1
|
Moridi H, Gh AB. Functionalization of a cast NaAl/binary ZnO/SiO 2 nanohybrid with amine and Schiff base ligands as an adsorbent of divalent cations in water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28454-28473. [PMID: 38539000 DOI: 10.1007/s11356-024-32148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 04/30/2024]
Abstract
Casting method was used to synthesize a novel sodium alginate nanohybrid functionalized with aminated ZnO/SiO2 Schiff base for adsorption of nickel (Ni2+) and copper (Cu2+) divalent cations in single and binary water systems. The cast Schiff base nanohybrids were investigated using FESEM, XRD, BET, FTIR, TGA, and XPS analyses. The influence of unfunctionalized binary ZnO/SiO2 nano oxides and aminated Schiff base ligands formed by the reaction between salicylaldehyde and O-phenylenediamine on the adsorption of Ni2+ and Cu2+ cations was evaluated. The results confirmed that the aminated Schiff base ligands led to a higher adsorption ability of the cast nanohybrids containing interaction of divalent cations with nitrogen and oxygen atoms, as well as carboxyl and hydroxyl groups. The adsorption kinetics and isotherm for both cations followed a double-exponential model and the Redlich-Peterson model, respectively. The maximum monolayer capacity was found to be 249.8 mg/g for Cu2+ cation and 96.4 mg/g for Ni2+ cation. Thermodynamic analysis revealed an endothermic and spontaneous adsorption process with an increase in entropy. Furthermore, the synthesized Schiff base adsorbent could be easily reused over five times. The simultaneous adsorption in binary system exhibited a higher adsorption selectivity of the cast Schiff base nanohybrid for Cu2+ cation compared to Ni2+ cation. It was found that the removal percentages of Cu2+ and Ni2+ from industrial electroplating wastewater were 91.3 and 64.5%, respectively. Lastly, cost analysis of the synthesized nanohybrid was investigated.
Collapse
Affiliation(s)
- Hadis Moridi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azar Bagheri Gh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Davoodbeygi Y, Askari M, Salehi E, Kheirieh S. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117577. [PMID: 36848812 DOI: 10.1016/j.jenvman.2023.117577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In the era of rapid and conspicuous progress of water treatment technologies, combined adsorption and membrane filtration systems have gained great attention as a novel and efficient method for contaminant removal from aqueous phase. Further development of these techniques for water/wastewater treatment applications will be promising for the recovery of water resources as well as reducing the water tension throughout the world. This review introduces the state-of-the-art on the capabilities of the combined adsorption-membrane filtration systems for water and wastewater treatment applications. Technical information including employed materials, superiorities, operational limitations, process sustainability and upgradeing strategies for two general configurations i.e. hybrid (pre-adsorption and post-adsorption) and integrated (film adsorbents, low pressure membrane-adsorption coupling and membrane-adsorption bioreactors) systems has been surveyed and presented. Having a systematic look at the fundamentals of hybridization/integration of the two well-established and efficient separation methods as well as spotlighting the current status and prospectives of the combination strategies, this work will be valuable to all the interested researchers working on design and development of cutting-edge wastewater/water treatment techniques. This review also draws a clear roadmap for either decision making and choosing the best alternative for a specific target in water treatment or making a plan for further enhancement and scale-up of an available strategy.
Collapse
Affiliation(s)
- Yegane Davoodbeygi
- Department of Chemical Engineering, University of Hormozgan, Bandar Abbas, Iran; Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Mahdi Askari
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| | - Sareh Kheirieh
- Department of Chemical Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
3
|
Kumar A, Thakur A, Panesar PS. A review on the industrial wastewater with the efficient treatment techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Malafatti JOD, Tavares FA, Neves TR, Mascarenhas BC, Quaranta S, Paris EC. Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2429. [PMID: 36984308 PMCID: PMC10051336 DOI: 10.3390/ma16062429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Industrial effluents and wastewater treatment have been a mainstay of environmental preservation and remediation for the last decade. Silica nanoparticles (SiO2) obtained from rice husk (RH) are an alternative to producing low-cost adsorbent and agriculture waste recovery. One adsorption challenge is facilitating the adsorbate separation and reuse cycle from aqueous medium. Thus, the present work employs SiO2 supported on polylactic acid (PLA) nanofibers obtained by the electrospinning method for Rhodamine B (RhB) dye adsorption. The silica surface was modified with trimethylsilyl chloride (TMCS) to increase affinity towards organic compounds. As a result, the silanized surface of the silica from rice husk (RHSil) promoted an increase in dye adsorption attributed to the hydrophobic properties. The PLA fibers containing 40% SiO2 (w w-1) showed about 85-95% capacity adsorption. The pseudo-first-order kinetic model was demonstrated to be the best model for PLA:SiO2 RHSil nanocomposites, exhibiting a 1.2956 mg g-1 adsorption capacity and 0.01404 min-1 kinetic constant (k1) value. In the reuse assay, PLA:SiO2 membranes preserved their adsorption activity after three consecutive adsorption cycles, with a value superior to 60%. Therefore, PLA:SiO2 nanocomposites from agricultural waste are an alternative to "low-cost/low-end" treatments and can be used in traditional treatment systems to improve dye removal from contaminated waters.
