration of vascular epithelial cells and inducing angiogenesis. Mechanistically, miR-4739 can activate Wnt/β-catenin signaling both in tumor cells and vascular epithelial cells by targeting Wnt/β-catenin signaling antagonists APC2 and DKK3, respectively. CONCLUSION Our work identifies a valuable oncogene, miR-4739, that accelerates malignant progression in "driver gene-negative" NSCLC and serves as a potential therapeutic target for this group of tumors.
Collapse
Affiliation(s)
- Wenjian Cen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qin Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Wenpeng Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Minjie Mao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qitao Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Yaobin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Neng Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
23
|
Shen Z, Teng M, Han L, Bian D, Zhang J, Zhu X, Qing Y, Hu S, Chen Y, Yao W, Yu H, Zhang L, Zhang P. The impact of oncogenic driver mutations on neoadjuvant immunotherapy outcomes in patients with resectable non-small cell lung cancer. Cancer Immunol Immunother 2023; 72:4235-4247. [PMID: 37932425 PMCID: PMC10992055 DOI: 10.1007/s00262-023-03560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Neoadjuvant immunotherapy has been demonstrated to be effective and safe in resectable non-small cell lung cancer (NSCLC) patients. However, the presence of different oncogenic driver mutations may affect the tumor microenvironment and consequently influence the clinical benefit from immunotherapy. METHODS This retrospective study included consecutive NSCLC patients (stage IIA to IIIB) who underwent radical surgery after receiving neoadjuvant immunotherapy at a single high-volume center between December 2019 and August 2022. Pathological response and long-term outcomes were compared based on the driver oncogene status, and RNA sequencing analysis was conducted to investigate the transcriptomic characteristics before and after treatment. RESULTS Of the 167 patients included in this study, 47 had oncogenic driver mutations. KRAS driver mutations were identified in 28 patients, representing 59.6% of oncogenic driver mutations. Of these, 17 patients had a major pathological response, which was significantly higher than in the non-KRAS driver mutation group (60.7% vs. 31.6%, P = 0.049). Multivariate Cox regression analysis further revealed that the KRAS driver mutation group was an independent prognostic factor for prolonged disease-free survival (hazard ratio: 0.10, P = 0.032). The median proportion of CD8+ T cells was significantly higher in the KRAS driver mutation NSCLCs than in the non-driver mutation group (18% vs. 13%, P = 0.030). Furthermore, immune-related pathways were enriched in the KRAS driver mutation NSCLCs and activated after immunotherapy. CONCLUSION Our study suggests that NSCLC patients with KRAS driver mutations have a superior response to neoadjuvant immunotherapy, possibly due to their higher immunogenicity. The findings highlight the importance of considering oncogenic driver mutations in selecting neoadjuvant treatment strategies for NSCLC patients.
Collapse
Affiliation(s)
- Ziyun Shen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Meixin Teng
- Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Lu Han
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Dongliang Bian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Yang Qing
- Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Shiqi Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Wangchao Yao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
24
|
Ritu, Chandra P, Das A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 2023; 23:4297-4322. [PMID: 37804358 DOI: 10.1007/s10238-023-01201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.
Collapse
Affiliation(s)
- Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India.
| |
Collapse
|
25
|
Patel S, Patel JD. Current and Emerging Treatment Options for Patients with Metastatic EGFR-Mutated Non-small Cell Lung Cancer After Progression on Osimertinib and Platinum-Based Chemotherapy: A Podcast Discussion. Adv Ther 2023; 40:5579-5590. [PMID: 37801233 PMCID: PMC10611612 DOI: 10.1007/s12325-023-02680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
Patients with metastatic epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) are widely treated with osimertinib, the preferred first-line treatment option. However, disease progression inevitably occurs, driven by EGFR-dependent or EGFR-independent mechanisms of resistance. Platinum-based chemotherapy is the recommended treatment following progression with osimertinib but responses to platinum-based chemotherapy are transient. Salvage therapies, which are used after progression on platinum-based chemotherapy, have poor clinical outcomes in addition to substantial toxicity. In this podcast, we discuss the current treatment landscape and emerging therapeutic options for patients with metastatic EGFR-mutated NSCLC whose disease has progressed following treatment with osimertinib and platinum-based chemotherapy.Podcast audio available for this article.
Collapse
Affiliation(s)
- Sandip Patel
- University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| | | |
Collapse
|
26
|
Cai R, Liu Y, Yu M, Sha H, Guo M, Chen Y, Ye J, Zhou G, Fang Y, Shen B. A retrospective real-world study: the efficacy of immune-related combination therapies in advanced non-small cell lung cancer after resistance to EGFR-TKIs. Cancer Immunol Immunother 2023; 72:4355-4365. [PMID: 37907645 PMCID: PMC10700213 DOI: 10.1007/s00262-023-03570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Whether patients with advanced non-small cell lung cancer (NSCLC) should choose an immune-combination therapy regimen after EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance is currently unclear. METHODS We evaluated 118 NSCLC patients treated by immune checkpoint inhibitors (ICIs) + chemotherapy (I + C), ICIs + chemotherapy + antiangiogenic therapy (I + C + A), chemotherapy + antiangiogenic therapy (C + A) after inefficacy of EGFR-TKIs. We assessed the objective remission rate (ORR), disease control rate (DCR), and progression-free survival (PFS) of these treatments. RESULTS The ORR was 26.1% vs 38.2% vs 16.3% in the three groups (P = 0.093). The divergence in DCR was also statistically significant (65.2% vs 85.3% vs 74.4%, P = 0.209). The median PFS was no statistically significant difference in PFS (3.09 vs 6.31 vs 5.91 months, P = 0.809), but the Kaplan-Meier survival curve of 12-month-PFS indicated an apparent survival advantage in the I + C + A group (P = 0.001). In addition, the I + C/I + C + A group showed higher median PFS than the C + A group in patients with brain metastases (median PFS, 6.44 vs 4.21 months, P = 0.022). The divergence in ORR of patients in the brain group was also statistically significant (P = 0.045). The I + C + A group showed superior efficacy in patients with liver metastases (median PFS, 0.95 vs 6.44 vs 3.48 months, P < 0.0001). The Cox proportional hazard modeling analysis suggested that the age, brain metastases, and liver metastases were all connected with the prognosis. CONCLUSIONS This study suggests that advanced NSCLC patients after resistance to EGFR-TKIs may achieve better outcomes from triple therapy. Patients with brain metastases favor ICIs-related combination therapies and patients with liver metastases prefer I + C + A therapy.
