1
|
Umar A, Khan MS, Wajid M, Ullah H. Biocompatibility, antimicrobial efficacy, and therapeutic potential of cobalt carbonate nanoparticles in wound healing, sex hormones, and metabolic regulation in diabetic albino mice. Biochem Biophys Res Commun 2024; 734:150773. [PMID: 39368369 DOI: 10.1016/j.bbrc.2024.150773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Nanotechnology enables the manipulation of materials at the nanoscale, offering innovative solutions in various fields. Nanoparticles, with their small size and unique properties, have significant applications in the biomedical filed. The current study was designed to assess the biological applications of self-synthesized cobalt carbonate (CoCO3) nanoparticles. The crystalline structure and chemical composition of the CoCO3-NPs were confirmed by SEM, XRD, and FTIR techniques. We observed the 16.58 nm size of novelly synthesized CoCO3 NPS. The scanning electron microscope study confirmed a uniform cubic spinel structure. The biocompatibility and antimicrobial activity were checked in an invitro setup. We exposed albino mice to these synthesized NPs to study wound healing and metabolic effects. The results of biocompatibility analysis indicated hemolytic activity in a dose-dependent way, which showed no cytotoxic effect except at a higher concentration. Furthermore, the results showed enhanced wound healing processes in CoCO3-NP-treated albino mice as compared to the control group. CoCO3-NPs have considerable effect on the thyroid hormone and insulin levels in albino mice. The levels of T3, T4, and insulin were increased in a dose-dependent manner. Interactions between CoCO3-NPs and thyroxine and insulin were confirmed through molecular docking. We confirmed the antimicrobial efficiency of the nanoparticles using MIC values and zones of inhibition against Staphylococcus haemolyticus and Staphylococcus aureus. Despite their concentration-dependent biocompatibility concerns, the results are promising, as CoCO3-NPs hold potential for use in medical practice, particularly in advanced wound management and microbe inhibition.
Collapse
Affiliation(s)
- Ali Umar
- Department of Zoology, Faculty of Life Sciences, Uniersity of Okara, Okara, 56130, Pakistan
| | - Muhammad Saleem Khan
- Department of Zoology, Faculty of Life Sciences, Uniersity of Okara, Okara, 56130, Pakistan.
| | - Muhammad Wajid
- Department of Zoology, Faculty of Life Sciences, Uniersity of Okara, Okara, 56130, Pakistan
| | - Hayat Ullah
- Institute of Chemistry, Uniersity of Okara, Okara, 56130, Pakistan
| |
Collapse
|
2
|
Hu Y, Shu S. Exploring the dynamics of governance: An examination of traditional governance and governance innovation in the United States professional sports leagues. Heliyon 2024; 10:e32883. [PMID: 39035531 PMCID: PMC11259793 DOI: 10.1016/j.heliyon.2024.e32883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Leveraging governance structures: Shaping Power Relations and Decision-Making Processes within Organizations. While traditional governance approaches tend to favor hierarchical structures with concentrated authority, the growing demand for increased stakeholder engagement and empowerment has spurred the emergence of innovative governance models. This article examines traditional and evolving governance approaches in major United States professional sports leagues-the National Football League (NFL), Major League Baseball (MLB), National Basketball Association (NBA), and National Hockey League (NHL). Through a review of literature and governance documents, the traditional hierarchal models of the NFL and MLB are analyzed. Their incremental shifts toward more inclusive structures are also explored. In contrast, the NBA's adoption of a franchise model with decentralized authority and the NHL's establishment of a Players' Association are examined as examples of governance innovation. The impacts of these evolving approaches are considered in the context of league operations, labor relations, and overall stakeholder interest representation. This paper shows insights into the dynamics of governance change and the factors influencing shifts toward more collaborative and empowering structures within professional sports organizations.