Collapse
Affiliation(s)
| | | | - Tainara Ramos Neves
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | | | - Simone Quaranta
- Institute for the Study of Nanostructured Materials, Italian National Research Council (ISMN–CNR), 00010 Rome, Italy
| | - Elaine Cristina Paris
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, Brazil
| |
Collapse
|
5
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
6
|
Liu Z, Qin L, Liu S, Zhang J, Wu J, Liang X. Superhydrophobic and highly moisture-resistant PVA@EC composite membrane for air purification. RSC Adv 2022; 12:34921-34930. [PMID: 36540249 PMCID: PMC9727828 DOI: 10.1039/d2ra05798k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 04/12/2024] Open
Abstract
Electrospun fiber membranes have great potential in the field of air filtration because of their high porosity and small pore size. Conventional air filtration membranes are hydrophilic, leading to weak moisture-barrier properties, which hinders their application in high-humidity environments. In this study, eugenol was added to polyvinyl alcohol and ethyl cellulose (EC) for electrospinning and electrospraying, respectively, of superhydrophobic bilayer composite fiber membranes to efficiently filter particulate matter (PM) in air. Owing to its surface microstructure, electrosprayed EC increased the water contact angle of the PVA membrane from 142.8 to 151.1°. More importantly, the composite air-filter membrane showed a low filtration pressure drop (168.1 Pa) and exhibited high filtration efficiencies of 99.74 and 99.77% for PM1.0 and PM2.5, respectively, and their respective quality factors were 0.0351 and 0.0358 Pa-1. At the same time, the filtration performance of the air filtration membrane remained above 99% at high air humidity. This work reports composite membranes that can effectively capture PM of various sizes and thus may provide a reference for the manufacturing of green air filters for high-humidity environments.
Collapse
Affiliation(s)
- Zhiqian Liu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Linli Qin
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Sijia Liu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Jing Zhang
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Junhua Wu
- Guangxi Academy of Sciences Nanning 530000 P. R. China
| | - Xinquan Liang
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| |
Collapse
|
7
|
Amino-modified polyvinyl alcohol fibers for the efficient removal of uranium from actual uranium-containing laundry wastewater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Synthesis, characterization, and application of polypyrrole/Fe3O4 nanocomposite for removal of Ni(II) ions from water and wastewaters. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, Chong KY, Khoo KS, Ng HS, Show PL. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. CHEMOSPHERE 2022; 303:135146. [PMID: 35636612 DOI: 10.1016/j.chemosphere.2022.135146] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This review provides a quantitative description of the nano-adsorbent processing and its viability against wastewater detoxification by extracting heavy metal ions. The impact of nano-adsorbent functionalities on specific essential attributes such as the surface area, segregation, and adsorption capacity were comprehensively evaluated. A detailed analysis has been presented on the characteristics of nanomaterials through their limited resistance to adsorb some heavy metal ions. Experimental variables such as the adsorbent dosage, pH, substrate concentration, response duration, temperature, and electrostatic force that influence the uptake of metal ions have been studied. Besides, separate models for the adsorption kinetics and isothermal adsorption have been investigated to understand the mechanism behind adsorption. Here, we reviewed the different adsorbent materials with nano-based techniques for the removal of heavy metals from wastewater and especially highlighted the nano adsorption technique. The influencing factors such as pH, temperature, dosage time, sorbent dosage, adsorption capacities, ion concentration, and mechanisms related to the removal of heavy metals by nano composites are highlighted. Lastly, the application potentials and challenges of nano adsorption for environmental remediation are discussed. This critical review would benefit engineers, chemists, and environmental scientists involved in the utilization of nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Kar Yeen Chong
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bahmanova FN. Concentration and Determination of Uranium(VI) by a Sorbent Containing Fragments of p-Aminobenzoic Acid. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362222030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Poly(N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogel as an efficient metal ion adsorbent of aqueous systems. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-01010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Wang C, Zou L, Wang H, Wang Y, Chen D. Plasticizing Effect of Ionic Liquid on Poly (vinyl alcohol) with Different Degrees of Polymerization. ChemistrySelect 2022. [DOI: 10.1002/slct.202104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P.R. China
| | - Liming Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P.R. China
- Engineering Research Center of Technical Textiles Ministry of Education Donghua University Shanghai 201620 P.R. China
| | - Huajun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P.R. China
| | - Yanli Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P.R. China
| | - Deqiang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P.R. China
| |
Collapse
|
14
|
Bansal P, Batra R, Yadav R, Purwar R. Electrospun polyacrylonitrile nanofibrous membranes supported with montmorillonite for efficient
PM2
.5 filtration and adsorption of Cu (
II
) ions. J Appl Polym Sci 2022. [DOI: 10.1002/app.51582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Priya Bansal
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Radhika Batra
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Reetu Yadav
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
15
|
Xia X, Dong F, Nie X, Pan N, Liu C, Ding C, Wang J, Cheng W, He H, Sun S, Zhang Y. Efficient adsorption of U(VI) using in low-level radioactive wastewater containing organic matter by amino groups modified polyacrylonitrile fibers. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