Collapse
Affiliation(s)
- Ruoxue Cai
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, 210009, Nanjing, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, 210009, Nanjing, People's Republic of China
| | - Mingyan Yu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210009, Nanjing, People's Republic of China
| | - Huanhuan Sha
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210009, Nanjing, People's Republic of China
| | - Mengya Guo
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, 210009, Nanjing, People's Republic of China
| | - Yue Chen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, 210009, Nanjing, People's Republic of China
| | - Jinjun Ye
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 210009, Nanjing, People's Republic of China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, 210009, Nanjing, People's Republic of China.
| | - Ying Fang
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 210009, Nanjing, People's Republic of China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, 210009, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Shang X, Zhang W, Han W, Xia H, Liu N, Wang X, Liu Y. Efficacy of immune checkpoint inhibitors in non-small cell lung cancer with NTRK family mutations. BMC Pulm Med 2023; 23:482. [PMID: 38031067 PMCID: PMC10688060 DOI: 10.1186/s12890-023-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) patients harboring neurotrophin receptor kinase (NTRK) family mutations remains obscure. METHODS The Zehir cohort from cBioPortal was used to analyze the mutations (MT) frequency of NTRK family in patients with NSCLC, and their correlation with clinical characteristics and patient survival. The influence of NTRK MT on ICIs efficacy was evaluated in ICIs-treated patients from Samstein cohort and further validated by use of data from OAK/POPLAR cohort. RESULTS In the Zehir cohort, a significant difference was observed in median overall survival (mOS) between patients with NTRK MT and wild-type (WT) (mOS: 18.97 vs. 21.27 months, HR = 1.34, 95%CI 1.00-1.78; log-rank P = 0.047). In Samstein cohort, the mOS of NTRK mutant patients receiving ICIs has improved compared to WT patients (mOS: 21.00 vs. 11.00 months, log-rank P = 0.103). Notably, in subgroup analysis, ICIs significantly prolonged mOS in patients with NTRK3 MT than in WT patients (mOS: not available vs. 11.00 months, HR = 0.36, 95%CI 0.16-0.81; log-rank P = 0.009). Identical mOS between NTRK MT and WT patients receiving ICIs treatment (mOS: 13.24 vs. 13.50 months, log-rank P = 0.775) was observed in OAK/POPLAR cohort. Moreover, a similar programmed death ligand 1 (PD-L1) expression, but higher tumor mutational burden (TMB), blood TMB (bTMB) and enriched anti-tumor immunity were observed in NTRK MT compared to WT (P < 0.05). CONCLUSION Taking high TMB or bTMB into consideration, patients with NTRK mutant NSCLC could benefit from ICIs treatment.
Collapse
Affiliation(s)
- Xiaoling Shang
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Wenfei Han
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Handai Xia
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Ni Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
28
|
Bai M, Wu L, Zhao M, Jin P, Liu J, Wang W, Gao X, Wang Y, Chong W, Yu J, Chen H, Meng X. Integrated analysis of EGFR mutated non-small cell lung cancer reveals two distinct molecular subtypes. Clin Transl Med 2023; 13:e1431. [PMID: 37830123 PMCID: PMC10570769 DOI: 10.1002/ctm2.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Menglin Bai
- Shandong University Cancer CenterJinanChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Leilei Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Department of Radiation OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mengyu Zhao
- Shandong University Cancer CenterJinanChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Peng Jin
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Jingru Liu
- Shandong University Cancer CenterJinanChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Weiqing Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xuetian Gao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- National Fire and Rescue AdministrationTianjin Training BrigadeTianjinChina
| | - Yanan Wang
- Shandong University Cancer CenterJinanChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Wei Chong
- Department of Gastrointestinal SurgeryKey Laboratory of Engineering of Shandong ProvinceMedical Science and Technology Innovation CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Shandong University Cancer CenterJinanChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Hao Chen
- Clinical Research Center of Shandong UniversityClinical Epidemiology UnitQilu Hospital of Shandong UniversityJinanChina
| | - Xue Meng
- Shandong University Cancer CenterJinanChina
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
29
|
Chen K, Xu Y, Huang Z, Yu X, Hong W, Li H, Xu X, Lu H, Xie F, Chen J, Xu Y, Fan Y. Sintilimab plus anlotinib as second- or third-line therapy in metastatic non-small cell lung cancer with uncommon epidermal growth factor receptor mutations: A prospective, single-arm, phase II trial. Cancer Med 2023; 12:19460-19470. [PMID: 37723837 PMCID: PMC10587987 DOI: 10.1002/cam4.6548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Patients with non-small-cell lung cancer (NSCLC) and uncommon EGFR alterations typically have worse treatment outcomes than patients with classically EGFR-mutated NSCLC. This study aimed to investigate the efficacy and safety of PD-1 blockade with sintilimab plus anti-angiogenic treatment with anlotinib in patients with NSCLC harboring uncommon EGFR mutations. METHODS Patients with metastatic NSCLC harboring uncommon EGFR mutations after two previous treatments, including a platinum-based chemotherapy regimen and a targeted treatment (or chemotherapy only for patients harboring EGFR ex20ins), received sintilimab combined with anlotinib. The primary endpoint was objective response rate (ORR). RESULTS At data cutoff (September 27, 2022), median follow-up was 22.3 months (range, 1.2-37.6). Among 21 enrolled patients, 12 had EGFR ex20ins and nine had other uncommon EGFR mutations such as L861Q, G719A, and G709X. Overall, eight patients (38.1%) achieved an objective response, and 18 (85.7%) achieved disease control. Median (95% CI) progression-free survival (PFS) was 7.0 (5.4-8.6) months, and median overall survival (OS) was 20.0 (15.6-24.4) months. The 12-month PFS rate (95% CI) was 22.2% (7.4-42.0), and the 12-month OS rate was 66.7% (42.5-82.5). Patients harboring EGFR ex20ins had similar ORR and PFS to those with other mutations. Six patients (28.6%) experienced grade 3 treatment-related adverse events (TRAEs); hand-foot syndrome was the most common grade 3 TRAE (2 patients; 9.5%). No grade ≥4 TRAEs were observed. CONCLUSIONS The combination of sintilimab and anlotinib demonstrated durable efficacy and was generally well tolerated in patients with NSCLC and uncommon EGFR mutations who had received prior standard-of-care treatments. (ClinicalTrials.gov identifier: NCT04790409).
Collapse
Affiliation(s)
- Kaiyan Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Yanjun Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Zhiyu Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Xiaoqing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Clinical TrialZhejiang Cancer HospitalHangzhouChina
| | - Wei Hong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Hui Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Xiaoling Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Hongyang Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Fajun Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Jun Chen
- Department of Radiotherapy and ChemotherapyThe Affiliated People's Hospital of Ningbo UniversityNingboChina
| | - Youzu Xu
- Department of Respiratory and Critical Care MedicineTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Yun Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Department of Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouChina
| |
Collapse
|
30
|
Li F, Wu H, Du X, Sun Y, Rausseo BN, Talukder A, Katailiha A, Elzohary L, Wang Y, Wang Z, Lizée G. Epidermal Growth Factor Receptor-Targeted Neoantigen Peptide Vaccination for the Treatment of Non-Small Cell Lung Cancer and Glioblastoma. Vaccines (Basel) 2023; 11:1460. [PMID: 37766136 PMCID: PMC10534925 DOI: 10.3390/vaccines11091460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays crucial roles in several important biological functions such as embryogenesis, epithelial tissue development, and cellular regeneration. However, in multiple solid tumor types overexpression and/or activating mutations of the EGFR gene frequently occur, thus hijacking the EGFR signaling pathway to promote tumorigenesis. Non-small cell lung cancer (NSCLC) tumors in particular often contain prevalent and shared EGFR mutations that provide an ideal source for public neoantigens (NeoAg). Studies in both humans and animal models have confirmed the immunogenicity of some of these NeoAg peptides, suggesting that they may constitute viable targets for cancer immunotherapies. Peptide vaccines targeting mutated EGFR have been tested in multiple clinical trials, demonstrating an excellent safety profile and encouraging clinical efficacy. For example, the CDX-110 (rindopepimut) NeoAg peptide vaccine derived from the EGFRvIII deletion mutant in combination with temozolomide and radiotherapy has shown efficacy in treating EGFRvIII-harboring glioblastoma multiforme (GBM) patients undergone surgery in multiple Phase I and II clinical trials. Furthermore, pilot clinical trials that have administered personalized NeoAg peptides for treating advanced-stage NSCLC patients have shown this approach to be a feasible and safe method to increase antitumor immune responses. Amongst the vaccine peptides administered, EGFR mutation-targeting NeoAgs induced the strongest T cell-mediated immune responses in patients and were also associated with objective clinical responses, implying a promising future for NeoAg peptide vaccines for treating NSCLC patients with selected EGFR mutations. The efficacy of NeoAg-targeting peptide vaccines may be further improved by combining with other modalities such as tyrosine kinase or immune checkpoint inhibitor (ICI) therapy, which are currently being tested in animal models and clinical trials. Herein, we review the most current basic and clinical research progress on EGFR-targeted peptide vaccination for the treatment of NSCLC and other solid tumor types.
