1
|
Du X, Zheng H, Zhang Y, Zhao N, Chen M, Huang Q. Pore structure design and optimization of electrospun PMIA nanofiber membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
2
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Donga C, Mishra SB, Abd-El-Aziz AS, Ndlovu LN, Mishra AK, Kuvarega AT. (3-Aminopropyl) Triethoxysilane (APTES) Functionalized Magnetic Nanosilica Graphene Oxide (MGO) Nanocomposite for the Comparative Adsorption of the Heavy Metal [Pb(II), Cd(II) and Ni(II)] Ions from Aqueous Solution. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
4
|
Sayegh S, Tanos F, Nada A, Lesage G, Zaviska F, Petit E, Rouessac V, Iatsunskyi I, Coy E, Viter R, Damberga D, Weber M, Razzouk A, Stephan J, Bechelany M. Tunable TiO 2-BN-Pd nanofibers by combining electrospinning and atomic layer deposition to enhance photodegradation of acetaminophen. Dalton Trans 2022; 51:2674-2695. [PMID: 35088785 DOI: 10.1039/d1dt03715c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The demand for fresh and clean water sources is increasing globally, and there is a need to develop novel routes to eliminate micropollutants and other harmful species from water. Photocatalysis is a promising alternative green technology that has shown great performance in the degradation of persistent pollutants. Titanium dioxide is the most used catalyst owing to its attractive physico-chemical properties, but this semiconductor presents limitations in the photocatalysis process due to the high band gap and the fast recombination of the photogenerated carriers. Herein, a novel photocatalyst has been developed, based on titanium dioxide nanofibers (TiO2 NFs) synthesized by electrospinning. The TiO2 NFs were coated by atomic layer deposition (ALD) to grow boron nitride (BN) and palladium (Pd) on their surface. The UV-Vis spectroscopy measurements confirmed the increase of the band gap and the extension of the spectral response to the visible range. The obtained TiO2/BN/Pd nanofibers were then tested for photocatalysis, and showed a drastic increase of acetaminophen (ACT) degradation (>90%), compared to only 20% degradation obtained with pure TiO2 after 4 h of visible light irradiation. The high photocatalytic activity was attributed to the good dispersion of Pd NPs on TiO2-BN nanofibers, leading to a higher transfer of photoexcited hole carriers and a decrease of photogenerated electron-charge recombination. To confirm its reusability, recycling tests on the hybrid photocatalyst TiO2/BN/Pd have been performed, showing a good stability over 5 cycles under UV and visible light. In addition, toxicity tests as well as quenching tests were carried out to check the toxicity of the byproducts formed and to determine active species responsible for the degradation. The results presented in this work demonstrate the potential of TiO2/BN/Pd nanomaterials, and open new prospects for the preparation of tunable photocatalysts.
Collapse
Affiliation(s)
- Syreina Sayegh
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Fida Tanos
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Amr Nada
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - François Zaviska
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Eddy Petit
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Vincent Rouessac
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Roman Viter
- Institut of Atomic Physics and Spectroscopy, University of Latvia, Rainis Blvd., LV-1586, Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st, 40018 Sumy, Ukraine
| | - Daina Damberga
- Institut of Atomic Physics and Spectroscopy, University of Latvia, Rainis Blvd., LV-1586, Riga, Latvia
| | - Matthieu Weber
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Juliette Stephan
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| |
Collapse
|
5
|
Kamali N, Ghasemi JB, Mohamadi Ziarani G, Moradian S, Badiei A. Design, Synthesis, and Nanoengineered Modification of Spherical Graphene Surface by LDH for Removal of As(III) from Aqueous Solutions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Chen S, Liu H. Self-reductive palladium nanoparticles loaded on polydopamine-modified MXene for highly efficient and quickly catalytic reduction of nitroaromatics and dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Kumarage S, Munaweera I, Kottegoda N. A comprehensive review on electrospun nanohybrid membranes for wastewater treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:137-159. [PMID: 35186649 PMCID: PMC8822457 DOI: 10.3762/bjnano.13.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Electrospinning, being a versatile and straightforward method to produce nanofiber membranes, has shown significant advancement in recent years. On account of the unique properties such as high surface area, high porosity, mechanical strength, and controllable surface morphologies, electrospun nanofiber membranes have been found to have a great potential in many disciplines. Pure electrospun fiber mats modified with different techniques of surface modification and additive incorporation have exhibited enhanced properties compared to traditional membranes and are even better than the as-prepared electrospun membranes. In this review, we have summarized recently developed electrospun nanohybrids fabricated by the incorporation of functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been discussed. Finally, an outlook on the future research pathways to fill the gaps existing in water remediation have been suggested.