Collapse
Affiliation(s)
- Yanxue Hu
- College of Physical Education, Shanghai University of Sport, Shanghai 200438, Shanghai, China
| | - Shengfang Shu
- College of Physical Education, Shanghai University of Sport, Shanghai 200438, Shanghai, China
| |
Collapse
|
3
|
Tong YH, Luo LH, Jia R, Han R, Xu SJ, Xu ZL. Whether membranes developed for organic solvent nanofiltration (OSN) tend to be hydrophilic or hydrophobic? ── a review. Heliyon 2024; 10:e24330. [PMID: 38288011 PMCID: PMC10823098 DOI: 10.1016/j.heliyon.2024.e24330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/02/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
In the past few decades, organic solvent nanofiltration (OSN) has attracted numerous researchers and broadly applied in various fields. Unlike conventional nanofiltration, OSN always faced a broad spectrum of solvents including polar solvents and non-polar solvents. Among those recently developed OSN membranes in lab-scale or widely used commercial membranes, researchers preferred to explore intrinsic materials or introduce nanomaterials into membranes to fabricate OSN membranes. However, the hydrophilicity of the membrane surface towards filtration performance was often ignored, which was the key factor in conventional aqueous nanofiltration. The influence of surface hydrophilicity on OSN performance was not studied systematically and thoroughly. Generally speaking, the hydrophilic OSN membranes performed well in the polar solvents while the hydrophobic OSN membranes work well in the non-polar solvent. Many review papers reviewed the basics, problems of the membranes, up-to-date studies, and applications at various levels. In this review, we have focused on the relationship between the surface hydrophilicity of OSN membranes and OSN performances. The history, theory, and mechanism of the OSN process were first recapped, followed by summarizing representative OSN research classified by surface hydrophilicity and types of membrane, which recent OSN research with its contact angles and filtration performance were listed. Finally, from the industrialization perspective, the application progress of hydrophilic and hydrophobic OSN membranes was introduced. We started with history and theory, presented many research and application cases of hydrophilic and hydrophobic OSN membranes, and discussed anticipated progress in the OSN field. Also, we pointed out some future research directions on the hydrophilicity of OSN membranes to deeply develop the effect made by membrane hydrophilicity on OSN performance for future considerations and stepping forward of the OSN industry.
Collapse
Affiliation(s)
- Yi-Hao Tong
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Han Luo
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Jia
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Han
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sun-Jie Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Yu H, Habibi M, Motamedi K, Semirumi DT, Ghorbani A. Utilizing stem cells in reconstructive treatments for sports injuries: An innovative approach. Tissue Cell 2023; 83:102152. [PMID: 37451009 DOI: 10.1016/j.tice.2023.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Orthopedic tissue engineering is a rapidly evolving field that holds great promise for the reconstruction and natural repair of bone and joint tissues. Bone loss, fractures, and joint degeneration are common problems that can result from a variety of pathological conditions, and their restoration and replacement are essential not only for functional purposes but also for improving the quality of life for patients. However, current methods rely heavily on artificial materials that can potentially lead to further tissue damage, making tissue engineering a highly attractive alternative. This innovative approach involves the utilization of stem cells (SCs), which are seeded onto a scaffold to form a biological complex. Among these SCs, mesenchymal stem cells (MSCs) extracted from bone marrow and adipose tissue have shown immense potential for bone and joint tissue regeneration. The success of orthopedic tissue engineering is contingent on the careful selection of appropriate scaffolds and inducing molecules, which play a critical role in carrying and supporting cells and inducing their differentiation. This review article comprehensively analyzes the three vital aspects of orthopedic tissue engineering - SCs, scaffolds, and inducing molecules - in order to provide a deeper understanding of this emerging field and its potential for the future of orthopedic medicine.