Collapse
Affiliation(s)
- Fenge Li
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, China
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, China
| | - Huancheng Wu
- Department of Neurosurgery, Tianjin Beichen Hospital, Tianjin 300400, China
| | - Xueming Du
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, China
| | - Yimo Sun
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Barbara Nassif Rausseo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amjad Talukder
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Arjun Katailiha
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lama Elzohary
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yupeng Wang
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
31
|
Lei S, Xu H, Li H, Yang Y, Xu F, Li J, Wang Z, Xing P, Hao X, Wang Y. Influence of PD-L1 expression on the efficacy of EGFR-TKIs in EGFR-mutant non-small cell lung cancer. Thorac Cancer 2023; 14:2327-2337. [PMID: 37407282 PMCID: PMC10447169 DOI: 10.1111/1759-7714.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Evidence on the influence of programmed death-ligand 1 (PD-L1) expression on the efficacy of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC) patients is at variance. METHODS A single-center retrospective study was conducted to evaluate the influence of PD-L1 expression on the efficacy of EGFR-TKIs for NSCLC patients with EGFR mutation. Clinical information was retrieved from electronic medical records. The patients were divided into three subgroups according to PD-L1 expression level: PD-L1 < 1% (negative), PD-L1 1%-49% and PD-L1 ≥ 50%. The clinicopathological features, overall response rate (ORR), progression-free survival (PFS) and comutation information were collected and compared between the three subgroups. RESULTS A total of 117 patients were included. For PD-L1 < 1%, PD-L1 1%-49% and PD-L1 ≥ 50% group, there were 39 (33.3%), 51 (43.5%) and 27 (23.0%) patients respectively, and the ORR was 43.2%, 64.0%, and 51.9%, respectively (p = 0.162), and the median progression-free survival (mPFS) was 22.0 months (95% CI: 14.0-29.9 months), 15.4 months (95% CI: 8.9-21.8 months) and 13.0 months (95% CI: 10.6-15.3 months), respectively (log-rank, p = 0.01). The mPFS was negatively correlated with PD-L1 expression level (r = -0.264, p = 0.041) and PD-L1 expression was an independent risk factor for worse PFS of EGFR-TKIs in multivariate Cox regression. Patients with concurrent TP53 mutation had shorter PFS (p = 0.039) and the patients harboring both mutant TP53 and positive PD-L1 had the shortest PFS (p = 0.006). CONCLUSIONS The efficacy of EGFR-TKIs was influenced by the baseline PD-L1 expression. Higher PD-L1 expression was associated with shorter PFS. The combined indicators of TP53 and PD-L1 identified subgroups showing divergent benefits from EGFR-TKIs.
Collapse
Affiliation(s)
- Si‐Yu Lei
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai‐Yan Xu
- Department of Comprehensive OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hong‐Shuai Li
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ya‐Ning Yang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Xu
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun‐Ling Li
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhi‐Jie Wang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pu‐Yuan Xing
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xue‐Zhi Hao
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Wang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
32
|
Hu Y, Liu S, Wang L, Liu Y, Zhang D, Zhao Y. Treatment-free survival after discontinuation of immune checkpoint inhibitors in mNSCLC: a systematic review and meta-analysis. Front Immunol 2023; 14:1202822. [PMID: 37520573 PMCID: PMC10373084 DOI: 10.3389/fimmu.2023.1202822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Background Recent research has suggested that patients with metastatic non-small cell lung cancer (mNSCLC) can achieve ongoing response after discontinuation of immune checkpoint inhibitor (ICI), but the best time to discontinue and the factors influencing efficacy remain unknown. Method A systematic search was performed for prospective clinical trials in patients with mNSCLC treated with ICIs published up to July 10, 2022. Eligible studies reported treatment-free survival (TFS) after discontinuation of ICI in partial objective responders. We calculated objective response rate (ORR) and TFS using random-effects models with respective 95% confidence intervals (Cis), and performed subgroup analyses to discuss the specific associations between ORR and TFS and the associated influencing factors. Results Across the 26 cohorts (3833 patients) included, the weighted mean ORR for all patients was 29.30% (95% CI 24.28% to 34.57%), with ICI plus chemotherapy (48.83%, 95% CI 44.36% to 53.30%) significantly higher than monotherapy (23.40%, 95% CI 18.53% to 28.62%). 395 patients were all patients who were complete or partial responders in the study, 194 discontinued ICI treatment, and nearly 35.5% achieved a durable response. No significant differences in TFS were found between subgroups according to the ICI regimen classification. Four cohorts of patients who completed 35 courses of treatment showed high levels of pooled TFS at 6 (80.18%, 95% CI 53.03% to 97.87%) and 12 months (66.98%, 95% CI 46.90% to 84.47%). Three cohorts of patients discontinued ICI treatment due to treatment-related adverse events (TRAEs) with the TFS rates at 6 (76.98%, 95% CI 65.79% to 86.65%) and 12 months (64.79%, 95% CI 50.20% to 78.19%). Conclusion Patients with mNSCLC were able to achieve ongoing responses after discontinuation of ICI. In conclusion, the results of this meta-analysis indicate that different treatment regimens, different drugs or different treatment durations may have an impact on TFS.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinlong Zhao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Ye W, Li M, Luo K. Therapies Targeting Immune Cells in Tumor Microenvironment for Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:1788. [PMID: 37513975 PMCID: PMC10384189 DOI: 10.3390/pharmaceutics15071788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The tumor microenvironment (TME) plays critical roles in immune modulation and tumor malignancies in the process of cancer development. Immune cells constitute a significant component of the TME and influence the migration and metastasis of tumor cells. Recently, a number of therapeutic approaches targeting immune cells have proven promising and have already been used to treat different types of cancer. In particular, PD-1 and PD-L1 inhibitors have been used in the first-line setting in non-small cell lung cancer (NSCLC) with PD-L1 expression ≥1%, as approved by the FDA. In this review, we provide an introduction to the immune cells in the TME and their efficacies, and then we discuss current immunotherapies in NSCLC and scientific research progress in this field.