Collapse
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Centre for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
8
|
Gholami F, Zinatizadeh AA, Zinadini S, Rittmann BE, Torres CI. Enhanced antifouling and flux performances of a composite membrane via incorporating
TiO
2
functionalized with hydrophilic groups of L‐cysteine for nanofiltration. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Foad Gholami
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| | - Ali Akbar Zinatizadeh
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Bruce E. Rittmann
- Biodesign Swette Center for Environmental Biotechnology Arizona State University Tempe Arizona USA
- School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona USA
| | - Cesar I. Torres
- Biodesign Swette Center for Environmental Biotechnology Arizona State University Tempe Arizona USA
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
9
|
Alruwaili SF, Alsohaimi IH, El-Sayed MY, Hassan HM, Aldawsari AM, Alshahrani AA, Alraddadi TS. Antifouling efficiency and high-flux ultrafiltration membrane comprising sulfonated poly (ether sulfone) and TNTs-g-PSPA nanofiller. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zamel D, Khan AU. New trends in nanofibers functionalization and recent applications in wastewater treatment. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Doaa Zamel
- Department of Chemistry, Faculty of Science Helwan University Helwan Egypt
| | - Atta Ullah Khan
- Department of Biotechnology University of Malakand Chakdara Pakistan
| |
Collapse
|
11
|
Electrospun-based TiO2 nanofibers for organic pollutant photodegradation: a comprehensive review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Titanium dioxide (TiO2) is commonly used as a photocatalyst in the removal of organic pollutants. However, weaknesses of TiO2 such as fast charge recombination and low visible light usage limit its industrial application. Furthermore, photocatalysts that are lost during the treatment of pollutants create the problem of secondary pollutants. Electrospun-based TiO2 fiber is a promising alternative to immobilize TiO2 and to improve its performance in photodegradation. Some strategies have been employed in fabricating the photocatalytic fibers by producing hollow fibers, porous fibers, composite TiO2 with magnetic materials, graphene oxide, as well as doping TiO2 with metal. The modification of TiO2 can improve the absorption of TiO2 to the visible light area, act as an electron acceptor, provide large surface area, and promote the phase transformation of TiO2. The improvement of TiO2 properties can enhance carrier transfer rate which reduces the recombination and promotes the generation of radicals that potentially degrade organic pollutants. The recyclability of fibers, calcination effect, photocatalytic reactors used, operation parameters involved in photodegradation as well as the commercialization potential of TiO2 fibers are also discussed in this review.
Collapse
|
12
|
Zaidi SZJ, Luan Y, Harito C, Utari L, Yuliarto B, Walsh FC. Synthesis and application of gas diffusion cathodes in an advanced type of undivided electrochemical cell. Sci Rep 2020; 10:17267. [PMID: 33057183 PMCID: PMC7560722 DOI: 10.1038/s41598-020-74199-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
This paper reports the oxidation of Remazol black B dye by employing iron ions catalyst based gas diffusion cathodes, (GDCs). A GDC was synthesized by using a layer of carbon black and iron ions catalyst for oxygen reduction to hydrogen peroxide. The results demonstrated around 97% decolorization of Remazol black-B dye for 50 min by iron ions catalyst based GDC. The degradation study was performed under electrogenerated hydrogen peroxide at a constant voltage of - 0.6 V vs Hg/HgSO4 in which the rate of degradation was correlated with hydrogen peroxide production. Overall, the GDC's found to be effective method to degrade the dyes via electro-Fenton.
Collapse
Affiliation(s)
- S Z J Zaidi
- Electrochemical Engineering Laboratory, Energy Technology Research Group, Faculty of Engineering and Environment, Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan.