El-Aswar EI, Ramadan H, Elkik H, Taha AG. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113908. [PMID: 34626949 DOI: 10.1016/j.jenvman.2021.113908] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The direct discharge of significant amounts of polluted water into water bodies causes adverse ecological and human health effects. This severe deterioration in water quality creates significant challenges to meet the growing demand for clean water. Therefore, the world urgently needs environmentally friendly advanced technology to overcome this global crisis. In this regard, nanofiber-based membrane filtration is a promising technique in wastewater remediation because of their huge surface area, extremely porous structure, amenable pore size/pore size distribution, variety of material choices, and flexibility to modification with other functional materials. However, despite their unique properties, fouling, poor mechanical properties, shrinkage, and deformation are major drawbacks of nanofiber membranes for treating wastewater. This review presents a comprehensive overview of nanofiber membranes' fabrication and function in water purification applications as well as providing novel approaches to overcoming/alleviating the mentioned disadvantages. The review first presents nanofiber membrane preparation methods, focusing on electrospinning as a versatile and viable technique alongside discussing the parameters controlling nanofiber morphology. Afterward, the functionalization of nanofiber membranes by combining them with other nanomaterials, such as metal and metal-oxide nanoparticles, carbon nanotubes, metal-organic frameworks, and biomolecules, were demonstrated and discussed. In addition, nanofiber membranes functionalized with microorganisms were highlighted. Finally, we introduced and discussed in detail the most relevant and recent advances in nanofiber applications in wastewater treatment in the context of removing different pollutants (e.g., heavy metals, nutrients, radioactive elements, pharmaceuticals, and personal care products, dyes, and pesticides). Moreover, the promising antimicrobial ability of nanofiber membranes in removing microorganisms from wastewater has been fully underscored. We believe this comprehensive review could provide researchers with preliminary data and guide both researchers and producers engaged in the nanofiber membrane industry, letting them focus on the research gaps in wastewater treatment.
Collapse
Affiliation(s)
- Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring, National Water Research Center, El-Kanater, Qalyubiyah, 13621, Egypt.
| | - Hassan Ramadan
- Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta, 31733, Egypt
| | - Hussin Elkik
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
17
|
Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. CHEMOSPHERE 2022; 287:132369. [PMID: 34582930 DOI: 10.1016/j.chemosphere.2021.132369] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - T A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey
| | - Yasin Orooji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
18
|
Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Pham VV, Nguyen XP. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. CHEMOSPHERE 2022; 287:131959. [PMID: 34454224 DOI: 10.1016/j.chemosphere.2021.131959] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of heavy metal ions found in waterways near industrial zones are often exceed the prescribed limits, posing a continued danger to the environment and public health. Therefore, greater attention has been devoted into finding the efficient solutions for adsorbing heavy metal ions. This review paper focuses on the synthesis of carbon nanotubes (CNTs) from biomass and their application in the removal of heavy metals from aqueous solutions. Techniques to produce CNTs, benefits of modification with various functional groups to enhance sorption uptake, effects of operating parameters, and adsorption mechanisms are reviewed. Adsorption occurs via physical adsorption, electrostatic interaction, surface complexation, and interaction between functional groups and heavy metal ions. Moreover, factors such as pH level, CNTs dosage, duration, temperature, ionic strength, and surface property of adsorbents have been identified as the common factors influencing the adsorption of heavy metals. The oxygenated functional groups initially present on the surface of the modified CNTs are responsible towards the adsorption enhancement of commonly-encountered heavy metals such as Pb2+, Cu2+, Cd2+, Co2+, Zn2+, Ni2+, Hg2+, and Cr6+. Despite the recent advances in the application of CNTs in environmental clean-up and pollution treatment have been demonstrated, major obstacles of CNTs such as high synthesis cost, the agglomeration in the post-treated solutions and the secondary pollution from chemicals in the surface modification, should be critically addressed in the future studies for successful large-scale applications of CNTs.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia.
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Tien Long Banh
- Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
Preparation of cast chitosan/polyether sulfone/Fe3O4 modified with mercapto and amine groups as a novel nanohybrid adsorbent for heavy metal removal from single and binary aqueous systems. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04582-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Ezati F, Sepehr E, Ahmadi F. The efficiency of nano-TiO 2 and γ-Al 2O 3 in copper removal from aqueous solution by characterization and adsorption study. Sci Rep 2021; 11:18831. [PMID: 34552109 PMCID: PMC8458400 DOI: 10.1038/s41598-021-98051-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022] Open
Abstract
Water pollution is a major global challenge given the increasing growth in the industry and the human population. The present study aims to investigate the efficiency of TiO2 and γ-Al2O3 nanoadsorbents for removal of copper (Cu(II)) from aqueous solution as influenced by different chemical factors including pH, initial concentration, background electrolyte and, ionic strength. The batch adsorption experiment was performed according to standard experimental methods. Various isotherm models (Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich) were fitted to the equilibrium data. According to geochemical modeling data, adsorption was a predominant mechanism for Cu(II) removal from aqueous solution. Calculated isotherm equations parameters were evidence of the physical adsorption mechanism of Cu(II) onto the surface of the nanoparticles. The Freundlich adsorption isotherm model could well fit the experimental equilibrium data at different pH values. The maximum monolayer adsorption capacity of TiO2 and γ-Al2O3 nanosorbents were found to 9288 and 3607 mg kg-1 at the highest pH value (pH 8) and the highest initial Cu(II) concentration (80 mg L-1) respectively. Copper )Cu(II) (removal efficiency with TiO2 and γ-Al2O3 nanoparticles increased by increasing pH. Copper )Cu(II) (adsorption deceased by increasing ionic strength. The maximum Cu(II) adsorption (4510 mg kg-1) with TiO2 nanoparticles was found at 0.01 M ionic strength in the presence of NaCl. Thermodynamic calculations show the adsorption of Cu(II) ions onto the nanoparticles was spontaneous in nature. Titanium oxide (TiO2) nanosorbents could, therefore, serve as an efficient and low-cost nanomaterial for the remediation of Cu(II) ions polluted aqueous solutions.