Collapse
Affiliation(s)
- Hongying Yu
- Physical Education Department, Jingchu University of Technology, Jingmen 448000, Hubei, China.
| | - M Habibi
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - K Motamedi
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - D T Semirumi
- Department of Biomaterials, Islamic Azad University, Isfahan, Iran.
| | - A Ghorbani
- Biotechnology Department, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Nojehdehi AM, Moghaddam F, Hamawandi B. Evaluation of Mechanical Properties of Glass Ionomer Cements Reinforced with Synthesized Diopside Produced via Sol-Gel Method. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2107. [PMID: 36903222 PMCID: PMC10004627 DOI: 10.3390/ma16052107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to fabricate a glass ionomer cement/diopside (GIC/DIO) nanocomposite to improve its mechanical properties for biomaterials applications. For this purpose, diopside was synthesized using a sol-gel method. Then, for preparing the nanocomposite, 2, 4, and 6 wt% diopside were added to a glass ionomer cement (GIC). Subsequently, X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and Fourier transform infrared spectrophotometry (FTIR) analyses were used to characterize the synthesized diopside. Furthermore, the compressive strength, microhardness, and fracture toughness of the fabricated nanocomposite were evaluated, and a fluoride-releasing test in artificial saliva was also applied. The highest concurrent enhancements of compressive strength (1155.7 MPa), microhardness (148 HV), and fracture toughness (5.189 MPa·m1/2) were observed for the glass ionomer cement (GIC) with 4 wt% diopside nanocomposite. In addition, the results of the fluoride-releasing test showed that the amount of released fluoride from the prepared nanocomposite was slightly lower than the glass ionomer cement (GIC). Overall, the improvement in mechanical properties and optimal fluoride release of prepared nanocomposites can introduce suitable options for dental restorations under load and orthopedic implants.
Collapse
Affiliation(s)
| | - Farina Moghaddam
- Department of Material Science, Tabriz University, Tabriz 5166616471, Iran
| | - Bejan Hamawandi
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Li X, Liu F, Abdollahpour A, Jazebizadeh M, Wang J, Semiromi D. An experimental evaluation of polyamide membrane-silica nanoparticles for the concentration of pomegranate juice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Fabrication and characterization of synthesized hydroxyapatite/ethanolamine for bone tissue engineering application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Bhullar S, Goyal N, Gupta S. Synthesizing and Optimizing Rutile TiO 2 Nanoparticles for Magnetically Guided Drug Delivery. Int J Nanomedicine 2022; 17:3147-3161. [PMID: 35903626 PMCID: PMC9317377 DOI: 10.2147/ijn.s367358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Titanium dioxide nanoparticles (TiO2 NPs) have shown tremendous potential in targeted drug-delivery applications. Among various mechanisms, magnetically guided transport of drugs is one such technique for the said purpose. TiO2 NPs being diamagnetic or sometimes exhibiting very weak ferromagnetism can be modified by treating them with suitable magnetic materials. Methods Rutile TiO2 NPs were synthesized and doped with Iron Supplement FericipXT and rare-earth metals like cerium, erbium and neodymium via sol–gel technique. FericipXT-coated rutile TiO2 NPs were synthesized in three different core-shell ratios (1:3, 1:1 and 3:1). The resulting samples were characterized via X-ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and High-Resolution Transmission Electron Microscopy (HR-TEM). Results XRD of FericipXT-doped TiO2 NPs showed a rutile phase for 1% and 3% doping; however, only a small fraction of the maghemite phase was obtained for 5% doping. The XRD plots of Ce-doped, Er-doped and Nd-doped TiO2 NPs showed a variety of phases of TiO2 NPs (such as anatase/rutile/mixed) along with the oxide phases of the corresponding rare-earth metal. The presence of various iron titanium oxides and iron oxides was found in core-shell NPs. HR-TEM images confirmed the formation of 1:3, 1:1 and 3:1 core-shell TiO2 NPs. VSM studies showed that the resulting NPs depicted magnetism in the form of superparamagnetism, ferromagnetism and even paramagnetism. Discussion The doping to 3% does not affect the original phase of the resulting TiO2 NPs as depicted from the XRD; however, a doping of 5% and more resulted in extra phases corresponding to the dopant added. FericipXT was loaded over TiO2 NPs in amorphous form. Among all the samples synthesized, FericipXT-coated TiO2 NPs demonstrated the best magnetic ability. It was deduced that coating with a magnetic material drastically improves the magnetic character of the host NPs.