Collapse
Affiliation(s)
- Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Meiye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Kewang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
- People's Hospital of Longhua, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
34
|
Li Y, Jiang H, Qian F, Chen Y, Zhou W, Zhang Y, Lu J, Lou Y, Han B, Zhang W. Efficacy of ICI-based treatment in advanced NSCLC patients with PD-L1≥50% who developed EGFR-TKI resistance. Front Immunol 2023; 14:1161718. [PMID: 37266427 PMCID: PMC10230103 DOI: 10.3389/fimmu.2023.1161718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Platinum-based chemotherapy is still the standard of care for Epidermal growth factor receptor (EGFR) mutated non-small cell lung cancer (NSCLC) patients after developing EGFR-TKI resistance. However, no study focusing on the role of immuno checkpoint inhibitor (ICI) based treatments for EGFR mutated NSCLC patients who carried programmed death ligand 1 (PD-L1) tumor proportion score (TPS) greater than 50% progressed after EGFR-TKI therapy. In this study, we retrospectively investigated the outcomes of ICI-based treatments for EGFR mutated NSCLC patients carried PD-L1 TPS≥50% after developing EGFR-TKI resistance and to explore the population that may benefited from ICI-based treatment. Methods We retrospectively collected data of advanced NSCLC patients with EGFR mutations and PD-L1 TPS≥50% who have failed prior EGFR-TKI therapies without T790M mutation at Shanghai Chest Hospital between January 2018 and June 2021. Progression-free survival (PFS) and overall survival (OS) were utilized to evaluate the outcomes of this study. Results A total of 146 patients were included. Up to June 20th, 2022, median follow-up was 36.7 months (IQR, 12.5-44.2 months). Among the population, 66 patients (45.2%) received chemotherapy, the remaning (54.8%) received ICI-based treatment, including 56 patients(70.0%) received ICI combined with chemotherapy (IC) and 24 patients (30.0%) received ICI monotherapy (IM). In IC group,31 patients received ICI combined with chemotherapy,19 patients received ICI combined with antiangiogenic therapy and remaing received ICI combined with chemotherapy and antiangiogenic therapy. Survival analysis shown that patients who received ICI-based treatment had better progress-free survival (PFS) and overall survival (OS) compared with those treated with other therapy (median PFS, 10.0 vs. 4.0 months, P<0.001; median OS, 39.5 vs. 24.2 months, P<0.001). What's more, patients who treated with IC treatment had a superior survival time than those received IM treatment (median PFS, 10.3 vs. 7.0 months, P<0.001; median OS, 41.6 vs. 32.4 months, P<0.001). Subgroup analysis found that the PFS and OS benefit of IC was evident in all subgroups. Conclusions For advanced NSCLC patients with EGFR mutations and PD-L1 TPS≥50% who have failed prior EGFR-TKI therapies without T790M mutation, ICI-based treatment could provide a more favorable survival than classical chemotherapy. What' s more, compared with ICI monotherapy, ICI combined with chemotherapy seems to be the preferred treatment.
Collapse
Affiliation(s)
- Yujing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haohua Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfei Qian
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wensheng Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Lou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Wang Y, Huang S, Feng X, Xu W, Luo R, Zhu Z, Zeng Q, He Z. Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer. Front Oncol 2023; 13:1145128. [PMID: 37265800 PMCID: PMC10229830 DOI: 10.3389/fonc.2023.1145128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has become mainstream in the treatment of non-small cell lung cancer (NSCLC). The idea of harnessing the immune system to fight cancer is fast developing. Neoadjuvant treatment in NSCLC is undergoing unprecedented change. Chemo-immunotherapy combinations not only seem to achieve population-wide treating coverage irrespective of PD-L1 expression but also enable achieving a pathological complete response (pCR). Despite these recent advancements in neoadjuvant chemo-immunotherapy, not all patients respond favorably to treatment with ICIs plus chemo and may even suffer from severe immune-related adverse effects (irAEs). Similar to selection for target therapy, identifying patients most likely to benefit from chemo-immunotherapy may be valuable. Recently, several prognostic and predictive factors associated with the efficacy of neoadjuvant immunotherapy in NSCLC, such as tumor-intrinsic biomarkers, tumor microenvironment biomarkers, liquid biopsies, microbiota, metabolic profiles, and clinical characteristics, have been described. However, a specific and sensitive biomarker remains to be identified. Recently, the construction of prediction models for ICI therapy using novel tools, such as multi-omics factors, proteomic tests, host immune classifiers, and machine learning algorithms, has gained attention. In this review, we provide a comprehensive overview of the different positive prognostic and predictive factors in treating preoperative patients with ICIs, highlight the recent advances made in the efficacy prediction of neoadjuvant immunotherapy, and provide an outlook for joint predictors.
Collapse
Affiliation(s)
- Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Huang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Feng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangjue Xu
- Department of Thoracic Surgery, Longyou County People’s Hospital, Longyou, China
| | - Raojun Luo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingxin Zeng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Zhang Z, Tan X, Wu R, Deng T, Wang H, Jiang X, Zeng P, Tang J. m6A-mediated upregulation of lncRNA-AC026356.1 promotes cancer stem cell maintenance in lung adenocarcinoma via activating Wnt signaling pathway. Aging (Albany NY) 2023; 15:3538-3548. [PMID: 37142269 PMCID: PMC10449284 DOI: 10.18632/aging.204689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
LncRNA plays a pivotal role in the stemness and drug resistance of lung cancer. Here, we found that lncRNA-AC026356.1 was upregulated in stem spheres and chemo-resistant lung cancer cells. Our fish assay also shows that AC026356.1 was predominantly located in the cytoplasm of lung cancer cells and does not have protein-coding potential. Silencing AC026356.1 significantly inhibited proliferation and migration but increased apoptosis in A549-cisplatin (DDP) cells. Additionally, IGF2BP2 and the lncRNA-AC026356.1 positively regulated the proliferation and stemness of stem-like lung cancer cells. Further mechanistic investigation revealed that METTL14/IGF2BP2-mediated m6A modification and stabilization of the AC026356.1 RNA. Functional analysis corroborated that AC026356.1 acted as a downstream target of METTL14/IGF2BP2 and AC026356.1 silencing could block the oncogenicity of lung cancer stem-like cells. AC026356.1 expression was correlated with immune cell infiltration and T cell exhaustion. Compared with paired adjacent normal tissues, lung cancer specimens exhibited consistently upregulated METTL14/IGF2BP2/AC026356.1. M6A-modified METTL14/IGF2BP2/AC026356.1 loop may serve as a potential therapeutic target and prognostic predictor for lung cancer therapy and diagnosis in the clinic.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, P.R. China
| | - Xiaoning Tan
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Ruoxia Wu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, P.R. China
| | - Tianhao Deng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Huazhong Wang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Puhua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Junqi Tang
- Department of Respiratory Medicine, Hospital of Traditional Chinese Medicine, Affiliated to Southwest Medical University, Luzhou 646000, P.R. China
| |
Collapse
|
37
|
Zhou Y, Yin Y, Xu J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. An update on Alectinib: a first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother 2023; 24:1361-1373. [PMID: 37278051 DOI: 10.1080/14656566.2023.2221786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Alectinib is a second-generation, anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) for the treatment of ALK+ non-small cell lung cancer (NSCLC) and is able to induce significant and durable CNS responses. However, long-term use of alectinib has been clinically reported to cause some serious and even life-threatening adverse events. There are currently no effective interventions for its adverse events, and this undoubtedly leads to delays in patient treatment and limits its long-term clinical use. AREAS COVERED Based on the clinical trials conducted so far, we summarize the efficacy and adverse events that occurred, especially those related to cardiovascular disorders, gastrointestinal disorders, hepatobiliary disorders, musculoskeletal and connective tissue disorders, skin and subcutaneous tissue disorders, and respiratory disorders. The factors that may influence alectinib selection are also described. Findings are based on a PubMed literature search of clinical and basic science research papers spanning 1998-2023. EXPERT OPINION The significant prolongation of patient survival compared with first-generation ALK inhibitor suggests its potential as a first-line treatment for the NSCLC, but the severe adverse events of alectinib limit its long-term clinical use. Future research should focus on the exact mechanisms of these toxicities, how to alleviate the adverse events caused by alectinib clinically, and the development of next-generation drugs with reduced toxicities.