Collapse
Affiliation(s)
- Fatemeh Ezati
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Ebrahim Sepehr
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Fatemeh Ahmadi
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
21
|
T M S, Arshad AB, Lin PT, Widakdo J, H K M, Austria HFM, Hu CC, Lai JY, Hung WS. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv 2021; 11:9638-9663. [PMID: 35423415 PMCID: PMC8695389 DOI: 10.1039/d1ra00060h] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
With rapid advancement in water filtration materials, several efforts have been made to fabricate electrospun nanofiber membranes (ENMs). ENMs play a crucial role in different areas of water treatment due to their several advantageous properties such as high specific surface area, high interconnected porosity, controllable thickness, mechanical robustness, and wettability. In the broad field of water purification, ENMs have shown tremendous potential in terms of permeability, rejection, energy efficiency, resistance to fouling, reusability and mechanical robustness as compared to the traditional phase inversion membranes. Upon various chemical and physical modifications of ENMs, they have exhibited great potential for emerging applications in environment, energy and health sectors. This review firstly presents an overview of the limiting factors influencing the morphology of electrospun nanofibers. Secondly, it presents recent advancements in electrospinning processes, which helps to not only overcome drawbacks associated with the conventional electrospinning but also to produce nanofibers of different morphology and orientation with an increased rate of production. Thirdly, it presents a brief discussion about the recent progress of the ENMs for removal of various pollutants from aqueous system through major areas of membrane separation. Finally, this review concludes with the challenges and future directions in this vast and fast growing area.
Collapse
Affiliation(s)
- Subrahmanya T M
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Ahmad Bin Arshad
- Department of Mechanical Engineering, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Po Ting Lin
- Department of Mechanical Engineering, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Januar Widakdo
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Makari H K
- Department of Biotechnology, IDSG Government College Chikkamagaluru Karnataka 577102 India
| | - Hannah Faye M Austria
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Chien-Chieh Hu
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Juin-Yih Lai
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Wei-Song Hung
- Advanced Membrane Materials Research Centre, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei 10607 Taiwan
| |
Collapse
|
22
|
Bansal P, Purwar R. Polyacrylonitrile/clay nanofibrous nanocomposites for efficient adsorption of Cr (VI) ions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Zhu F, Zheng YM, Zhang BG, Dai YR. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123608. [PMID: 33113718 DOI: 10.1016/j.jhazmat.2020.123608] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Electrospun nanofibrous membranes (ENFMs) have many superior advantages, such as large specific surface area, high porosity, easy modification, good flexibility, and easy separation for recycling, which are consider as excellent adsorbents. In this paper, the research progress in the adsorption of heavy metals in water treatment by ENFMs is reviewed. Three types of ENFMs, including organic polymer ENFMs, organic polymer/inorganic material composite ENFMs and inorganic ENFMs are summarized, and their adsorption capacities for heavy metals in water are compared. The adsorption selectivity and capacity of ENFMs for heavy metals are depended largely on the type and number of functional groups on the surface of membranes, and usually the more the functional groups, the higher the adsorption capacity. The adsorption mechanisms of ENFMs are also mainly determined by the type of functional groups on the membrane. At present, the main challenge is to achieve the mass production of high-quality nanofibers and their actual application in the treatment of heavy metal-containing wastewater. Therefore, more consideration should be focused on the improvement of stability, mechanical strength and reusability of ENFMs. This review may provide an insight for the development of ENFMs-based adsorbents for heavy metals separation and water purification in the future.
Collapse
Affiliation(s)
- Fan Zhu
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Bao-Gang Zhang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Yun-Rong Dai
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
24
|
Ji T, Zhang R, Dong X, Sameen DE, Ahmed S, Li S, Liu Y. Effects of Ultrasonication Time on the Properties of Polyvinyl Alcohol/Sodium Carboxymethyl Cellulose/Nano-ZnO/Multilayer Graphene Nanoplatelet Composite Films. NANOMATERIALS 2020; 10:nano10091797. [PMID: 32927588 PMCID: PMC7558797 DOI: 10.3390/nano10091797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Ultrasonication-assisted solution casting was used to prepare polyvinyl alcohol (PVA)/sodium carboxymethyl cellulose (CMC)/nano-ZnO/multilayer graphene nanoplatelet (xGnP) composite films; the performances (mechanical properties, water vapor permeability (WVP), biodegradability and antibacterial activity) of these films were investigated as a function of the ZnO NPs:xGnP mass ratio and ultrasonication time. Intermolecular interactions among ZnO NPs, xGnP and the PVA/CMC matrix were shown to improve WVP, while X-ray diffraction and scanning electron microscopy analyses revealed that the internal reticular structure of ultrasound-treated PVA/CMC/ZnO NPs/xGnP composite films was in a fluffier state than that of the untreated composite films and the PVA/CMC film. The incorporation of ZnO NPs and xGnP into the composite film reduced its tensile strength and elongation at break, and increased antibacterial activity and biodegradability. In addition, we carried out the experiment of strawberry preservation and measured weight loss ratio, firmness, content of total soluble solids and titration acid. Finally, the composite film of 7:3 had the best preservation effect on strawberries. Thus, the obtained results paved the way to develop novel biodegradable composite films with antimicrobial activity for a wide range of applications.