Collapse
Affiliation(s)
- Shilpy Bhullar
- Department of Physics, Centre of Advanced Study in Physics, Panjab University, Chandigarh, 160014, India
| | - Navdeep Goyal
- Department of Physics, Centre of Advanced Study in Physics, Panjab University, Chandigarh, 160014, India
| | - Shikha Gupta
- Department of Physics, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, 160032, India
| |
Collapse
|
9
|
Abhari Z, Asefnejad A, Solati-Hashjin M. Effect of addition of Layered Double Hydroxides (LDH) on mechanical and biological properties of electrospun polycaprolactone scaffold. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Zhang L, Xue Y, Gopalakrishnan S, Li K, Han Y, Rotello VM. Antimicrobial Peptide-Loaded Pectolite Nanorods for Enhancing Wound-Healing and Biocidal Activity of Titanium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28764-28773. [PMID: 34110763 PMCID: PMC8579494 DOI: 10.1021/acsami.1c04895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium is widely utilized for manufacturing medical implants due to its inherent mechanical strength and biocompatibility. Recent studies have focused on developing coatings to impart unique properties to Ti implants, such as antimicrobial behavior, enhanced cell adhesion, and osteointegration. Ca- and Si-based ceramic (CS) coatings can enhance bone integration through the release of Ca and Si ions. However, high degradation rates of CS ceramics create a basic environment that reduces cell viability. Polymeric or protein-based coatings may be employed to modulate CS degradation. However, it is challenging to ensure coating stability over extended periods of time without compromising biocompatibility. In this study, we employed a fluorous-cured collagen shell as a drug-loadable scaffold around CS nanorod coatings on Ti implants. Fluorous-cured collagen coatings have enhanced mechanical and enzymatic stability and are able to regulate the release of Ca and Si ions. Furthermore, the collagen scaffold was loaded with antimicrobial peptides to impart antimicrobial activity while promoting cell adhesion. These multifunctional collagen coatings simultaneously regulate the degradation of CS ceramics and enhance antimicrobial activity, while maintaining biocompatibility.
Collapse
Affiliation(s)
- Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Chemistry, University of Massachusetts Amherst, MA, 01003, USA
| | - Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | | | - Kai Li
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Mohammadi H, Muhamad N, Sulong AB, Ahmadipour M. Recent advances on biofunctionalization of metallic substrate using ceramic coating: How far are we from clinically stable implant? J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Majkowska-Marzec B, Tęczar P, Bartmański M, Bartosewicz B, Jankiewicz BJ. Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings. MATERIALS 2020; 13:ma13183991. [PMID: 32916961 PMCID: PMC7557772 DOI: 10.3390/ma13183991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Titanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity—which reduces the growth of fibrous tissue and allows loosening of the prosthesis—the possibility of metallosis and related inflammation or other allergic reactions, as well as abrasion of the material during operation. Searching for the best combinations of material properties for implants in today′s world is not only associated with research on new alloys, but primarily with the modification of their surface layers. The proposed laser modification of the Ti13Nb13Zr alloy with a carbon nanotube coating is aimed at eliminating most of the problems mentioned above. The carbon coating was carried out by electrophoretic deposition (EPD) onto ground and etched substrates. This form of carbon was used due to the confirmed biocompatibility with the human body and the ability to create titanium carbides after laser treatment. The EPD-deposited carbon nanotube coating was subjected to laser treatment. Due to high power densities applied to the material during laser treatment, non-equilibrium structures were observed while improving mechanical and anti-corrosive properties. An electrophoretically deposited coating of carbon nanotubes further improved the effects of laser processing through greater strengthening, hardness or Young′s modulus similar to that required, as well as led to an increase in corrosion resistance. The advantage of the presented laser modification of the Ti13Nb13Zr alloy with a carbon coating is the lack of surface cracks, which are difficult to eliminate with traditional laser treatment of Ti alloys. All samples tested showed contact angles between 46° and 82° and thus, based on the literature reports, they have hydrophilic surfaces suitable for cell adhesion.