Collapse
Affiliation(s)
- Yourong Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxin Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Hata T, Sakaguchi C, Hirano K, Kobe H, Ishida M, Nakano T, Tachibana Y, Tamiya N, Shiotsu S, Takeda T, Yamada T, Yokoyama T, Tsuchiya M, Nagasaka Y. Exploratory analysis of immunochemotherapy compared to chemotherapy after EGFR-TKI in non-small cell lung cancer patients with EGFR mutation: A multicenter retrospective study. Thorac Cancer 2023; 14:1004-1011. [PMID: 36866788 PMCID: PMC10101833 DOI: 10.1111/1759-7714.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Patients with epidermal growth factor receptor (EGFR)-mutated, advanced non-small cell lung cancer have received immunochemotherapy as one of the treatment options after tyrosine kinase inhibitor (TKI) failure. METHODS We retrospectively examined EGFR-mutant patients treated with atezolizumab-bevacizumab-carboplatin-paclitaxel (ABCP) therapy or platinum-based chemotherapy (Chemo) after EGFR-TKI therapy at five institutions in Japan. RESULTS A total of 57 patients with EGFR mutation were analyzed. The median progression-free survival (PFS) and overall survival (OS) in the ABCP (n = 20) and Chemo (n = 37) were 5.6 and 20.9 months, 5.4 and 22.1 months, respectively (PFS, p = 0.39; OS, p = 0.61). In programmed death-ligand 1 (PD-L1)-positive patients, median PFS in the ABCP group was longer than in the Chemo group (6.9 vs. 4.7 months, p = 0.89). In PD-L1-negative patients, median PFS in the ABCP group was significantly shorter than in the Chemo group (4.6 vs. 8.7 months, p = 0.04). There was no difference in median PFS between the ABCP and Chemo groups in the subgroups of brain metastases, EGFR mutation status, or chemotherapy regimens, respectively. CONCLUSION The effect of ABCP therapy and chemotherapy was comparable in EGFR-mutant patients in a real-world setting. The indication for immunochemotherapy should be carefully considered, especially in PD-L1-negative patients.
Collapse
Affiliation(s)
- Tae Hata
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Chikara Sakaguchi
- Department of Medical Oncology, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Keita Hirano
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kobe
- Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital, Okayama, Japan
| | - Masaki Ishida
- Department of Respiratory Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takayuki Nakano
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yusuke Tachibana
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Nobuyo Tamiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Respiratory Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihide Yokoyama
- Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital, Okayama, Japan
| | - Michiko Tsuchiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Yukio Nagasaka
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| |
Collapse
|
39
|
Jiang G, Miao Y, Wang Z, Zhang Q, Zhou P, Zhang F. Prognostic significance of epidermal growth factor receptor and programmed cell death-ligand 1 co-expression in esophageal squamous cell carcinoma. Aging (Albany NY) 2023; 15:1107-1129. [PMID: 36812484 PMCID: PMC10008495 DOI: 10.18632/aging.204535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Our study aimed to observe the correlation between epidermal growth factor receptor (EGFR) and programmed cell death-ligand 1 (PD-L1) expression and evaluate prognostic potential of their co-expression in esophageal squamous cell carcinoma (ESCC) patients. EGFR and PD-L1 expression were evaluated by immunohistochemical analysis. We revealed that there was a positive correlation between EGFR and PD-L1 expression in ESCC (P = 0.004). According to the positive relationship between EGFR and PD-L1, all patients were divided into four groups: EGFR (+)/PD-L1 (+), EGFR (+)/PD-L1 (-), EGFR (-)/PD-L1 (+), and EGFR (-)/PD-L1 (-). In 57 ESCC patients without surgery, we found that EGFR and PD-L1 co-expression were statistically correlated with a lower objective response rate (ORR) (p = 0.029), overall survival (OS) (p = 0.018) and progression-free survival (PFS) (p = 0.045) than those with one or none positive protein. Furthermore, PD-L1 expression has a significant positive correlation with infiltration level of 19 immune cells, EGFR expression was significantly correlated with infiltration level of 12 immune cells. The infiltration level of CD8 T cell and B cell were negatively correlated with EGFR expression. On the contrary with EGFR, the infiltration level of CD8 T cell, and B cell were positively correlated with PD-L1 expression. In conclusion, EGFR and PD-L1 co-expression could predict poor ORR and survival in ESCC without surgery, indicating a subset of patients who may benefit from a combination of targeted therapy against EGFR and PD-L1, which may expand the population benefiting from immunotherapy and reduce the occurrence of hyper progressive diseases.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Department of Oncology Radiotherapy, Yantaishan Hospital, Yantai 264025, Shandong, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, Shandong, China
| | - Zhenbo Wang
- Department of Radiation Oncology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong, China
| | - Qi Zhang
- Department of Pathology, The First Hospital of Zibo, Zibo 255200, Shandong, China
| | - Ping Zhou
- Department of Pathology, The First Hospital of Zibo, Zibo 255200, Shandong, China
| | - Fang Zhang
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 26400, Shandong, China
| |
Collapse
|
40
|
Vathiotis IA, Bafaloukos D, Syrigos KN, Samonis G. Evolving Treatment Landscape of HER2-mutant Non-Small Cell Lung Cancer: Trastuzumab Deruxtecan and Beyond. Cancers (Basel) 2023; 15:cancers15041286. [PMID: 36831628 PMCID: PMC9954068 DOI: 10.3390/cancers15041286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Successful targeting of HER2-activating mutations in DESTINY-Lung02 phase II study has led to the approval of the antibody-drug conjugate (ADC) trastuzumab deruxtecan (T-DXd) as second-line treatment in patients with non-small cell lung cancer (NSCLC). Despite the impressive results, several matters need to be addressed, including the clinical activity of T-DXd in patients with disease in the central nervous system as well as the role of T-DXd in the context of HER2 overexpression. Additionally, data regarding novel agents used to target HER2 continue to accumulate. This review highlights the challenges and unanswered questions that have emerged after the approval of T-DXd in patients with HER2-mutant NSCLC.
Collapse
Affiliation(s)
- Ioannis A. Vathiotis
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Konstantinos N. Syrigos
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Samonis
- First Oncology Department, Metropolitan Hospital, 18547 Athens, Greece
- Correspondence:
| |
Collapse
|
41
|
Sayer MR, Mambetsariev I, Lu KH, Wong CW, Duche A, Beuttler R, Fricke J, Pharoan R, Arvanitis L, Eftekhari Z, Amini A, Koczywas M, Massarelli E, Roosan MR, Salgia R. Predicting survival of NSCLC patients treated with immune checkpoint inhibitors: Impact and timing of immune-related adverse events and prior tyrosine kinase inhibitor therapy. Front Oncol 2023; 13:1064169. [PMID: 36860308 PMCID: PMC9968834 DOI: 10.3389/fonc.2023.1064169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) produce a broad spectrum of immune-related adverse events (irAEs) affecting various organ systems. While ICIs are established as a therapeutic option in non-small cell lung cancer (NSCLC) treatment, most patients receiving ICI relapse. Additionally, the role of ICIs on survival in patients receiving prior targeted tyrosine kinase inhibitor (TKI) therapy has not been well-defined. Objective To investigate the impact of irAEs, the relative time of occurrence, and prior TKI therapy to predict clinical outcomes in NSCLC patients treated with ICIs. Methods A single center retrospective cohort study identified 354 adult patients with NSCLC receiving ICI therapy between 2014 and 2018. Survival analysis utilized overall survival (OS) and real-world progression free survival (rwPFS) outcomes. Model performance matrices for predicting 1-year OS and 6-month rwPFS using linear regression baseline, optimal, and machine learning modeling approaches. Results Patients experiencing an irAE were found to have a significantly longer OS and rwPFS compared to patients who did not (median OS 25.1 vs. 11.1 months; hazard ratio [HR] 0.51, confidence interval [CI] 0.39- 0.68, P-value <0.001, median rwPFS 5.7 months vs. 2.3; HR 0.52, CI 0.41- 0.66, P-value <0.001, respectively). Patients who received TKI therapy before initiation of ICI experienced significantly shorter OS than patients without prior TKI therapy (median OS 7.6 months vs. 18.5 months; P-value < 0.01). After adjusting for other variables, irAEs and prior TKI therapy significantly impacted OS and rwPFS. Lastly, the performances of models implementing logistic regression and machine learning approaches were comparable in predicting 1-year OS and 6-month rwPFS. Conclusion The occurrence of irAEs, the timing of the events, and prior TKI therapy were significant predictors of survival in NSCLC patients on ICI therapy. Therefore, our study supports future prospective studies to investigate the impact of irAEs, and sequence of therapy on the survival of NSCLC patients taking ICIs.