| | - Y Luan
- Electrochemical Engineering Laboratory, Energy Technology Research Group, Faculty of Engineering and Environment, Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - C Harito
- Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - L Utari
- Advanced Functional Materials (AFM) Laboratory, Engineering Physics, Institut Teknologi Bandung, 40132, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, 40132, Bandung, Indonesia
| | - B Yuliarto
- Advanced Functional Materials (AFM) Laboratory, Engineering Physics, Institut Teknologi Bandung, 40132, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, 40132, Bandung, Indonesia
| | - F C Walsh
- Electrochemical Engineering Laboratory, Energy Technology Research Group, Faculty of Engineering and Environment, Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
13
|
Qian Y, Chen S, He C, Ye C, Zhao W, Sun S, Xie Y, Zhao C. Green Fabrication of Tannic Acid-Inspired Magnetic Composite Nanoparticles toward Cationic Dye Capture and Selective Degradation. ACS OMEGA 2020; 5:6566-6575. [PMID: 32258892 PMCID: PMC7114688 DOI: 10.1021/acsomega.9b04304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/12/2020] [Indexed: 05/04/2023]
Abstract
An environmental strategy for developing sustainable materials presents an attractive prospect for wastewater remediation. Herein, a facile, green, and economical strategy is proposed to fabricate magnetic composite nanoparticles (NPs) toward cationic dye adsorption and selective degradation. To prepare the composite TiO2-PEI-TA@Fe3O4 NPs, tannic acid (TA) and polyethyleneimine (PEI) were first used to decorate Fe3O4 NPs at aqueous solution, and then TiO2 NPs were anchored onto the surfaces of Fe3O4 NPs based on the catecholamine chemistry. The chemical composition and microstructure of the obtained NPs were systematically characterized. The NPs not only exhibited adsorption ability for the cationic dye of methylene blue (MB) but also responded to ultraviolet light to selectively degrade the adsorbed MB, and the removal (adsorption and/or degradation) ratio for MB could reach 95%. In addition, cyclic experiments showed that the removal ratio of the composite NPs for MB could still be maintained more than 85% even after five cycles. Given by the above-mentioned advantages, such a green and facile strategy for combining the adsorption and degradation methods to construct magnetic nanocomposites exhibits potential applications in cationic dye selective removal and sustainable wastewater remediation.
Collapse
Affiliation(s)
- Yihui Qian
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengqiu Chen
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Mechanical Engineering, National University
of Singapore, 117574, Singapore
| | - Chao He
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chen Ye
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weifeng Zhao
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shudong Sun
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Cai C, Wang R, Liu S, Yan X, Zhang L, Wang M, Tong Q, Jiao T. Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124468] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Investigations on Amphoteric Chitosan/TiO2 Bionanocomposites for Application in Visible Light Induced Photocatalytic Degradation. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/2345631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present investigation reports the greener synthesis and characterization of novel acrylic acid grafted amphoteric chitosan/TiO2 (CAT) bionanocomposites using ultrasonic radiations. This was done by grafting of acrylic acid onto chitosan in the presence of potassium persulfate by free radical polymerization reaction. The uniform distribution of metal oxide in CA/TiO2 nanocomposites was achieved on grafted acrylic acid/chitosan which contains a weak anionic group (-COOH) using ultrasonication technique. Physiochemical techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Fourier Transform Infra-Red spectroscopy (FT-IR), Energy Dispersive X-ray spectroscopy (EDX), and Thermal Gravimetric Analysis (TGA) were employed to characterize synthesized CAT. Nanocomposite CAT was applied for degradation of industrial dye. Malachite green (MG) often presents in the waste waters. The degradation kinetics were studied by monitoring the photocatalytic reaction for degradation of MG under visible light, and the rate constant of the reaction was found to be 7.13x10−3min−1. The current research work opens vistas for the new dimensions in the area of water treatment by solving the issues related to degradation reaction efficiency in visible light and cost effectiveness.
Collapse
|
16
|
Yin J, Zhang L, Jiao T, Zou G, Bai Z, Chen Y, Zhang Q, Xia M, Peng Q. Highly Efficient Catalytic Performances of Nitro Compounds and Morin via Self-Assembled MXene-Pd Nanocomposites Synthesized through Self-Reduction Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1009. [PMID: 31336924 PMCID: PMC6669661 DOI: 10.3390/nano9071009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
With development of the society, the problem of environmental pollution is becoming more and more serious. There is the urgent need to develop a new type of sustainable green material for degradable pollutants. However, the conventional preparation method is limited by conditions such as cumbersome operation, high energy consumption, and high pollution. Here, a simple method named self-reduction has been proposed, to synthesize highly efficient catalytic nitro compounds and morin self-assembled MXene-Pd nanocomposites. Palladium nanoparticles were grown in situ on MXene nanosheets to form MXene@PdNPs. MXene@PdNPs composites with different reaction times were prepared by adjusting the reduction reaction time. In particular, MXene@PdNPs20 exhibited a high catalytic effect on 4-NP and 2-NA, and the first-order rate constants of the catalysis were 0.180 s-1 and 0.089 s-1, respectively. It should be noted that after eight consecutive catalytic cycles, the conversion to catalyze 4-NP was still greater than 94%, and the conversion to catalyze 2-NA was still greater than 91.8%. Therefore, the research of self-assembled MXene@PdNPs nanocomposites has important potential value for environmental management and sustainable development of human health, and provides new clues for the future research of MXene-based new catalyst materials.
