1
|
Revathi S, Dey N, Thangaleela S, Vinayagam S, Gnanasekaran L, Sundaram T, Malik A, Khan AA, Roy A, Kumar A. Nanocarrier optimization: Encapsulating Hydrastis canadensis in chitosan nanoparticles for enhanced antibacterial and dye degradation performance. Int J Biol Macromol 2024; 274:133316. [PMID: 38908618 DOI: 10.1016/j.ijbiomac.2024.133316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
This study focuses on the optimization of Hydrastis canadensis-based nanocarriers in environmental and microbial applications like antibacterial and dye degradation. Hydrastis canadensis (H. canadensis) is loaded into the nanocarrier using a gelation method. Characterization involves pH analysis, UV-VIS spectrophotometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, high-performance liquid chromatography, encapsulation efficiency. Further antimicrobial activity against Staphylococcus aureus and Escherichia coli were tested. Dye degradation was evaluated at concentrations of 1 % of high molecular (HM) and 1.5 % of low molecular (LM) chitosan nanoparticles with both 3C and 1000C concentrations of the drug. The obtained results confirm the presence of chitosan nanocarrier alongside the pure drug in 1 % HM and 1.5 % LM chitosan particles with a notable encapsulation efficiency activity in both 3C and 1000C concentrations. Antimicrobial studies were carried out using the agar well diffusion method and revealed a significant zone of inhibition of 20 mm and 25 mm for E. coli and S. aureus, respectively in chitosan nanocarrier-loaded samples compared to pure drug and chitosan nanocarriers samples. The dye degradation studies of four dyes methylene blue, methylene orange, methylene red, and safranin using both pure drugs and chitosan nanocarrier-loaded drugs showed the highest percentage of degradation (76 %) against methylene blue in the chitosan nanocarrier-drug loaded formulation. These findings cumulatively underscore chitosan nanoparticles can be used as an effective carrier for Hydrastis Canadensis, with enhanced antimicrobial and dye degradation capabilities. Varied concentrations and molecular weights highlight the versatility of the ionotropic gelation method in optimizing drug delivery. Enhanced efficacy of the nanocarrier was evident in the observed zone of inhibition in antimicrobial testing. The substantial degradation percentage in methylene blue emphasizes the formulation's applicability in environmental dye removal processes, with potential avenues for improvement explored through interactions between the chitosan nanocarrier and H. canadensis characteristics. Future investigations may focus on scaling up the optimized formulation for large-scale applications and exploring release kinetics and comprehensive toxicity assessments for a holistic understanding of potential environmental and biomedical implications.
Collapse
Affiliation(s)
- Sorimuthu Revathi
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| | - Nibedita Dey
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Subramanian Thangaleela
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602 105, India
| | | | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida 201310, India.
| | - Ashish Kumar
- Department of Mechanical Engineering, Institute of Aeronautical Engineering, Hyderabad, India; Division of Research and Development, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Nabizadeh Z, Nasrollahzadeh M, Kruppke B, Nasrabadi D. A combination of chitosan nanoparticles loaded with celecoxib and kartogenin has anti-inflammatory and chondroprotective effects: Results from an in vitro model of osteoarthritis. Heliyon 2024; 10:e31058. [PMID: 38803939 PMCID: PMC11128867 DOI: 10.1016/j.heliyon.2024.e31058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Loading drugs in drug delivery systems can increase their retention time and control their release within the knee cavity. Hence, we aimed to improve the therapeutic efficacy of celecoxib and kartogenin (KGN) through their loading in chitosan nanoparticles (CS NPs). Celecoxib-loaded nanoparticles (CNPs) and KGN-loaded nanoparticles (K-CS NPs) were prepared using the absorption method and covalent attachment, respectively, through an ionic gelation process. The morphology, particle size, zeta potential, polydispersity index (PDI), conjugation efficiency (CE), encapsulation efficiency (EE), the in vitro release of the drug from NPs, as well as MTT and hemolysis assays, were evaluated. Then, the IL-1β-stimulated chondrocytes were treated with CNPs and K-CS NPs, individually or in combination, to explore their potential chondroprotective and anti-inflammatory effects. CNPs and K-CS NPs showed sizes of 352.6 ± 22.5 and 232.7 ± 4.5 nm, respectively, suitable for intra-articular (IA) injection. Based on the hemolysis results, both NPs exhibited good hemocompatibility within the studied range. Results showed that treating IL-1β-pretreated chondrocytes with CNPs or K-CS NPs remarkably limited the negative effects of IL-1β, especially when both types of NPs were used together. Therefore, injecting these two NPs into the knee cavity may improve drug bioavailability, rapidly suppress inflammation and pain, and promote cartilage regeneration. Meanwhile, for the first time, the study investigated the effect of the simultaneous use of celecoxib and KGN to treat osteoarthritis (OA).