Collapse
Affiliation(s)
- Michael R. Sayer
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Kun-Han Lu
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Chi Wah Wong
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Ashley Duche
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Richard Beuttler
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebecca Pharoan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, United States
| | - Zahra Eftekhari
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Marianna Koczywas
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Moom Rahman Roosan
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA, United States,*Correspondence: Moom Rahman Roosan, ; Ravi Salgia,
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States,*Correspondence: Moom Rahman Roosan, ; Ravi Salgia,
| |
Collapse
|
42
|
Fang Y, Fan J, Yan C. Treatment Protocols in the Efficacy and Safety of Anti-EGFR Medicines in Combination with Standard Therapy for Patients with Nasopharyngeal Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9477442. [PMID: 36794258 PMCID: PMC9925253 DOI: 10.1155/2023/9477442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 02/08/2023]
Abstract
Objective This study was conducted to compare the efficacy of standard therapy (radiotherapy/RT/CT) with that of antiepidermal growth factor receptor (anti-EGFR) monoclonal antibody (NPC) therapy in patients with advanced nasopharyngeal cancer. Methods A meta-analysis was performed to meet the objective of this study. The English databases PubMed, Cochrane Library, and Web of Science were searched. The literature review compared anti-EGFR-targeted therapy with conventional therapy practices. The main outcome measure was overall survival (OS). Secondary goals were progression-free survival (PFS), locoregional recurrence-free survival (LRRFS), distant metastasis-free survival (DMFS), and adverse events (grade 3). Results The database search resulted in 11 studies, with a total of 4219 participants. It was found that combining an anti-EGFR regimen with conventional therapy did not enhance OS (hazard ratio [HR] = 1.18; 95%confidence interval [CI] = 0.51-2.40; p = 0.70) or PFS appreciably (HR = 0.95; 95%CI = 0.51-1.48; p = 0.88) in patients with nasopharyngeal carcinoma. While LRRFS increased considerably (HR = 0.70; 95%CI = 0.67-1.00; p = 0.01), the combined regimen did not improve DMFS (HR = 0.86; 95%CI = 0.61-1.12; p = 0.36). Treatment-related adverse events included haematological toxicity (RR = 0.2; 95%CI = 0.08-0.45; p = 0.01), cutaneous reactions (RR = 7.05; 95%CI = 2.15-23.09; p = 0.01), and mucositis (RR = 1.96; 95%CI = 1.58-2.09; p = 0.01). Conclusions Individuals who have nasopharyngeal cancer do not have an increased chance of surviving until a local recurrence of their disease if they get normal therapy in addition to an anti-EGFR regimen. However, this combination does not enhance overall survival. On the other hand, this factor adds to an increase in the number of adverse effects.
Collapse
Affiliation(s)
- Yakun Fang
- Obstetrics Department, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Jinlei Fan
- Obstetrics Department, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266035, China
| |
Collapse
|
43
|
Ding J, Ding X, Leng Z. Immunotherapy-based therapy as a promising treatment for EGFR-mutant advanced non-small cell lung cancer patients after EGFR-TKI resistance. Expert Rev Anticancer Ther 2023; 23:187-198. [PMID: 36655635 DOI: 10.1080/14737140.2023.2170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Traditionally, epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) has been regarded as a cold tumor based on the immunosuppressive tumor immune microenvironment (TIME). However, recent studies have found that EGFR-tyrosine kinase inhibitor (EGFR-TKI) treatment could shift host immunity from immunosuppressive to immunosupportive TIME, which has renewed hopes of immunotherapy. AREAS COVERED In this review, we highlight five main immunotherapy-based therapies for patients after EGFR-TKI failure, including safety and efficacy data from prospective and retrospective clinical studies. EXPERT OPINION The efficacy of immunotherapy alone is extremely limited. Immunotherapy plus chemotherapy show an ORR of 29.5%-59.3% and an mPFS of about 7 months. There is still scarce evidence for immunotherapy plus antiangiogenesis therapy. A combination of immunotherapy with EGFR-TKIs exhibits higher treatment-related adverse events and lower clinical outcomes compared to EGFR-TKI alone. Importantly, immunotherapy plus antiangiogenesis and chemotherapy achieves an mPFS of 6.9-10.2 months. In general, the strategy of combining immunotherapy with chemotherapy and/or an antiangiogenic drug is a novel and promising method for treating advanced NSCLC after EGFR-TKI failure. Therefore, the dominant population of EGFR-TKI resistant patients were characterized by EGFR uncommon mutation, EGFR L858R mutation, PD-L1 ≥ 50%, prior antiangiogenic drugs, and negative T790 M mutation for immunotherapy-based therapy.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Jiujiang University Affiliated Hospital, No. 57#, Lufeng East Str., Xunyang District, 332000, Jiujiang, Jiangxi, China
| | - Xinjing Ding
- Department of Oncology, First Affiliated of Nanchang University, No. 17#, Yongwai Zheng Str., Donghu District, 330006, Nanchang, Jiangxi, China
| | - Zhaohui Leng
- Department of Hematology & Oncology, Jiujiang University Affiliated Hospital, No. 57#, Lufeng East Str., Xunyang District, 332000, Jiujiang, Jiangxi, China
| |
Collapse
|
44
|
Nakasuka T, Ohashi K, Nishii K, Hirabae A, Okawa S, Tomonobu N, Takada K, Ando C, Watanabe H, Makimoto G, Ninomiya K, Fujii M, Kubo T, Ichihara E, Hotta K, Tabata M, Kumon H, Maeda Y, Kiura K. PD-1 blockade augments CD8 + T cell dependent antitumor immunity triggered by Ad-SGE-REIC in Egfr-mutant lung cancer. Lung Cancer 2023; 178:1-10. [PMID: 36753780 DOI: 10.1016/j.lungcan.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES No immunotherapeutic protocol has yet been established in never-smoking patients with lung cancer harboring driver oncogenic mutations, such as epidermal growth factor receptor (EGFR) mutations. The immunostimulatory effect of Ad-REIC, a genetically engineered adenovirus vector expressing a tumor suppressor gene, reduced expression in immortalized cells (REIC), has been investigated in clinical trials for various solid tumors. However, the immunostimulatory effect of the Ad-REIC in EGFR-mutant lung cancer with a non-inflamed tumor microenvironment (TME) has not been explored. MATERIALS AND METHODS We used a syngeneic mouse model developed by transplanting Egfr-mutant lung cancer cells into single or double flanks of C57BL/6J mice. Ad-SGE-REIC, a 2nd-generation vector with an enhancer sequence, was injected only into the tumors from one flank, and its antitumor effects were assessed. Tumor-infiltrating cells were evaluated using immunohistochemistry or flow cytometry. The synergistic effects of Ad-SGE-REIC and PD-1 blockade were also examined. RESULTS Injection of Ad-SGE-REIC into one side of the tumor induced not only a local antitumor effect but also a bystander abscopal effect in the non-injected tumor, located on the other flank. The number of PD-1+CD8+ T cells increased in both injected and non-injected tumors. PD-1 blockade augmented the local and abscopal antitumor effects of Ad-SGE-REIC by increasing the number of CD8+ T cells in the TME of Egfr-mutant tumors. Depletion of CD8+ cells reverted the antitumor effect, suggesting they contribute to antitumor immunity. CONCLUSION Ad-SGE-REIC induced systemic antitumor immunity by modifying the TME status from non-inflamed to inflamed, with infiltration of CD8+ T cells. Additionally, in Egfr-mutant lung cancer, this effect was enhanced by PD-1 blockade. These findings pave the way to establish a novel combined immunotherapy strategy with Ad-SGE-REIC and anti-PD-1 antibody for lung cancer with a non-inflamed TME.
