1
|
Wu S, Wang J, Xie Z, Du C. Self-doping synthesis of nano-TiO 2 with outstanding antibacterial properties under visible light. Heliyon 2024; 10:e32356. [PMID: 39021907 PMCID: PMC11252601 DOI: 10.1016/j.heliyon.2024.e32356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Nano-TiO2 photocatalysis technology has attracted wide attention because of its safety, nontoxicity and long-lasting performance. However, traditional nano-TiO2 has been greatly limited in its application because its wide band gap can only be activated by ultraviolet light (λ < 387 nm). In this paper, nano-TiO2 was prepared by self-doping method. The synthesized nano-TiO2 was a single anatase crystal type with a particle size of 10 nm and uniform size. In addition, nano-TiO2 has high stability and good dispersion. More importantly, nano-TiO2 exhibits excellent visible light (400-780 nm) activity due to the decrease of bandgap from 3.20 eV to 1.80 eV (less than 2.0 eV) and the presence of a large number of hydroxyl groups on the surface of the nanoparticles. In the antibacterial test, the antibacterial rate of both E.coli and S.aureus was close to 100 % under the irradiation of household low-power LED lamps, showing excellent antibacterial performance, indicating that the prepared nano-TiO2 has broad application prospects in the field of bactericidal and bacteriostatic.
Collapse
Affiliation(s)
- Shibin Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Jingguang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhenze Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Li X, Han Z, Wang X, Yang S, Liu G, Gao Y, Li C. Acid treatment of ZrO2-supported CeO2 catalysts for NH3-SCR of NO: Influence on surface acidity and reaction mechanism. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Tao X, Zheng K, Huang L. Plasma induced liquid-phase synthesis of Ce/Mo metal oxides as photocatalysts. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Jia Y, Jiang J, Zheng R, Guo L, Yuan J, Zhang S, Gu M. Insight into the reaction mechanism over PMoA for low temperature NH 3-SCR: A combined In-situ DRIFTs and DFT transition state calculations. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125258. [PMID: 33548788 DOI: 10.1016/j.jhazmat.2021.125258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Phosphomolybdic acid catalyst (PMoA/TiO2) is a promising catalyst for selective catalytic reduction of NOx with NH3 (NH3-SCR) due to its strong acidity and excellent redox property. This work presents the NH3-SCR reaction mechanism by In-situ diffuse reflectance Infrared Fourier Transform Spectroscopy (In-situ DRIFTs) and density functional theory (DFT). In-situ DRIFTs results indicated that the NH3-SCR performance over PMoA/TiO2 followed both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. The reaction pathway, intermediate, transition state and energy barrier over PMoA to complete NH3-SCR reaction were calculated by DFT. The results showed that the catalytic cycle includes foundational reaction (NH3 + NO reaction) and regenerative reaction (NH3 + NO2 reaction). NH2, NH2NO, HNNOH and HO2NNH species were the key intermediates. In the foundational reactions, NO2 played an important role in the removal of remaining H atoms. The NH3 dissociation on Lewis acid site, the internal hydrogen transfer on Brønsted acid site and the formation of HO2NNH species were the rate-controlling steps. The catalytic cycle of NH3-SCR over PMoA consists of standard SCR and fast SCR.
Collapse
Affiliation(s)
- Yong Jia
- School of Energy and Environment, Anhui University of Technology, Ma Anshan 243002, PR China.
| | - Jin Jiang
- School of Energy and Environment, Anhui University of Technology, Ma Anshan 243002, PR China.
| | - Ruizi Zheng
- School of Energy and Environment, Anhui University of Technology, Ma Anshan 243002, PR China
| | - Lina Guo
- School of Energy and Environment, Anhui University of Technology, Ma Anshan 243002, PR China.