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Davood Nasrabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Nabizadeh Z, Nasrollahzadeh M, Shabani AA, Mirmohammadkhani M, Nasrabadi D. Evaluation of the anti-inflammatory activity of fisetin-loaded nanoparticles in an in vitro model of osteoarthritis. Sci Rep 2023; 13:15494. [PMID: 37726323 PMCID: PMC10509168 DOI: 10.1038/s41598-023-42844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Cartilage lesions, especially osteoarthritis (OA), are a common health problem, causing pain and disability in various age groups, principally in older adults and athletes. One of the main challenges to be considered in cartilage tissue repair is the regeneration of cartilage tissue in an active inflammatory environment. Fisetin has various biological effects including anti-inflammatory, antioxidant, apoptotic, and antiproliferative activities. The only disadvantages of fisetin in the pharmaceutical field are its instability and low solubility in aqueous media. This study is aimed at preparing chitosan (CS)-based nanoparticles to yield fisetin with improved bioavailability features. Then, the effect of fisetin-loaded nanoparticles (FNPs) on inflammatory responses in interleukin-1β (IL-1β) pretreated human chondrocytes has also been investigated. FNPs presented an average size of 363.1 ± 17.2 nm and a zeta potential of + 17.7 ± 0.1 mV with encapsulation efficiency (EE) and loading capacity (LC) of 78.79 ± 7.7% and 37.46 ± 6.6%, respectively. The viability of human chondrocytes was not affected by blank nanoparticles (BNPs) up to a concentration of 2000 μg/mL. In addition, the hemolysis results clearly showed that FNPs did not damage the red blood cells (RBCs) and had good hemocompatibility within the range investigated. FNPs, similar to fisetin, were able to inhibit the inflammatory responses induced by IL-1β such as the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) while increasing the production of an anti-inflammatory cytokine such as interleukin-10 (IL-10). Overall, the in vitro evaluation results of the anti-inflammatory activity showed that FNPs can serve as delivery systems to transfer fisetin to treat inflammation in OA.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, P.O. Box 37185-359, Qom, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Hassan MA, Tamer TM, Omer AM, Baset WMA, Abbas E, Mohy-Eldin MS. Therapeutic potential of two formulated novel chitosan derivatives with prominent antimicrobial activities against virulent microorganisms and safe profiles toward fibroblast cells. Int J Pharm 2023; 634:122649. [PMID: 36709834 DOI: 10.1016/j.ijpharm.2023.122649] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The development of new antimicrobial agents has been drawing considerable attention due to the extreme escalation of multi-drug resistant microorganisms. We thus sought to ameliorate the antimicrobial activities of the chitosan (Cs) biopolymer by coupling chitosan with cyclohexanone and 2-N-methyl pyrrolidone, synthesizing two novel Schiff bases (CsSB1 and CsSB2), respectively. FT-IR, TGA, DSC, SEM, and potentiometric titration were employed to characterize the formulated chitosan derivatives. The findings exposed that the degrees of deacetylation were 88.12% and 89.98% for CsSB1 and CsSB2, respectively. The antimicrobial capacities of CsSB1 and CsSB2 were substantially enhanced compared with prime chitosan. Furthermore, the CsSB1 and CsSB2 demonstrated minimum inhibitory concentrations (MIC) of 50 µg/ml in relation to all studied microorganisms, whereas chitosan revealed MIC value of 50 µg/ml only for E. coli. Furthermore, CsSB1 with a concentration of 250 µg/ml manifested the highest antibacterial activity against Gram-positive bacteria. Correspondingly, CsSB2 revealed a comparable trend of microbial hindrance with lower activities. Besides, the two derivatives could thwart the growth of Candida albicans (C. albicans). The cytotoxicity assay of the biomaterials accentuated their biocompatibility with fibroblasts. Collectively, the two formulated chitosan derivatives could competently rival the native chitosan, particularly for future applications in wound healing.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt.
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt.