Collapse
Affiliation(s)
- Juanjuan Yin
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Lun Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yan Chen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| | - Meirong Xia
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
17
|
Li Y, Wang H, Zhao W, Wang X, Shi Y, Fan H, Sun H, Tan L. Facile synthesis of a triptycene‐based porous organic polymer with a high efficiency and recyclable adsorption for organic dyes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47987] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yajing Li
- College of Architecture and EnvironmentSichuan University Cheng Du 610065 China
| | - Haijiang Wang
- College of Light Industry, Textile and Food EngineeringSichuan University Cheng Du 610065 China
| | - Weifeng Zhao
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 Sichuan China
| | - Xiaoqin Wang
- College of Architecture and EnvironmentSichuan University Cheng Du 610065 China
| | - Yidong Shi
- College of Light Industry, Textile and Food EngineeringSichuan University Cheng Du 610065 China
| | - Haojun Fan
- College of Light Industry, Textile and Food EngineeringSichuan University Cheng Du 610065 China
| | - Hui Sun
- College of Architecture and EnvironmentSichuan University Cheng Du 610065 China
| | - Lin Tan
- College of Light Industry, Textile and Food EngineeringSichuan University Cheng Du 610065 China
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 Sichuan China
| |
Collapse
|
18
|
Huang X, Wang R, Jiao T, Zou G, Zhan F, Yin J, Zhang L, Zhou J, Peng Q. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe 3O 4/Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS OMEGA 2019; 4:1897-1906. [PMID: 31459444 PMCID: PMC6648162 DOI: 10.1021/acsomega.8b03615] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
MXene as a kind of two-dimensional nanomaterial has aroused people's strong research interest because of its excellent properties. In the present study, we introduced a new poly(vinyl alcohol)/poly(acrylic acid)/Fe3O4/MXene@Ag nanoparticle composite film fabricated by electrospinning and heat treatment as well as self-reduction reaction process. The obtained composite films showed high self-reduction ability because of the incorporation of MXene flakes. The intercalated MXene flakes in the composite nanofibers were evenly distributed, which not only solved the aggregation problem from MXene dispersion but also could self-reduce Ag nanoparticles in situ in composite materials. In addition, the composite nanofiber films exhibited good fiber structure, thermal stability, and magnetic properties. Moreover, the composite nanofiber films demonstrated excellent catalytic ability and cycle stability to 4-nitrophenol and 2-nitroaniline.
Collapse
Affiliation(s)
- Xinxin Huang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guodong Zou
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Fangke Zhan
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Juanjuan Yin
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jingxin Zhou
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
19
|
Wang C, Sun S, Zhang L, Yin J, Jiao T, Zhang L, Xu Y, Zhou J, Peng Q. Facile preparation and catalytic performance characterization of AuNPs-loaded hierarchical electrospun composite fibers by solvent vapor annealing treatment. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Hwang R, Mirshafiee V, Zhu Y, Xia T. Current approaches for safer design of engineered nanomaterials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:294-300. [PMID: 30273853 PMCID: PMC6192839 DOI: 10.1016/j.ecoenv.2018.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The surge of applications for engineered nanomaterials (ENMs) across multiple industries raises safety concerns regarding human health and environmental impacts. ENMs can be hazardous through various mechanisms, including, particle dissolution and shedding of toxic metal ions, surface reactivity and perturbation of cellular membranes, lysosomal membrane damage, activation of inflammation pathways (e.g., NLRP3 inflammasome), etc. The aim of this review is therefore to discuss practical approaches for the safer design of ENMs through modification of their physicochemical properties that can lead to acute and/or chronic toxicity. This is premised on our understanding of how different ENMs induce toxicity within various biological systems. We will summarize studies that have investigated nanomaterial toxicity both in vitro and in vivo to understand the underlying mechanisms by which nanoparticles can cause inflammation, fibrosis, and cell death. With this knowledge, researchers have identified several design strategies to counter these mechanisms of toxicity. In particular, we will discuss how metal doping, surface coating and covalent functionalization, and adjustment of surface oxidation state and aspect ratio of ENMs could reduce their potential adverse effects. While these strategies might be effective under certain experimental and exposure scenarios, more research is required to fully apply this knowledge in real life applications of nanomaterials.