| | - Jing Yuan
- Department of engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mingyan Gu
- School of Energy and Environment, Anhui University of Technology, Ma Anshan 243002, PR China
| |
Collapse
|
5
|
Preparation and Performance of Cerium-Based Catalysts for Selective Catalytic Reduction of Nitrogen Oxides: A Critical Review. Catalysts 2021. [DOI: 10.3390/catal11030361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective catalytic reduction of nitrogen oxides with NH3 (NH3-SCR) is still the most commonly used control technology for nitrogen oxides emission. Specifically, the application of rare earth materials has become more and more extensive. CeO2 was widely developed in NH3-SCR reaction due to its good redox performance, proper surface acidity and abundant resource reserves. Therefore, a large number of papers in the literature have described the research of cerium-based catalysts. This review critically summarized the development of the different components of cerium-based catalysts, and characterized the preparation methods, the catalytic performance and reaction mechanisms of the cerium-based catalysts for NH3-SCR. The purpose of this review is to highlight: (1) the modification effect of the various metal elements for cerium-based catalysts; (2) various synthesis methods of the cerium-based catalysts; and (3) the physicochemical properties of the various catalysts and clarify their relations to catalytic performances, particularly in the presence of SO2 and H2O. Finally, we hope that this work can give timely technical guidance and valuable insights for the applications of NH3-SCR in the field of NOx control.
Collapse
|
6
|
New MoO3-CeO2-ZrO2 and WO3-CeO2-ZrO2 nanostructured mesoporous aerogel catalysts for the NH3-SCR of NO from diesel engine exhaust. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mosrati J, Atia H, Eckelt R, Huyen Vuong T, Rabeah J, Mhamdi M, Armbruster U. Ta and Mo oxides supported on CeO2-TiO2 for the selective catalytic reduction of NOx with NH3 at low temperature. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Xiong ZB, Li ZZ, Du YP, Li CX, Lu W, Tian SL. Starch bio-template synthesis of W-doped CeO 2 catalyst for selective catalytic reduction of NO x with NH 3: influence of ignition temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5914-5926. [PMID: 32979181 DOI: 10.1007/s11356-020-10888-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A novel tungsten-doped CeO2 catalyst was fabricated via the sweet potato starch bio-template spread self-combustion (SSC) method to secure a high NH3-SCR activity. The study focuses on the influence of ignition temperature on the physical structure and redox properties of the synthesized catalyst and the catalytic performance of NOx reduction with NH3. These were quantitatively examined by conducting TG-DSC measurements of the starch gel, XRD analysis for the crystallites, SEM and TEM assessments for the morphology of the catalyst, XPS and H2-TPR measurements for the distribution of cerium and tungsten, and NH3-TPD assessments for the acidity of the catalyst. It is found that the ignition temperature shows an important role in the interaction of cerium and tungsten species, and the optimal ignition temperature is 500 °C. The increase of ignition temperature from 150 °C is beneficial to the interactions of species in the catalyst, depresses the formation of WO3, and refines the cubic CeO2 crystallite. The sample ignited at 500 °C shows the biggest BET surface area, the highest surface concentration of Ce species and molar ratio of Ce3+/(Ce3++Ce4+), and the most abundant surface Brønsted acid sites, which are the possible reasons for the superiority of the NH3-SCR activity. With a high GHSV of 200,000 mL (g h)-1 and the optimal ignition temperature, Ce4W2Oz-500 can achieve a steadily high NOx reduction of 80% or more at a lowered reduction temperature in the range of 250~500 °C.
Collapse
Affiliation(s)
- Zhi-Bo Xiong
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhen-Zhuang Li
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan-Ping Du
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng-Xu Li
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wei Lu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Su-Le Tian
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shandong Electric Power Engineering Consulting Institute Corp., Ltd, Jinan, 250013, China
| |
Collapse
|
9
|
Zeng Y, Haw K, Wang Y, Zhang S, Wang Z, Zhong Q, Kawi S. Recent Progress of CeO
2
−TiO
2
Based Catalysts for Selective Catalytic Reduction of NO
x
by NH
3. ChemCatChem 2020. [DOI: 10.1002/cctc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yiqing Zeng
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Kok‐Giap Haw
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Yanan Wang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Shule Zhang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Zhigang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Qin Zhong
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| |
Collapse
|
10
|