Collapse
Affiliation(s)
- Beata Majkowska-Marzec
- Department of Materials Engineering and Bonding, Faculty of Mechanical Engineering, Gdansk University of Technology, G. Narutowicza 11/22, 80-233 Gdansk, Poland; (P.T.); (M.B.)
- Correspondence:
| | - Patryk Tęczar
- Department of Materials Engineering and Bonding, Faculty of Mechanical Engineering, Gdansk University of Technology, G. Narutowicza 11/22, 80-233 Gdansk, Poland; (P.T.); (M.B.)
| | - Michał Bartmański
- Department of Materials Engineering and Bonding, Faculty of Mechanical Engineering, Gdansk University of Technology, G. Narutowicza 11/22, 80-233 Gdansk, Poland; (P.T.); (M.B.)
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (B.B.); (B.J.J.)
| | - Bartłomiej J. Jankiewicz
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (B.B.); (B.J.J.)
| |
Collapse
|
13
|
Bagherifard A, Joneidi Yekta H, Akbari Aghdam H, Motififard M, Sanatizadeh E, Ghadiri Nejad M, Esmaeili S, Saber-Samandari S, Sheikhbahaei E, Khandan A. Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med Biol Eng Comput 2020; 58:1681-1693. [DOI: 10.1007/s11517-020-02157-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 03/12/2020] [Indexed: 12/01/2022]
|
14
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
15
|
Velu R, Calais T, Jayakumar A, Raspall F. A Comprehensive Review on Bio-Nanomaterials for Medical Implants and Feasibility Studies on Fabrication of Such Implants by Additive Manufacturing Technique. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E92. [PMID: 31878040 PMCID: PMC6981457 DOI: 10.3390/ma13010092] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023]
Abstract
Nanomaterials have allowed significant breakthroughs in bio-engineering and medical fields. In the present paper a holistic assessment on diverse biocompatible nanocomposites are studied. Their compatibility with advanced fabrication methods such as additive manufacturing for the design of functional medical implants is also critically reviewed. The significance of nanocomposites and processing techniques is also envisaged comprehensively in regard with the needs and futures of implantable medical device industries.
Collapse
Affiliation(s)
- Rajkumar Velu
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore 486842, Singapore; (T.C.); (F.R.)
| | - Theo Calais
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore 486842, Singapore; (T.C.); (F.R.)
| | | | - Felix Raspall
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore 486842, Singapore; (T.C.); (F.R.)
| |
Collapse
|
16
|
Horandghadim N, Khalil-Allafi J, Urgen M. Effect of Ta 2O 5 content on the osseointegration and cytotoxicity behaviors in hydroxyapatite-Ta 2O 5 coatings applied by EPD on superelastic NiTi alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:683-695. [PMID: 31147041 DOI: 10.1016/j.msec.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023]
Abstract
In the present study, the different contents of tantalum pentoxide (Ta2O5: 10, 15, 20 and 30 wt%) nanoparticles were introduced into the natural hydroxyapatite (nHA) coating structure on NiTi substrate through electrophoretic deposition (EPD) method. The phase compositions of coatings were perused before and after the sintering at 800 °C for 1 h by XRD. The incorporation of 30wt%Ta2O5 into nHA matrix induced the formation of undesirable soluble Ca3(PO4)2 phase in composite coating. The FESEM images showed that the density of continuous nHA coating increased by compositing with Ta2O5. The maximum adhesion strength of 28.3 ± 0.7 MPa accomplished from the nHA-20 wt%Ta2O5 composite coating. The Ni ions concentration measurement results from the passivated-NiTi with nHA and nHA-(10, 15 and 20)wt%Ta2O5 coatings during 30 days of immersion in PBS clarified the positive role of Ta2O5 in decreasing the Ni leaching due to the lowering the open porosities of nHA structure. The biological response of the coating surfaces was assessed in vitro by cell culturing and MTS assay. By considering the morphology and density of adsorbed cells on each coating, the improved biocompatibility of nHA coating in the presence of Ta2O5 was justified by scrutinizing the surface roughness, wettability and charge. The highest cell attachment and proliferation on nHA-20 wt%Ta2O5 coating was related to owning the lowest roughness, wetting angle of 34o ± 0.5 and the highest negative surface charge density. Also, the concentration of the highest negative charge density on nHA-20 wt%Ta2O5 coating surface in the SBF solution caused to the enhancement of the amount of the apatite nuclei through providing more sites to calcium absorption.
