1
|
Abdoul Magid ASI, Islam MS, Chen Y, Weng L, Sun Y, Chang X, Zhou B, Ma J, Li Y. Competitive adsorption of Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) onto fresh and oxidized corncob biochar. CHEMOSPHERE 2021; 280:130639. [PMID: 33962295 DOI: 10.1016/j.chemosphere.2021.130639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Phthalates (PAEs) often exist simultaneously in contaminated soil and wastewater systems, and their adsorption to biochar might impact their behavior in the environment. So far, the competitive adsorption of PAEs to biochar has not been reported. In this study, the competitive adsorption of Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) on corncob biochar (fresh and oxidized) was investigated, and experiments of kinetics, isotherms, and thermodynamics were conducted. Langmuir and Freundlich models, pseudo-first-order and second-order kinetic models were used to simulate the experimental data. In the mono PAEs component systems, the biochar showed significantly greater adsorption capacity for DEHP (11.8-16.16 mg g-1) than for DBP (9.86-13.2 mg g-1). The oxidized biochar has higher adsorption capacities than the fresh one. Moreover, a fast adsorption rate for DBP was observed, which can be attributed to the smaller size and shorter carbon chains in the DBP molecule, resulting in faster diffusion into the biochar pores. In the binary PAEs component systems, competition between DEHP and DBP in their adsorption to the biochars was observed, and DEHP (11.7-15.0 mg g-1) was preferred over DBP (3.4-7.9 mg g-1). The stronger adsorption of DEHP can be explained by stronger hydrophobic interaction with biochar. Compared to DBP, DEHP has a high octanol-water partition coefficient (logKow) and low water solubility. The positive entropy (ΔS0) and enthalpy(ΔH0) values for the adsorption of both DEHP and DBP further indicated that hydrophobic interaction played an important role, even though H-bonds and π-π interactions could also be involved.
Collapse
Affiliation(s)
- Abdoul Salam Issiaka Abdoul Magid
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Md Shafiqul Islam
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Yali Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China.
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China; Department of Soil Quality, Wageningen University, P.O. Box 47, 6700, AA, Wageningen, the Netherlands
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Xingping Chang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Bin Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Jie Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou Jiangxi, 341000, PR China
| |
Collapse
|
3
|
Guancha-Chalapud MA, Gálvez J, Serna-Cock L, Aguilar CN. Valorization of Colombian fique (Furcraea bedinghausii) for production of cellulose nanofibers and its application in hydrogels. Sci Rep 2020; 10:11637. [PMID: 32669583 PMCID: PMC7363868 DOI: 10.1038/s41598-020-68368-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
Cellulose nanofibers were obtained from the Colombian fique (Furcraea bedinghausii) and Acrylic hydrogels (H) and reinforced acrylic hydrogels with fique nanofibres (HRFN) were synthesized, using the solution polymerization method. The extraction was carried out using a combined extraction method (chemical procedures and ultrasound radiation). The raw material (NAT-F), bleached fibers (B-F), hydrolyzed fibers and fibers treated with ultrasound (US-F) were characterized by infrared spectroscopy (FTIR) and thermal stability analysis; also, in order to have a comparison criterion, a commercial microcrystalline cellulose sample (CC) was analyzed, which demonstrated the extraction of fique cellulose. The surface morphology of the NAT-F and the B-F was determined by scanning electron microscopy and the average particle size of the nanofibers was made through transmission electron microscopy. In H y HRFN the strain percent and compression resistance (Rc) were measured. The fique nanofibers showed diameter and length averages of 25.2 ± 6.2 nm and 483.8 ± 283.2 nm respectively. Maximum degradation temperature was 317 °C. HRFN presented higher compression resistance (16.39 ± 4.30 kPa) and this resistance was 2.5 greater than the resistance of H (6.49 ± 2.48 kPa). The results indicate that fique lignocellulosic matrix has potential application for obtaining polymeric type composite materials.
Collapse
Affiliation(s)
- Marcelo A Guancha-Chalapud
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, Cali, Colombia
| | - Jaime Gálvez
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, Cali, Colombia
| | - Liliana Serna-Cock
- Faculty of Engineering and Administration, Universidad Nacional de Colombia Campus Palmira, Palmira, Colombia
| | - Cristobal N Aguilar
- Bioprocesses and Bioproducts Research Group. Food Research Department, School of Chemistry. Universidad Autónoma de Coahuila, Saltillo, Mexico.
| |
Collapse
|
4
|
Akbari-Adergani B, Saghi MH, Eslami A, Mohseni-Bandpei A, Rabbani M. Removal of dibutyl phthalate from aqueous environments using a nanophotocatalytic Fe, Ag-ZnO/VIS-LED system: modeling and optimization. ENVIRONMENTAL TECHNOLOGY 2018; 39:1566-1576. [PMID: 28514937 DOI: 10.1080/09593330.2017.1332693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
An (Fe, Ag) co-doped ZnO nanostructure was synthesized by a simple chemical co-precipitation method and used for the degradation of dibutyl phthalate (DBP) in aqueous solution under visible light-emitting diode (LED) irradiation. (Fe, Ag) co-doped ZnO nanorods were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV-VIS diffuse reflectance spectroscopy, elemental mapping, Field emission scanning electron microscopy, transmission electron microscope and Brunauer-Emmett-Teller surface area analysis. A Central Composite Design was used to optimize the reaction parameters for the removal of DBP by the (Fe, Ag) co-doped ZnO nanorods. The four main reaction parameters optimized in this study were the following: pH, time of radiation, concentration of the nanorods and initial DBP concentration. The interaction between the four parameters was studied and modeled using the Design Expert 10 software. A maximum reduction of 95% of DBP was achieved at a pH of 3, a photocatalyst concentration of 150 mg L-1 and a DBP initial DBP concentration of 15 mg L-1. The results showed that the (Fe, Ag) co-doped ZnO nanorods under low power LED irradiation can be used as an effective photocatalyst for the removal of DBP from aqueous solutions.
Collapse
Affiliation(s)
- B Akbari-Adergani
- a Nanotechnology Products Laboratory, Water Safety Research Center , Food and Drug Organization, Ministry of Health and Medical Education , Tehran , Iran
| | - M H Saghi
- b Department of Environmental Health Engineering , School of Public Health, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - A Eslami
- c Environmental and Occupational Hazards Control Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - A Mohseni-Bandpei
- b Department of Environmental Health Engineering , School of Public Health, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - M Rabbani
- d Department of Chemistry , Iran University of Science and Technology , Tehran , Iran
| |
Collapse
|