Collapse
Affiliation(s)
- Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Hirabae
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sachi Okawa
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Takada
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chihiro Ando
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromi Watanabe
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Go Makimoto
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanori Fujii
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Eiki Ichihara
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
45
|
Li K, Mao S, Li X, Zhao H, Wang J, Wang C, Wu L, Zhang K, Yang H, Jin M, Zhou Z, Wang J, Huang G, Xie W. Frizzled-7-targeting antibody (SHH002-hu1) potently suppresses non-small-cell lung cancer via Wnt/β-catenin signaling. Cancer Sci 2023; 114:2109-2122. [PMID: 36625184 PMCID: PMC10154902 DOI: 10.1111/cas.15721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the deadliest cancers worldwide, and metastasis is considered one of the leading causes of treatment failure in NSCLC. Wnt/β-catenin signaling is crucially involved in epithelial-mesenchymal transition (EMT), a crucial factor in promoting metastasis, and also contributes to resistance developed by NSCLC to targeted agents. Frizzled-7 (Fzd7), a critical receptor of Wnt/β-catenin signaling, is aberrantly expressed in NSCLC and has been confirmed to be positively correlated with poor clinical outcomes. SHH002-hu1, a humanized antibody targeting Fzd7, was previously successfully generated by our group. Here, we studied the anti-tumor effects of SHH002-hu1 against NSCLC and revealed the underlying mechanism. First, immunofluorescence (IF) and near-infrared (NIR) imaging assays showed that SHH002-hu1 specifically binds Fzd7+ NSCLC cells and targets NSCLC tissues. Wound healing and transwell invasion assays indicated that SHH002-hu1 significantly inhibits the migration and invasion of NSCLC cells. Subsequently, TOP-FLASH/FOP-FLASH luciferase reporter, IF, and western blot assays validated that SHH002-hu1 effectively suppresses the activation of Wnt/β-catenin signaling, and further attenuates the EMT of NSCLC cells. Finally, the subcutaneous xenotransplanted tumor model of A549/H1975, as well as the popliteal lymph node (LN) metastasis model, was established, and SHH002-hu1 was demonstrated to inhibit the growth of NSCLC xenografts and suppress LN metastasis of NSCLC. Above all, SHH002-hu1 with selectivity toward Fzd7+ NSCLC and the potential of inhibiting invasion and metastasis of NSCLC via disrupting Wnt/β-catenin signaling, is indicated as a good candidate for the targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Kanghua Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuyang Mao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xingxing Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huijie Zhao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingyi Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chenyue Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lisha Wu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wei Xie
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
46
|
Wang R, Zhang X, He C, Guo W. An effective prognostic model for assessing prognosis of non-small cell lung cancer with brain metastases. Front Genet 2023; 14:1156322. [PMID: 37124617 PMCID: PMC10143500 DOI: 10.3389/fgene.2023.1156322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Brain metastasis, with an incidence of more than 30%, is a common complication of non-small cell lung cancer (NSCLC). Therefore, there is an urgent need for an assessment method that can effectively predict brain metastases in NSCLC and help understand its mechanism. Materials and methods: GSE30219, GSE31210, GSE37745, and GSE50081 datasets were downloaded from the GEO database and integrated into a dataset (GSE). The integrated dataset was divided into the training and test datasets. TCGA-NSCLC dataset was regarded as an independent verification dataset. Here, the limma R package was used to identify the differentially expression genes (DEGs). Importantly, the RiskScore model was constructed using univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis. Moreover, we explored in detail the tumor mutational signature, immune signature, and sensitivity to treatment of brain metastases in NSCLC. Finally, a nomogram was built using the rms package. Results: First, 472 DEGs associated with brain metastases in NSCLC were obtained, which were closely associated with cancer-associated pathways. Interestingly, a RiskScore model was constructed using 11 genes from 472 DEGs, and the robustness was confirmed in GSE test, entire GSE, and TCGA datasets. Samples in the low RiskScore group had a higher gene mutation score and lower immunoinfiltration status. Moreover, we found that the patients in the low RiskScore group were more sensitive to the four chemotherapy drugs. In addition, the predictive nomogram model was able to effectively predict the outcome of patients through appropriate RiskScore stratification. Conclusion: The prognostic RiskScore model we established has high prediction accuracy and survival prediction ability for brain metastases in NSCLC.
Collapse
Affiliation(s)
- Rong Wang
- Respiratory department, Shanxi Cancer Hospital, Taiyuan, China
| | - Xing Zhang
- Respiratory department, Shanxi Cancer Hospital, Taiyuan, China
| | - Changshou He
- Department of Oncology, HaploX Biotechnology, Shenzhen, China
| | - Wei Guo
- Respiratory department, Shanxi Cancer Hospital, Taiyuan, China
- *Correspondence: Wei Guo,
| |
Collapse
|
47
|
Pan-Cancer Landscape of NEIL3 in Tumor Microenvironment: A Promising Predictor for Chemotherapy and Immunotherapy. Cancers (Basel) 2022; 15:cancers15010109. [PMID: 36612106 PMCID: PMC9817722 DOI: 10.3390/cancers15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
With the aim of enhancing the understanding of NEIL3 in prognosis prediction and therapy administration, we conducted a pan-cancer landscape analysis on NEIL3. The mutation characteristics, survival patterns, and immune features of NEIL3 across cancers were analyzed. Western blotting, qPCR, and immunohistochemistry were conducted to validate the bioinformatics results. The correlation between NEIL3 and chemotherapeutic drugs, as well as immunotherapies, was estimated. NEIL3 was identified as an oncogene with prognostic value in predicting clinical outcomes in multiple cancers. Combined with the neoantigen, tumor mutational burden (TMB), and microsatellite instability (MSI) results, a strong relationship between NEIL3 and the TME was observed. NEIL3 was demonstrated to be closely associated with multiple immune parameters, including infiltrating immunocytes and pro-inflammatory chemokines, which was verified by experiments. More importantly, patients with a higher expression of NEIL3 were revealed to be more sensitive to chemotherapeutic regimens and immune checkpoint inhibitors in selected cancers, implying that NEIL3 may be an indicator for therapeutic administration. Our study indicated NEIL3 has a strong association with the immune microenvironment and phenotypic changes in certain types of cancers, which facilitated the improved understanding of NEIL3 across cancers and highlighted the potential for clinical application of NEIL3 in precision medical stratification.