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt
| | - Walid M A Baset
- National Organization for Drug Control and Research (NODCAR), 51 Wezaret El-Zeraa st., Dokki, Cairo, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt
| |
Collapse
|
5
|
Valverde FG, Droppa-Almeida D, Padilha FF. Chitosan oligomer and zinc oxide nanoparticles for treating wastewaters: US20190134086 patent evaluation. Recent Pat Biotechnol 2021; 16:6-15. [PMID: 34702159 DOI: 10.2174/1872208315666211026104828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
With the utilisation of algae, wastewater reuse is becoming a viable option for the energy industry, especially green energy. The growth of these algae in these wastewaters provides an alternative source for bioenergetics, however, the growth of other microorganisms can directly affect the production of bioenergy, requiring the removal and reduction of contaminants in these waters, in addition to being a source of contamination for workers. Therefore, the use of nanoparticles in bioremediation has been an alternative to mitigate the contamination of these wastewaters that have microorganisms capable of reducing the algae growth capacity. The objective of this work was to verify in the United States Patent and Trademarker office database (USPTO) patents that used chitosan nanoparticles as a form of wastewater treatment and to carry out the analysis of patent US20190134086, which addresses the use of zinc oxide nanoparticles associated with chitosan that was developed and used to evaluate their antibacterial activity against resistant microorganisms and biofilm producers present in wastewater. Escherichia coli, Enterococcus faecium, and/or Pseudomonas aeruginosa are the microorganisms involved in the evaluated invention, bacteria present in the gastrointestinal tract, of clinical and environmental importance. The synthesized nanoparticles are arranged as a pharmaceutically acceptable and toxic vehicle against resistant bacteria, thus being described as nanoremediators. Given the analyzed patent, it was possible to verify the importance of alternatives to reduce the impact that pollution, in general, has on the environment, in addition to the proposed technology serving to maintain the survival and development capacity of the algae that will be able to produce green energy, the nanoparticles with antibacterial potential can help indirectly reduce these pathogenic strains with resistance to several antibiotics in the environment.
Collapse
|
6
|
Formulation and Antibacterial Activity Evaluation of Quaternized Aminochitosan Membrane for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13152428. [PMID: 34372035 PMCID: PMC8347330 DOI: 10.3390/polym13152428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Much attention has been paid to chitosan biopolymer for advanced wound dressing owing to its exceptional biological characteristics comprising biodegradability, biocompatibility and respectable antibacterial activity. This study intended to develop a new antibacterial membrane based on quaternized aminochitosan (QAMCS) derivative. Herein, aminochitosan (AMCS) derivative was quaternized by N-(2-Chloroethyl) dimethylamine hydrochloride with different ratios. The pre-fabricated membranes were characterized by several analysis tools. The results indicate that maximum surface potential of +42.2 mV was attained by QAMCS3 membrane compared with +33.6 mV for native AMCS membrane. Moreover, membranes displayed higher surface roughness (1.27 ± 0.24 μm) and higher water uptake value (237 ± 8%) for QAMCS3 compared with 0.81 ± 0.08 μm and 165 ± 6% for neat AMCS membranes. Furthermore, the antibacterial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus. Superior antibacterial activities with maximum inhibition values of 80–98% were accomplished by QAMCS3 membranes compared with 57–72% for AMCS membrane. Minimum inhibition concentration (MIC) results denote that the antibacterial activities were significantly boosted with increasing of polymeric sample concentration from 25 to 250 µg/mL. Additionally, all membranes unveiled better biocompatibility and respectable biodegradability, suggesting their possible application for advanced wound dressing.
Collapse
|
7
|
Pourebrahim M, Nejabatdoust A, Mirmiran SD, Daemi HB, Meftahpour H, Salehzadeh A. Aminoglycosides–Loaded Glucose-Conjugated Chitosan Nanoparticles for In vitro Antimicrobial and Antibiofilm Screening on Klebsiella pneumonia. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Velusamy P, Su CH, Kannan K, Kumar GV, Anbu P, Gopinath SCB. Surface engineered iron oxide nanoparticles as efficient materials for antibiofilm application. Biotechnol Appl Biochem 2021; 69:714-725. [PMID: 33751641 DOI: 10.1002/bab.2146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023]
Abstract
Overuse of antibiotics has led to the development of multi drug resistant strains. Antibiotic resistance is a major drawback in the biomedical field since medical implants are prone to infection by biofilms of antibiotic resistant strains of bacteria. With increasing prevalence of antibiotic resistant pathogenic bacteria, the search for alternative method is utmost importance. In this regard, magnetic nanoparticles are commonly used as a substitute for antibiotics that can circumvent the problem of biofilms growth on the surface of biomedical implants. Iron oxide nanoparticles (IONPs) have unique magnetic properties that can be exploited in various ways in the biomedical applications. IONPs are engineered employing different methods to induce surface functionalization that include the use of polyethyleneimine and oleic acid. IONPs have a mechanical effect on biofilms when in presence of an external magnet. In this review, a detailed description of surface engineered magnetic nanoparticles as ideal antibacterial agents is provided, accompanied by various methods of literature review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, 603 203, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, 24301, Taiwan