Collapse
Affiliation(s)
- Nazila Horandghadim
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran.
| | - Mustafa Urgen
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
17
|
Pulsed Laser Deposited Biocompatible Lithium-Doped Hydroxyapatite Coatings with Antimicrobial Activity. COATINGS 2019. [DOI: 10.3390/coatings9010054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Simple and lithium-doped biological-origin hydroxyapatite layers were synthesized by Pulsed Laser Deposition technique on medical grade Ti substrates. Cytotoxic effects of lithium addition and the biocompatibility of obtained coatings were assessed using three cell lines of human origin (new initiated dermal fibroblasts, immortalized keratinocytes HaCaT, and MG-63 osteosarcoma). Antimicrobial properties of obtained coatings were assessed on two strains (i.e., Staphylococcus aureus and Candida albicans), belonging to species representative for the etiology of medical devices biofilm-associated infections. Our findings suggest that synthesized lithium-doped coatings exhibited low cytotoxicity on human osteosarcoma and skin cells and therefore, an excellent biocompatibility, correlated with a long-lasting anti-staphylococcal and -fungal biofilm activity. Along with low fabrication costs generated by sustainable resources, these biological-derived materials demonstrate their promising potential for future prospective solutions—viable alternatives to commercially available biomimetic HA implants—for the fabrication of a new generation of implant coatings.
Collapse
|
18
|
Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: Biocorrosion and mechanical behavior. J Mech Behav Biomed Mater 2018; 90:575-586. [PMID: 30476807 DOI: 10.1016/j.jmbbm.2018.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
In this work, graphene oxide (GO) reinforcement was used to improve the strength and fracture toughness of the calcium phosphate (CaP) coating applied on the anodized titanium using pulse electrodeposition. Based on the results, the CaP coating consisted of mixed phases of octa-calcium phosphate (OCP), dicalcium phosphate dehydrate (DCPD) and hydroxyapatite (HAp); however, compositing of this coating with GO caused deposition of the pure HAp phase. Moreover, the nanohardness and Young's modulus of the CaP-GO coating increased over 52% and 41%, respectively, as compared to those measured for the GO-free coating. An improvement of about 16% in the adhesion strength of the CaP coating composited with GO to the anodized titanium was also arisen from improving integrity, crystallinity and decreasing the Young's modulus mismatch of this coating with titanium substrate. Finally, uniformity in the microstructure and more biostability of the CaP-GO coating led to its better protection against the corrosion of anodized titanium.
Collapse
|
19
|
Huang L, Luo W, Liu M, Tian J, Huang Q, Huang H, Hui J, Wen Y, Zhang X, Wei Y. Facile preparation of Eu3+ and F− co-doped luminescent hydroxyapatite polymer composites via the photo-RAFT polymerization. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
A brief Review of Reverse Shoulder Prosthesis: Arthroplasty, Complications, Revisions, and Development. Trauma Mon 2017. [DOI: 10.5812/traumamon.58163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:604-610. [DOI: 10.1016/j.msec.2016.10.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/12/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022]
|
22
|
Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M. Polysaccharide based bionanocomposites, properties and applications: A review. Int J Biol Macromol 2016; 92:1012-1024. [DOI: 10.1016/j.ijbiomac.2016.07.102] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
|