Collapse
|
48
|
Li H, Zhang Y, Xu Y, Huang Z, Cheng G, Xie M, Zhou Z, Yu Y, Xi W, Fan Y. Tumor immune microenvironment and immunotherapy efficacy in BRAF mutation non-small-cell lung cancer. Cell Death Dis 2022; 13:1064. [PMID: 36543792 PMCID: PMC9772302 DOI: 10.1038/s41419-022-05510-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Previous small-size studies reported BRAF-mutated NSCLC patients have comparable sensitivity to immune checkpoint inhibitors (ICIs). However, how BRAF mutation affects the tumor immune microenvironment (TIME) is unknown. We performed Nanostring-panel RNA sequencing to evaluate TIME in 57 BRAF mutated and wild-type (WT) NSCLC specimens (cohort A). The efficacy of ICI monotherapy or combined therapies was determined in 417 patients with WT and BRAF mutated NSCLC (cohort B). We found that BRAF-mutant tumors had similar ratios of CD8+ T cells to Tregs, the balance of cytotoxicity gene expression signatures and immune suppressive features, and similar ICI-response-related biomarkers to WT NSCLC. A similar TIME pattern was observed between the BRAF V600E and Non-V600E subgroups of NSCLC. The further retrospective study confirmed that treatment with ICI monotherapy or combined therapies resulted in similar overall survival (OS) (HR: 0.85; 95% CI, 0.56 to 1.30; p = 0.47) and progress-free survival (PFS) (HR: 1.02; 95% CI, 0.72 to 1.44; p = 0.91) of patients with WT (n = 358) and BRAF mutant (n = 59) NSCLC. Similarly, both patients with BRAF V600E or Non-V600E NSCLC had similar responses to immunotherapy. Our findings support that BRAF mutation did not modulate TIME in NSCLC and therapeutic responses to ICIs. Patients with NSCLC harboring BRAF mutation should not be denied treatment with ICIs.
Collapse
Affiliation(s)
- Hui Li
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Yongchang Zhang
- grid.216417.70000 0001 0379 7164Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410022 China
| | - Yanjun Xu
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Zhiyu Huang
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Guoping Cheng
- grid.9227.e0000000119573309Department of Pathology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Mingyin Xie
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Zichao Zhou
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Yangyang Yu
- grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu 210042 China
| | - Wenjing Xi
- grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu 210042 China
| | - Yun Fan
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| |
Collapse
|
49
|
Qiao M, Zhou F, Liu X, Jiang T, Wang H, Jia Y, Li X, Zhao C, Cheng L, Chen X, Ren S, Liu H, Zhou C. Interleukin-10 induces expression of CD39 on CD8+T cells to potentiate anti-PD1 efficacy in EGFR-mutated non-small cell lung cancer. J Immunother Cancer 2022; 10:jitc-2022-005436. [PMID: 36543373 PMCID: PMC9772697 DOI: 10.1136/jitc-2022-005436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anti-PD-1(L1) therapies are less efficacious in patients with EGFR-mutated non-small-cell lung cancer. However, the underlying mechanism is poorly understood. METHODS The characteristics of T cells in EGFR-mutated and wild-type tumors were analyzed based on The Cancer Genome Atlas database and clinical samples. Plasma levels of 8 T-cell-related cytokines were evaluated and its association with immunotherapy efficacy were explored. Association between EGFR signaling pathway and IL-10 was examined through tumor cell lines and clinical tumor samples. In vitro restimulation model of human CD8+T cells isolated from peripheral blood was used to analyze the impact of IL-10 on T cells. Doxycycline-inducible transgenic EGFRL858R mouse models were used to investigate the efficacy of combining recombinant mouse IL-10 protein and PD-1 blockade and its underlying mechanism in vivo. RESULTS EGFR-mutated tumors showed a lack of CD8+T cell infiltration and impaired CD8+T cell cytotoxic function. The incompetent CD8+T cells in EGFR-mutated tumors were characterized as absence of CD39 expression, which defined hallmarks of cytotoxic and exhausted features and could not be reinvigorated by anti-PD-1(L1) treatment. Instead, CD39 expression defined functional states of CD8+T cells and was associated with the therapeutic response of anti-PD-1(L1) therapies. Mechanically, IL-10 upregulated CD39 expression and was limited in EGFR-mutated tumors. IL-10 induced hallmarks of CD8+T cells immunity in CD39-dependent manner. Using autochthonous EGFR L858R-driven lung cancer mouse models, combining recombinant mouse IL-10 protein and PD-1 blockade optimized antitumor effects in EGFR-mutated lung tumors. CONCLUSIONS Our study suggested that owing to low level of IL-10 to induce the expression of CD39 on CD8+T cells, fewer phenotypically cytotoxic and exhausted CD39+CD8+T cells in EGFR-mutated tumors could be potentially reinvigorated by anti-PD-1(L1) treatment. Hence, IL-10 could potentially serve as a cytokine-based strategy to enhance efficacy of anti-PD-1(L1) treatment in EGFR-mutated tumors.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China,Department of Medical Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hongcheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Zhang W, Shang X, Liu N, Ma X, Yang R, Xia H, Zhang Y, Zheng Q, Wang X, Liu Y. ANK2 as a novel predictive biomarker for immune checkpoint inhibitors and its correlation with antitumor immunity in lung adenocarcinoma. BMC Pulm Med 2022; 22:483. [PMID: 36539782 PMCID: PMC9768990 DOI: 10.1186/s12890-022-02279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been shown to significantly improve the survival of patients with advanced lung adenocarcinoma (LUAD). However, only limited proportion of patients could benefit from ICIs. Novel biomarkers with strong predictability are needed for clinicians to maximize the efficacy of ICIs. Our study aimed to identify potential biomarkers predicting ICIs efficacy in LUAD. METHODS The Cancer Genome Atlas (TCGA) PanCancer Atlas studies in cBioportal were used to evaluate the mutation frequency of ANK2 across multiple cancers. Clinical and mutational data for LUAD from ICIs-treated cohorts (Hellmann et al. and Rizvi et al.) were collected to explore the correlation between ANK2 mutation and clinical outcomes. In addition, the relationship between ANK2 expression and clinical outcomes was analyzed using LUAD data from TCGA and Gene Expression Omnibus. Furthermore, the impact of ANK2 mutation and expression on the tumor immune microenvironment of LUAD was analyzed using TCGA and TISIDB databases. RESULTS Patients with ANK2 mutation benefited more from ICIs. In ICIs-treated cohort, prolonged progression-free survival (PFS) (median PFS: NR (not reached) vs. 5.42 months, HR (hazard ratio) 0.31, 95% CI 0.18-0.54; P = 0.0037), improved complete response rate (17.65% vs. 1.85%, P = 0.0402), and improved objective response rate (64.71% vs. 24.07%, P = 0.0033) were observed in LUAD patients with ANK2 mutation compared to their wild-type counterparts. Regarding ANK2 expression, it was observed that ANK2 expression was decreased in LUAD (P < 0.05) and a higher level of ANK2 expression was associated with longer overall survival (HR 0.69, 95% CI 0.52-0.92; P = 0.012) in TCGA LUAD cohort. Moreover, ANK2 mutation or higher ANK2 expression correlated with enhanced antitumor immunity and "hot" tumor microenvironment in LUAD, which could be potential mechanisms that ANK2 mutation facilitated ICIs therapy and patients with higher ANK2 expression survived longer. CONCLUSION Our findings suggest that ANK2 mutation or increased ANK2 expression may serve as a favorable biomarker for the efficacy of ICIs in patients with LUAD.
Collapse
Affiliation(s)
- Wengang Zhang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xiaoling Shang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Ni Liu
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xinchun Ma
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Rui Yang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Handai Xia
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Yuqing Zhang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Qi Zheng
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xiuwen Wang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Yanguo Liu
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| |
Collapse
|