Collapse
Affiliation(s)
- Tengteng Ji
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rong Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaorong Dong
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
- Correspondence: (S.L.); (Y.L.); Tel.: +86-835-8763-4068 (Y.L.)
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (T.J.); (R.Z.); (X.D.); (D.E.S.); (S.A.)
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (S.L.); (Y.L.); Tel.: +86-835-8763-4068 (Y.L.)
| |
Collapse
|
25
|
Bahmanova FN. Thorium(IV) Preconcentration by Chelate-Forming Adsorbents Based on a Maleic Anhydride–Styrene Copolymer. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482009004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Abstract
The discharge of toxic heavy metals including zinc (Zn), nickel (Ni), lead (Pb), copper (Cu), chromium (Cr), and cadmium (Cd) in water above the permissible limits causes high threat to the surrounding environment. Because of their toxicity, heavy metals greatly affect the human health and the environment. Recently, better remediation techniques were offered using the nanotechnology and nanomaterials. The attentions were directed toward cost-effective and new fabricated nanomaterials for the application in water/wastewater remediation, such as zeolite, carbonaceous, polymer based, chitosan, ferrite, magnetic, metal oxide, bimetallic, metallic, etc. This review focused on the synthesis and capacity of various nanoadsorbent materials for the elimination of different toxic ions, with discussion of the effect of their functionalization on the adsorption capacity and separation process. Additionally, the effect of various experimental physicochemical factors on heavy metals adsorption, such as ionic strength, initial ion concentration, temperature, contact time, adsorbent dose, and pH was discussed.
Collapse
|
27
|
Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule. Int J Biol Macromol 2020; 148:887-897. [PMID: 31945442 DOI: 10.1016/j.ijbiomac.2020.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 01/27/2023]
Abstract
In this study m-AHLPICS (magnetic Arachis hypogaea leaves powder impregnated into chitosan) was prepared and utilized as an adsorbent to remove U(VI) from aqueous and real polluted wastewater samples. m-AHLPICS was characterized by using the BET, XRD, FTIR, SEM with elemental mapping and magnetization measurements. Different experimental effects such as pH, dose, contact time, and temperature were considered broadly. Chitosan modified magnetic leaf powder (m-AHLPICS) exhibits an excellent adsorption capacity (232.4 ± 5.59 mg/g) towards U(VI) ions at pH 5. Different kinetic models such as pseudo-first-order, and pseudo-second-order models were used to know the kinetic data. Langmuir, Freundlich and D-R isotherms were implemented to know the adsorption behavior. Isothermal information fitted well with Langmuir isotherm. Kinetic data followed by the pseudo-second-order kinetics (with high R2 values, i.e., 0.9954, 0.9985 and 0.9971) and the thermodynamic data demonstrate that U(VI) removal using m-AHLPICS was feasible, and endothermic in nature.
Collapse
|
28
|
Leone G, Consumi M, Pepi S, Pardini A, Bonechi C, Tamasi G, Donati A, Rossi C, Magnani A. Poly-vinyl alcohol (PVA) crosslinked by trisodium trimetaphosphate (STMP) and sodium hexametaphosphate (SHMP): Effect of molecular weight, pH and phosphorylating agent on length of spacing arms, crosslinking density and water interaction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Hao L, Gao W, Yan S, Niu M, Liu G, Hao H. Functionalized diatomite/oyster shell powder doped electrospun polyacrylonitrile submicron fiber as a high-efficiency adsorbent for removing methylene blue from aqueous solution: Thermodynamics, kinetics and isotherms. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Mascarenhas BC, Tavares FA, Paris EC. Functionalized faujasite zeolite immobilized on poly(lactic acid) composite fibers to remove dyes from aqueous media. J Appl Polym Sci 2019. [DOI: 10.1002/app.48561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno C. Mascarenhas
- Department of ChemistryFederal University of São Carlos (UFSCAR), Rod. Washington Luiz, s/n São Carlos CEP 13565‐905 Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa Instrumentação, Rua XV de Novembro, 1452 São Carlos CEP 13560‐970 Brazil
| | - Francine A. Tavares
- Department of ChemistryFederal University of São Carlos (UFSCAR), Rod. Washington Luiz, s/n São Carlos CEP 13565‐905 Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa Instrumentação, Rua XV de Novembro, 1452 São Carlos CEP 13560‐970 Brazil
| | - Elaine C. Paris
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa Instrumentação, Rua XV de Novembro, 1452 São Carlos CEP 13560‐970 Brazil
| |
Collapse
|
31
|
Homocianu M, Pascariu P. Electrospun Polymer-Inorganic Nanostructured Materials and Their Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1676776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Petronela Pascariu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, Suceava, Romania
| |
Collapse
|
32
|
Tian H, Yuan L, Wang J, Wu H, Wang H, Xiang A, Ashok B, Rajulu AV. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: An approach to fabricate functional adsorbent for heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120751. [PMID: 31220648 DOI: 10.1016/j.jhazmat.2019.120751] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Electrospun nanofibers have a wide range of applications due to their unique miniature size and accompanying ultra-high specific surface area. Polyvinyl alcohol(PVA) is a kind of hydrophilic materials, and hence its nanofiber morphology prepared by electrospinning disappeared after solution immersing. In the present work, crosslinked PVA nanofibers were prepared by electrospinning and then employing glutaraldehyde vapor crosslinking to improve their water resistance and mechanical properties. As an application, these nanofibers were used to adsorb Cu2+ and Pb2+ according to varying crosslinking time and different concentrations of ionic solution. It was observed the crosslinked PVA nanofiber films maintained good fiber morphology after adsorption, while the nanofiber morphology of uncrosslinked samples was lost. The stability of the crosslinked nanofiber films in water was improved, the adsorption equilibrium time of Pb2+ decreased from 30 h to 10 h while the equilibrium adsorption time of Cu2+ decreased from 15 h to 5 h, and the tensile strength of the nanofiber films with crosslinking time of 20 h was 7.99 MPa, which was 240% higher than that of the nanofiber with crosslinking time of 1 h, indicating higher efficiency.
