1
|
Koçak E, Akkoyun Kurtlu M. Impact of production methods on properties of natural rosin added polylactic acid/sodium pentaborate and polylactic acid/calcium carbonate films. Int J Biol Macromol 2024; 265:130965. [PMID: 38503375 DOI: 10.1016/j.ijbiomac.2024.130965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Nowadays biopolymers play an important role in packaging materials due to their protection properties against physical and chemical degradation or mechanical resistance. In this study, sodium pentaborate anhydride (B5NaO8), eggshell (CaCO3) nanoparticles, and natural rosin additives were introduced to pure PLA to produce a biofilm protecting from UV rays. The impact of the preparation method of hybrid biocomposite films was carried out based on the polymer casting method and using in the first case only magnetic mixing whereas magnetic mixing coupled with ultrasonic homogenizer was used in the second case. All biocomposite films were obtained for a nanoparticle content fixed at 7.5 wt% and various rosin rates (1, 5, 10, and 40 wt%). This study aims to expand the UV protection zone in PLA films. The thermal and mechanical properties, transmittance of UV-visible rays, microstructure analysis, and contact angle values were evaluated to detect the effect of the preparation method on the final properties. The results showed that the homogeneous distribution of the particles was more effective using an ultrasonic homogenizer. The increase of the rosin amount exhibited a reduction of the UV-visible light transmittance and the wettability was observed, demonstrating a potential use of these films in packaging.
Collapse
Affiliation(s)
- Esin Koçak
- Bursa Technical University, Department of Polymer Materials Engineering, 16310 Bursa, Turkey
| | - Meral Akkoyun Kurtlu
- Bursa Technical University, Department of Polymer Materials Engineering, 16310 Bursa, Turkey.
| |
Collapse
|
2
|
Vakati SR, Vanderlaan G, Gacura MD, Ji X, Chen L, Piovesan D. Synthesis of Poly-Lactic Acid by Ring Open Polymerization from Beer Spent Grain for Drug Delivery. Polymers (Basel) 2024; 16:483. [PMID: 38399861 PMCID: PMC10892441 DOI: 10.3390/polym16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Poly-lactic acid (PLA) is a synthetic polymer that has gained popularity as a scaffold due to well-established manufacturing processes, predictable biomaterial properties, and sustained therapeutic release rates. However, its drawbacks include weak mechanical parameters and reduced medicinal delivery efficacy after PLA degradation. The development of synthetic polymers that can release antibiotics and other medicines remains a top research priority. This study proposes a novel approach to produce PLA by converting Brewer's spent grain (BSG) into lactic acid by bacterial fermentation followed by lactide ring polymerization with a metal catalyst. The elution properties of the PLA polymer are evaluated using modified Kirby-Bauer assays involving the antimicrobial chemotherapeutical, trimethoprim (TMP). Molded PLA polymer disks are impregnated with a known killing concentration of TMP, and the PLA is evaluated as a drug vehicle against TMP-sensitive Escherichia coli. This approach provides a practical means of assessing the polymer's ability to release antimicrobials, which could be beneficial in exploring new drug-eluting synthetic polymer strategies. Overall, this study highlights the potential of using BSG waste materials to produce valuable biomaterials of medical value with the promise of expanded versatility of synthetic PLA polymers in the field of drug-impregnated tissue grafts.
Collapse
Affiliation(s)
- Snehal R. Vakati
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| | - Gary Vanderlaan
- Department of Biology, Gannon University, Erie, PA 16541, USA (M.D.G.)
| | - Matthew D. Gacura
- Department of Biology, Gannon University, Erie, PA 16541, USA (M.D.G.)
| | - Xiaoxu Ji
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| | - Longyan Chen
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| | - Davide Piovesan
- Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA; (S.R.V.); (X.J.); (L.C.)
| |
Collapse
|
3
|
Bai W, Portillo-Perez G, Petronilho S, Gonçalves I, Martinez MM. Exploring novel organocatalytic-acetylated pea starch blends in the development of hot-pressed bioplastics. Int J Biol Macromol 2024; 258:128740. [PMID: 38101678 DOI: 10.1016/j.ijbiomac.2023.128740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Acetylated starch shows enhanced thermal stability and moisture resistance, but its compatibilization with other more hydrophilic polysaccharides remains poor or unknown. In this study, the feasibility of thermomechanically compounding organocatalytically acetylated pea starch (APS), produced at two different degrees of substitution with alkanoyl groups (DSacyl, 0.39 and 1.00), with native pea starch (NPS), high (HMP) and low methoxyl (LMP) citrus pectin, and sugar beet pectin (SBP, a naturally acetylated pectin) for developing hot-pressed bioplastics was studied. Generally, APS decreased hydrogen bonding (ATR-FTIR) and crystallinity (XRD) of NPS films at different levels, depending on its DSacyl. The poor compatibility between APS and NPS or HMP was confirmed by ATR-FTIR imaging. Contrariwise, APS with DSacyl 1 was effectively thermomechanically mixed with the acetylated SBP matrix, maintaining homogeneous distribution within it (ATR-FTIR imaging). APS (any DSacyl) significantly increased the visible/UV light opacity of NPS-based films and decreased their water vapor transmission rate (WVTR, by ca. 11 %) and surface water wettability (by ca. 3 times). In comparison to NPS-APS films, pectin-APS showed higher visible/UV light absorption, tensile strength (ca.2.9-4.4 vs ca.2.4 MPa), and Young's modulus (ca.96-116 vs ca.60-70 MPa), with SBP-APS presenting significantly lower water wettability than the rest of the films.