Shan Y, Liu Y, Li Y, Yang W. A review on application of cerium-based oxides in gaseous pollutant purification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117181] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3-SCR process. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wang X, Fang Q, Wang J, Gui K, Thomas HR. Effect of CaCO3 on catalytic activity of Fe–Ce/Ti catalysts for NH3-SCR reaction. RSC Adv 2020; 10:44876-44883. [PMID: 35516228 PMCID: PMC9058578 DOI: 10.1039/d0ra07351b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
In the present work, fresh and Ca poisoned Fe–Ce/Ti catalysts were prepared and used for the NH3-SCR reaction to investigate the effect of Ca doping on the catalytic activity of catalysts. And these catalysts were characterized by BET, XRD, Raman, UV-vis DRS, XPS, H2-TPR, and NH3-TPD techniques. The obtained results demonstrate that Ca doping could lead to an obvious decrease in the catalytic activity of catalysts. The reasons for this may be due to the smaller specific surface area and pore volume, the decreased ratio of Fe3+/Fe2+ and Ce3+/Ce4+, as well as the reduced redox ability and surface acidity. In the present work, fresh and Ca poisoned Fe–Ce/Ti catalysts were prepared and used for the NH3-SCR reaction to investigate the effect of Ca doping on the catalytic activity of catalysts.![]()
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- China
- Geoenvironmental Research Centre
| | - Qiuyue Fang
- School of Environmental Science
- Nanjing Xiaozhuang University
- Nanjing 211171
- China
| | - Jia Wang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Keting Gui
- School of Energy and Environment
- Southeast University
- Nanjing 210096
- China
| | - Hywel Rhys Thomas
- Geoenvironmental Research Centre
- School of Engineering
- Cardiff University
- Cardiff
- UK
| |
Collapse
|
13
|
Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem Rev 2019; 119:10916-10976. [DOI: 10.1021/acs.chemrev.9b00202] [Citation(s) in RCA: 568] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lupeng Han
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Sixiang Cai
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Penglu Wang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Cheng J, Ye Q, Zheng C, Cheng S, Kang T, Dai H. Effect of ceria loading on Zr-pillared clay catalysts for selective catalytic reduction of NO with NH3. NEW J CHEM 2019. [DOI: 10.1039/c9nj02102g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of ceria loading on Zr-pillared clay catalysts was investigated and its reaction mechanism was explored.
Collapse
Affiliation(s)
- Jin Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control
- Department of Environmental Science
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
| | - Qing Ye
- Key Laboratory of Beijing on Regional Air Pollution Control
- Department of Environmental Science
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
| | - Changkun Zheng
- Key Laboratory of Beijing on Regional Air Pollution Control
- Department of Environmental Science
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
| | - Shuiyuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control
- Department of Environmental Science
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
| | - Tianfang Kang
- Key Laboratory of Beijing on Regional Air Pollution Control
- Department of Environmental Science
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation
- Key Laboratory of Beijing on Regional Air Pollution Control
- Key Laboratory of Advanced Functional Materials
- Education Ministry of China, and Laboratory of Catalysis Chemistry and Nanoscience
- Department of Chemistry and Chemical Engineering
| |
Collapse
|
15
|
Jiang Y, Lu M, Liu S, Bao C, Liang G, Lai C, Shi W, Ma S. Deactivation by HCl of CeO 2-MoO 3/TiO 2 catalyst for selective catalytic reduction of NO with NH 3. RSC Adv 2018; 8:17677-17684. [PMID: 35542102 PMCID: PMC9080478 DOI: 10.1039/c8ra00280k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
The effect of HCl on a CeO2–MoO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3 was investigated with BET, XRD, NH3-TPD, H2-TPR, XPS and catalytic activity measurements. The results showed that HCl had an inhibiting effect on the activity of the CeO2–MoO3/TiO2 catalyst. The deactivation by HCl of the CeO2–MoO3/TiO2 catalyst could be attributed to pore blockage, weakened interaction among ceria, molybdenum and titania, reduction in surface acidity and degradation of redox ability. The Ce3+/Ce4+ redox cycle was damaged because unreactive Ce3+ in the form of CeCl3 lost the ability to be converted to active Ce4+ in the SCR reaction. In addition, a decrease in the amount of chemisorbed oxygen and the concentrations of surface Ce and Mo was also responsible for the deactivation by HCl of the CeO2–MoO3/TiO2 catalyst. The effect of HCl on a CeO2–MoO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3.![]()
Collapse
Affiliation(s)
- Ye Jiang
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| | - Mingyuan Lu
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University 32 Zheda Road Hangzhou 310027 China
| | - Changzhong Bao
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| | - Guitao Liang
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| | - Chengzhen Lai
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| | - Weiyun Shi
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| | - Shiyuan Ma
- College of Pipeline and Civil Engineering, China University of Petroleum 66 Changjiang West Road Qingdao 266580 P. R. China +86-532-86981882 +86-532-86981767
| |
Collapse
|