Collapse
Affiliation(s)
- Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Li Yuan
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shananxi 712100, China
| | - Hao Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shananxi 712100, China
| | - Hailiang Wang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Aimin Xiang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Basa Ashok
- Department of Physics, University college of Engineering, Osmania University, Hyderabad, India
| | - A Varada Rajulu
- Centre for Composite Materials, International Research Centre, Kalasalingam University, Krishnankovil, Virudhunagar, India
| |
Collapse
|
33
|
Electrospinning of Fe-doped ZnO nanoparticles incorporated polyvinyl alcohol nanofibers for its antibacterial treatment and cytotoxic studies. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu (II) adsorbent. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
|
36
|
Işik C, Arabaci G, Ispirli Doğaç Y, Deveci İ, Teke M. Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1226-1235. [DOI: 10.1016/j.msec.2019.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 01/14/2023]
|
37
|
Shafiee M, Abedi MA, Abbasizadeh S, Sheshdeh RK, Mousavi SE, Shohani S. Effect of zeolite hydroxyl active site distribution on adsorption of Pb(II) and Ni(II) pollutants from water system by polymeric nanofibers. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1624572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohaddeseh Shafiee
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Ali Abedi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Saeed Abbasizadeh
- Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Reza Khalighi Sheshdeh
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Sepideh Shohani
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical science, Arak, Iran
| |
Collapse
|
38
|
Zhang M, Zhu L, He C, Xu X, Duan Z, Liu S, Song M, Song S, Shi J, Li Y, Cao G. Adsorption performance and mechanisms of Pb(II), Cd(II), and Mn(II) removal by a β-cyclodextrin derivative. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5094-5110. [PMID: 30604367 DOI: 10.1007/s11356-018-3989-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
In this study, the novel adsorbent PVA-TA-βCD was synthesized via thermal cross-linking between polyvinyl alcohol and β-cyclodextrin. The characterization methods SEM-EDS, FTIR, and XPS were adopted to characterize the adsorbent. The effect of pH, contact time, initial concentrations, and temperature during the adsorption of Pb(II), Cd(II), and Mn(II) onto the PVA-TA-βCD was also investigated. In a single-component system, the data fitted well to pseudo-second-order, and film diffusion and intra-particle diffusion both played important roles in the adsorption process. As for isotherm study, it showed a heterogeneous adsorption capacity of 199.11, 116.52, and 90.28 mg g-1 for the Pb(II), Cd(II), and Mn(II), respectively. Competition between the ions existed in a multi-component system; however, owing to the stronger affinity of the PVA-TA-βCD for Pb(II) relative to Cd(II) and Mn(II), the Pb(II) adsorption onto the PVA-TA-βCD was less affected by the addition of the other metals, which could be effectively explained by the hard and soft acid and base theory (HSAB). Furthermore, PVA-TA-βCD showed good reusability throughout regeneration experiments.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Liyun Zhu
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Changhua He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiaojun Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Zhengyang Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Shuli Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Mingyao Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Shumin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jiemei Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yu'e Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Guangzhu Cao
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| |
Collapse
|
39
|
Haddad MY, Alharbi HF. Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. J Appl Polym Sci 2018. [DOI: 10.1002/app.47209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mustafa Y. Haddad
- National Center for Advanced Materials Technology, King Abdulaziz City for Science and Technology (KACST); P.O. Box 6086, Riyadh 11442 Saudi Arabia
| | - Hamad F. Alharbi
- Mechanical Engineering Department; King Saud University; P.O. Box 800, Riyadh 11421 Saudi Arabia
| |
Collapse
|
40
|
Farokhi M, Parvareh A, Moraveji MK. Performance of ceria/iron oxide nano-composites based on chitosan as an effective adsorbent for removal of Cr(VI) and Co(II) ions from aqueous systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27059-27073. [PMID: 30019133 DOI: 10.1007/s11356-018-2594-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/18/2018] [Indexed: 05/21/2023]
Abstract
A novel chitosan/ceria/iron oxide (CS/ceria/Fe3O4) nano-composite adsorbent was synthesized for removal of Cr(VI) and Co(II) ions from aqueous systems in a batch system. The adsorbents were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and Brunauer- Emmett-Teller (BET) analyses. The behavior of swelling kinetics was also studied. The effect of several adsorption parameters including CeO2 and Fe3O4 contents, initial pH, contact time, initial Cr(VI) and Co(II) concentration, and temperature on the adsorption capacity was studied. The double exponential model revealed a better fit with the kinetic data of Cr(VI) and Co(II) ions. The Cr(VI) and Co(II) adsorption process well fitted the Langmuir model. The maximum adsorption capacities estimated from Langmuir isotherm model were 315.4 and 260.6 mg/g for Cr(VI) and Co(II) ions, respectively. Also, thermodynamic parameters were used to distinguish the nature of Cr(VI) and Co(II) adsorption. The reusability of CS/ceria/Fe3O4 nano-composite was evaluated with stripping agents of 0.1 M NaOH and 0.1 M HNO3. Finally, the evaluation of Cr(VI)-Co(II) coexisting system confirmed that the presence of Co(II) ions played an inhibitor role on the Cr(VI) adsorption.