Collapse
Affiliation(s)
- Wenqiang Bai
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Guillermo Portillo-Perez
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Sílvia Petronilho
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; Chemistry Research Centre-Vila Real, Department of Chemistry, University of Trás os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
| | - Idalina Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mario M Martinez
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
4
|
Sikhosana ST, Gumede TP, Malebo NJ, Ogundeji AO, Motloung B. The influence of cellulose content on the morphology, thermal, and mechanical properties of poly(lactic acid)/
Eucomis autumnalis
cellulose biocomposites. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- S. T. Sikhosana
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
| | - T. P. Gumede
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
| | - N. J. Malebo
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
| | - A. O. Ogundeji
- Department of Microbiology and Biochemistry University of Free State Bloemfontein South Africa
| | - B. Motloung
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
- Department of Chemistry and Polymer Science Stellenbosch University Matieland South Africa
| |
Collapse
|
5
|
Kumar R, Alex Y, Nayak B, Mohanty S. Effect of poly (ethylene glycol) on 3D printed PLA/PEG blend: A study of physical, mechanical characterization and printability assessment. J Mech Behav Biomed Mater 2023; 141:105813. [PMID: 37015146 DOI: 10.1016/j.jmbbm.2023.105813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
The growing popularity of additive manufacturing in the science, industry is associated with high-quality products for futuristic applications. This study presents an in-depth characterization and analysis of the effect of poly (ethylene glycol) (PEG) having molecular weight 6000 g/mol used with various concentrations (1%,3%,5%) to modify the 3D printed Polylactide (PLA) part. The influence of PEG on the morphology, structure, thermal, wettability and mechanical properties of the 3D-printed PLA/PEG part was investigated. Herein, the mechanical property of injection moulding, 3D printed specimens, and finite element analysis (FEA) simulation results were also compared. The structure and properties of PLA/PEG blends were different from those of virgin PLA. By DSC analysis, it was found that the glass transition temperature (Tg) and cold crystallization temperature decreased in the case of the PLA/PEG blend. From TGA it was observed that PLA/PEG blend was thermally stable. It was shown that with the addition of PEG into PLA the tensile strength and young's modulus decrease, whereas elongation percentage and impact strength increase predominantly. The contact angle results indicate that the addition of PEG lowers the contact angle value of the PLA/PEG blend (from 69.32 ± 1.4° to 45.67 ± 1.2°) and increases surface wettability. With 5% PEG loading, PLA/PEG blend showed optimum structural and mechanical properties together with simple processibility.
Collapse
|
6
|
Optimization of processing parameters in poly(lactic acid)-reinforced acetylated starch composite films by response surface methodology. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Fonseca-García A, Osorio BH, Aguirre-Loredo RY, Calambas HL, Caicedo C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr Polym 2022; 293:119744. [DOI: 10.1016/j.carbpol.2022.119744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
8
|
He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm 2021; 604:120759. [PMID: 34098053 DOI: 10.1016/j.ijpharm.2021.120759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Orally drug delivery film has received extensive interest duo to a distinct set of its advantageous properties compared to the traditional orally administered dosages, including faster rate of drug absorption, higher bioavailability and better patient compliance for children and elders with swallowing deficiencies. In particular, its potential capacity of delivering proteins and peptides has further attracted great attention. Lately, tremendous advances have been made in designing and developing both novel mucoadhesive films and orodispersible films to fulfill specific accomplishments of drug delivery. This review aims to summarize those newly developed oral films, discussing their formulation strategies, manufacturing methods as well as advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Mengning He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingmeng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ni Yang
- School of Mathematics, University of Bristol, Bristol BS8 1QU, UK
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Ningbo Wesdon Powder Pharma Coatings Co. Ltd., Ningbo 315042, China.
| |
Collapse
|
9
|
Mathe S, Dimonie D, Cristea M. Thermal analysis and polarized light microscopy as methods to study the increasing of the durability of PLA designed for 3D printing. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1880111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Silvia Mathe
- Doctoral School of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Doina Dimonie
- National Institute of Research and Development in Chemistry and Petrochemistry, Bucharest, Romania
| | - Mariana Cristea
- Institute of Macromolecular Chemistry “Petru Poni”, Iasi, Romania
| |
Collapse
|
10
|
Jadhav H, Jadhav A, Takkalkar P, Hossain N, Nizammudin S, Zahoor M, Jamal M, Mubarak NM, Griffin G, Kao N. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|