Collapse
Affiliation(s)
- Ruth Hwang
- Fielding School of Public Health, Department of Environmental Health Science, University of California Los Angeles, Center for Health Sciences, 650 Charles E. Young Dr. South, Los Angeles, CA 90095, United States
| | - Vahid Mirshafiee
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States; Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, United States
| | - Yifang Zhu
- Fielding School of Public Health, Department of Environmental Health Science, University of California Los Angeles, Center for Health Sciences, 650 Charles E. Young Dr. South, Los Angeles, CA 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, United States; Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, United States.
| |
Collapse
|
21
|
Li K, Zou G, Jiao T, Xing R, Zhang L, Zhou J, Zhang Q, Peng Q. Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Zhou J, Gao F, Jiao T, Xing R, Zhang L, Zhang Q, Peng Q. Selective Cu(II) ion removal from wastewater via surface charged self-assembled polystyrene-Schiff base nanocomposites. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhou J, Liu Y, Jiao T, Xing R, Yang Z, Fan J, Liu J, Li B, Peng Q. Preparation and enhanced structural integrity of electrospun poly(ε-caprolactone)-based fibers by freezing amorphous chains through thiol-ene click reaction. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Du WN, Chen ST. Photo- and chemocatalytic oxidation of dyes in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:507-515. [PMID: 29127922 DOI: 10.1016/j.jenvman.2017.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/22/2017] [Accepted: 10/21/2017] [Indexed: 05/21/2023]
Abstract
Three commonly used dyes, Acid Red-114 (AR-114), Reactive Black-5 (RB-5), and Disperse Black EX-SF (DB-EX-SF), were treated in a pH-neutral liquid with ultraviolet (UV) light by two reactive methods: photocatalysis with titanium dioxide (TiO2), and/or chemocatalysis with hydrogen peroxide (H2O2) as the oxidant and various ferrous-based electron mediators as catalysts. Important factors for dye oxidation were determined through bifactorial experiments. The optimum combinations and doses of the three key reagents, namely TiO2, H2O2, and EDTA-Fe, were also determined. The degradation kinetics of the studied dyes at their optimum doses reveal that the oxidation reactions are pseudo-first-order in nature, and that certain dyes are selectively degraded more by one method than the other. The overall results suggest that co-treatment using more than one oxidative method is beneficial for the treatment of wastewater from dyeing processes.
Collapse
Affiliation(s)
- Wei-Ning Du
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Taiwan.
| | - Shyi-Tien Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Taiwan.
| |
Collapse
|
25
|
Atchudan R, Edison TNJI, Perumal S, Karthik N, Karthikeyan D, Shanmugam M, Lee YR. Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Guo R, Jiao T, Xing R, Chen Y, Guo W, Zhou J, Zhang L, Peng Q. Hierarchical AuNPs-Loaded Fe₃O₄/Polymers Nanocomposites Constructed by Electrospinning with Enhanced and Magnetically Recyclable Catalytic Capacities. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E317. [PMID: 29023427 PMCID: PMC5666482 DOI: 10.3390/nano7100317] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs) have attracted widespread attention for their excellent catalytic activity, as well as their unusual physical and chemical properties. The main challenges come from the agglomeration and time-consuming separation of gold nanoparticles, which have greatly baffled the development and application in liquid phase selective reduction. To solve these problems, we propose the preparation of polyvinyl alcohol(PVA)/poly(acrylic acid)(PAA)/Fe₃O₄ nanocomposites with loaded AuNPs. The obtained PVA/PAA/Fe₃O₄ composite membrane by electrospinning demonstrated high structural stability, a large specific surface area, and more active sites, which is conducive to promoting good dispersion of AuNPs on membrane surfaces. The subsequently prepared PVA/PAA/Fe₃O₄@AuNPs nanocomposites exhibited satisfactory nanostructures, robust thermal stability, and a favorable magnetic response for recycling. In addition, the PVA/PAA/Fe₃O₄@AuNPs nanocomposites showed a remarkable catalytic capacity in the catalytic reduction of p-nitrophenol and 2-nitroaniline solutions. In addition, the regeneration studies toward p-nitrophenol for different consecutive cycles demonstrate that the as-prepared PVA/PAA/Fe₃O₄@AuNPs nanocomposites have outstanding stability and recycling in catalytic reduction.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Ruirui Xing
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yan Chen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Wanchun Guo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
27
|
Liu J, Zhu K, Jiao T, Xing R, Hong W, Zhang L, Zhang Q, Peng Q. Preparation of graphene oxide-polymer composite hydrogels via thiol-ene photopolymerization as efficient dye adsorbents for wastewater treatment. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|