| | - Kiruba Kannan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Govindarajan Venkat Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, 603 203, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Periasmy Anbu
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
9
|
Wang L, Gopinath SC, Anbu P, Rajapaksha R, Velusamy P, Pandian K, Arshad MM, Lakshmipriya T, Lee CG. Photovoltaic and antimicrobial potentials of electrodeposited copper nanoparticle. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Montero N, Pérez E, Benito M, Teijón C, Teijón JM, Olmo R, Blanco MD. Biocompatibility studies of intravenously administered ionic-crosslinked chitosan-BSA nanoparticles as vehicles for antitumour drugs. Int J Pharm 2018; 554:337-351. [PMID: 30439492 DOI: 10.1016/j.ijpharm.2018.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023]
Abstract
In this study, a new alternative of ionic crosslinked nanoparticles (NPs) based on chitosan (C) and bovine serum albumin (A; BSA) was evaluated as drug delivery system for antitumour compounds (doxorubicin hydrochloride as a model). The different responses to the pH of the medium were determined by the electrostatic interactions induced by each polymeric combination (C50/A50; C80/A20; C20/A80). NPs revealed a nanoscale size (167-392 nm) and a positive net charge (12-26 mV), modulated by doxorubicin (DOX) loading. Drug loading capacity was higher than 5.2 ± 1.8 μgDOX/mgNP (Encapsulation efficiency = 34%), and an initial burst release was followed by a sustained delivery. Cellular uptake assays confirmed the entry of NPs in three human tumor cells (MCF7, T47D and Hela), triggering antioxidant responses (superoxide dismutase, catalase, glutathione reductase and total glutathione content) in those cells. This was also consistent with the decreased in IC50 values observed after the incubation of these cells with C20/A80-DOX and C50/A50-DOX NPs (1.90-3.48 μg/mL) compared with free DOX (2.36-6.025 μg/mL). In vivo results suggested that the selected proportions of chitosan-BSA created nonhemolytic and biocompatible stable NPs at the selected dose of 20 mg/kg. Despite the different formulations, this study demonstrated that these NPs could serve as safe drug carriers in further in vivo investigations.
Collapse
Affiliation(s)
- Nuria Montero
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| | - Elena Pérez
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Departamento de Farmacia, Biotecnología, Nutrición, Óptica y Optometría, Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Spain.
| | - Marta Benito
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain; Fundación San Juan de Dios, Centro de CC de la Salud San Rafael, Universidad Antonio de Nebrija, Spain.
| | - César Teijón
- Universidad Complutense de Madrid, Facultad de Enfermería, Fisioterapia y Podología, Departamento de Enfermería, Spain.
| | - José María Teijón
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| | - Rosa Olmo
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| | - M Dolores Blanco
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| |
Collapse
|
11
|
Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci Rep 2018; 8:11416. [PMID: 30061725 PMCID: PMC6065323 DOI: 10.1038/s41598-018-29650-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022] Open
Abstract
This study intends to develop novel two antimicrobial phenolic chitosan Schiff bases (I) and (II) via coupling of chitosan with Indole-3-carboxaldehyde and 4-dimethylaminobenzaldehyde, respectively, for boosting the antimicrobial activity of native chitosan. The alterations in the chemical structure and morphology of the Schiff bases were verified using FT-IR, electronic spectrum analysis, and SEM, whereas the thermal properties were investigated by TGA and DSC instruments. The results obtained from the potentiometric analysis referred that the degrees of substitution were 1.15 and 12.05% for Schiff bases (I) and (II), respectively. The antimicrobial activities of Schiff base (I) were significantly augmented more than Schiff base (II) and chitosan. Minimum inhibitory concentration (MIC) of Schiff base (I) was perceived at 50 µg/ml against tested microorganisms except for B. cereus and C. albicans. The highest concentration of Schiff base (I) could inhibit the growth of Gram-positive up to 99%. However, Schiff base (II) recorded the maximum inhibition rate versus Gram-positive approximately 82%. The cytotoxicity of the developed materials was estimated by MTT assay that substantiated their safety to fibroblast cells. The findings emphasized that the developed Schiff bases might be implemented as antimicrobial contenders to pure chitosan for treatments of wound infections.
Collapse
|
12
|
A pH stimuli thiol modified mesoporous silica nanoparticles: Doxorubicin carrier for cancer therapy. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Parisi OI, Scrivano L, Sinicropi MS, Puoci F. Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr Opin Pharmacol 2017; 36:72-77. [DOI: 10.1016/j.coph.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
|
14
|
Preparation of cotton fabric using sodium alginate-coated nanoparticles to protect against nosocomial pathogens. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|