Collapse
Affiliation(s)
- Morshed Farokhi
- Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Arsalan Parvareh
- Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran
- Chemical Engineering and Petroleum Faculty, Razi University, Kermanshah, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran.
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 242 Hafez Avenue, Tehran, 15875-4413, Iran.
| |
Collapse
|
41
|
Sekar AD, Muthukumar H, Chandrasekaran NI, Matheswaran M. Photocatalytic degradation of naphthalene using calcined FeZnO/ PVA nanofibers. CHEMOSPHERE 2018; 205:610-617. [PMID: 29715675 DOI: 10.1016/j.chemosphere.2018.04.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Recently, the incorporation of metal oxide nanoparticles into polymers has gained great attention owing to their ample of applications. The green mediated synthesis Fe-doped ZnO nanoparticles have been incorporated into PVA nanofibers through electro spinning for the application of photocatalytic degradation. The PVA polymer concentration was optimized to obtain uniform fibers without beads. The Fe-doped ZnO nanofibers were characterized by various analyzing techniques. The results show that good physicochemical with high surface area, uniformity in fiber with an average diameter ranges from 150 to 300 and 50-200 nm for un-calcined and calcined Fe-doped ZnO nanofiber respectively. The photocatalytic activity of nanofibers was examined by the degradation of naphthalene. The efficiency was observed 96 and 81% for calcined and un-calcined nanofibers, respectively. The reusable efficacy of Fe-doped ZnO calcined nanofiber as a catalyst was studied. These studies corroborated that the calcined Fe-doped ZnO nanofiber as promising material for catalytic applications.
Collapse
Affiliation(s)
- Aiswarya Devi Sekar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Harshiny Muthukumar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | | | - Manickam Matheswaran
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
42
|
Bozorgi M, Abbasizadeh S, Samani F, Mousavi SE. Performance of synthesized cast and electrospun PVA/chitosan/ZnO-NH 2 nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17457-17472. [PMID: 29656356 DOI: 10.1007/s11356-018-1936-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The performance of synthesized cast and electrospun polyvinyl alcohol/chitosan/zinc oxide/aminopropyltriethoxylsilane (PVA/chitosan/ZnO-APTES) nano-adsorbents were compared in removal of Cd(II) and Ni(II) ions from wastewater. The adsorbents were characterized by SEM, BET, FTIR and TGA analyses. Furthermore, the swelling investigations were carried out to study the adsorbent stability in aqueous solution. The effect of several parameters such as contents of ZnO-NH2, contact time, initial Cd(II) and Ni(II) concentration and temperature on the adsorption capacity was investigated in a batch mode. In comparison with cast adsorbent, nanofiber adsorbent indicated the better adsorption performance. The experimental data well fitted the double-exponential kinetic model. In single metal ion system, the maximum adsorption capacity of nanofiber for Cd(II) and Ni(II) ions is estimated to be 1.239 and 0.851 mmol/g, respectively, much higher than qm of cast adsorbent for Cd(II) (0.625 mmol/g) and Ni(II) (0.474 mmol/g) ions. Thermodynamic parameters were investigated to identify the nature of adsorption process. In binary system of Cd(II)-Ni(II) ions, the inhibitory effect of competitive Cd(II) ion on the Ni(II) adsorption was greater than the inhibitory effect of competitive on the Cd(II) adsorption. The selectivity adsorption of both nanofiber and cast adsorbents was in order of Cd(II) > Ni(II).
Collapse
Affiliation(s)
- Mehran Bozorgi
- Faculty of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeed Abbasizadeh
- Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Faranak Samani
- Department of Polymer Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | | |
Collapse
|
43
|
Fabrication of Zinc Oxide/Polypyrrole Nanocomposites for Brilliant Green Removal from Aqueous Phase. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3258-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Hajiyeva SR, Bahmanova FN, Alirzaeva EN, Shamilov NT, Chyragov FM. Uranium Preconcentration with a Chelating Sorbent Based on Maleic Anhydride–Styrene Copolymer. RADIOCHEMISTRY 2018. [DOI: 10.1134/s1066362218020108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Wang H, Wang W, Zhao Y, Xu Z, Chen L, Zhao L, Tian X, Sun W. Superior adsorption of 3D nanoporous architectures for Ni(ii) ions adsorption using polyvinyl alcohol as cross-linking agent and adsorption conveyor. RSC Adv 2018; 8:7899-7903. [PMID: 35541986 PMCID: PMC9078505 DOI: 10.1039/c8ra00113h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/05/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, we report a large-scale and low cost approach for the synthesis of three-dimensional (3D) polyvinyl alcohol/carbon nanotubes nanoporous architecture using self-assembly method. Polyvinyl alcohol, serving as a cross-linking agent and adsorption conveyor, could effectively interconnect carbon nanotubes sequentially and also effectively store Ni(ii) ions. An outstanding adsorption of 225.6 mg g−1 was achieved for 3D nanoporous structure, which was 18-fold more than that for carbon nanotube powders and much higher than that for other sorbents reported in literature. In addition, it was found that 3D nanoporous architectures remained intact after adsorption, which could recollect resources and avoid carbon nanotube leakage into water. Therefore, the designed 3D nanoporous architectures have a good potential application in environmental protection. In this study, we report a large-scale and low cost approach for the synthesis of three-dimensional (3D) polyvinyl alcohol/carbon nanotubes nanoporous architecture using self-assembly method.![]()
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Yufen Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Lei Chen
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Lihuan Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Xu Tian
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Wanying Sun
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Textiles
- Tianjin Polytechnic University
- Tianjin 300387
- China
| |
Collapse
|
46
|
Almasian A, Najafi F, Maleknia L, Giahi M. Mesoporous MgO/PPG hybrid nanofibers: synthesis, optimization, characterization and heavy metal removal property. NEW J CHEM 2018. [DOI: 10.1039/c7nj03200e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, mesoporous magnesium oxide/poly(propylene glycol) (MgO/PPG) hybrid nanofibers were synthesized as a new adsorbent for the removal of heavy metal ions from solutions.
Collapse
Affiliation(s)
- A. Almasian
- Nanotechnology Research Center
- Islamic Azad University
- South Tehran Branch
- Tehran
- Iran
| | - F. Najafi
- Nanotechnology Research Center
- Islamic Azad University
- South Tehran Branch
- Tehran
- Iran
| | - L. Maleknia
- Nanotechnology Research Center
- Islamic Azad University
- South Tehran Branch
- Tehran
- Iran
| | - M. Giahi
- Nanotechnology Research Center
- Islamic Azad University
- South Tehran Branch
- Tehran
- Iran
| |
Collapse
|
47
|
The dual role of ZnO nanoparticles for efficient capture of heavy metals and Acid blue 92 from water. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions—Fabrication and sorption studies. Carbohydr Polym 2017; 165:149-158. [DOI: 10.1016/j.carbpol.2016.12.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/05/2016] [Accepted: 12/18/2016] [Indexed: 11/20/2022]
|
49
|
Mahmoodi NM, Mokhtari-Shourijeh Z, Ghane-Karade A. Synthesis of the modified nanofiber as a nanoadsorbent and its dye removal ability from water: isotherm, kinetic and thermodynamic. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2475-2487. [PMID: 28541955 DOI: 10.2166/wst.2017.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, poly(vinyl alcohol) (PVA) nanofiber was prepared and modified by diethylenetriamine (DETA) and ethylenediamine (EDA) in the presence of glutaraldehyde (GA). Dye removal ability of the modified nanofiber (PVA/DETA/EDA/GA) as a nanoadsorbent from water was studied. Fourier transform Infrared (FTIR) and scanning electron microscopy (SEM) were used to investigate the characteristics of the modified nanofiber. Direct Red 23 (DR23) and Direct Blue (DB78) were used. The effect of operational parameters such as pH, initial dye concentration, contact time, temperature and adsorbent dosage on dye removal was studied. The dye adsorption isotherms, kinetics and thermodynamics were investigated. The maximum dye adsorption capacity of the modified nanofiber was 370 and 400 mg/g for DR23 and DB78, respectively. Four isotherms, the Langmuir, the Freundlich, Tempkin and a modified Langmuir-Freundlich model were used. Dye adsorption on the modified nanofiber followed the Langmuir isotherm and pseudo-second kinetic order. Thermodynamic data showed that dye removal was a spontaneous, endothermic and physisorption process.
Collapse
Affiliation(s)
- Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran E-mail:
| | - Zahra Mokhtari-Shourijeh
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran E-mail:
| | - Asieh Ghane-Karade
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran E-mail:
| |
Collapse
|
50
|
Affiliation(s)
- P. S. Suja
- Department of Chemistry, Material Research Laboratory, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - C. R. Reshmi
- Department of Chemistry, Material Research Laboratory, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - P. Sagitha
- Department of Chemistry, Material Research Laboratory, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - A. Sujith
- Department of Chemistry, Material Research Laboratory, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|