1
|
Chen D, Ding Z, Zou L, Wang Y, Zeng X. Composite of Hydrolyzed PAN and β-Cyclodextrin Forms a Nanofiber Membrane with an Excellent Removal Effect on Various Cationic Dyes and Copper Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39487803 DOI: 10.1021/acs.langmuir.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The presence of dyes and heavy metals in wastewater represents a significant environmental and public health hazard, necessitating the development of efficient materials for their removal. In this study, we modified hydrolyzed polyacrylonitrile (PAN-H) and combined it with β-cyclodextrin (β-CD) by using an electrostatic spinning technique to fabricate composite nanofibrous membranes for water treatment applications. The resulting PAN-H/β-CD nanofiber membranes exhibit spindle-shaped fibers and porous structures with a high density of charged functional groups, which significantly enhance their selective adsorption capacity compared to pure PAN fibers. Furthermore, post-treatment with a sodium bicarbonate solution further improved this capacity, resulting in the membranes demonstrating a remarkable adsorption efficiency for cationic dyes. The adsorption process conformed to the Langmuir and pseudo-second-order kinetic models, with maximum adsorption capacities of 216.94 mg/g for methylene blue (MB), 471.59 mg/g for malachite green (MG), 299 mg/g for crystal violet (CV), and 43.95 mg/g for copper ions. The selective adsorption of these positively charged contaminants, particularly cationic dyes and metallic copper, indicates that PAN-H/β-CD membranes have significant potential for the treatment of wastewater containing similar pollutants.
Collapse
Affiliation(s)
- Deqiang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Zezhao Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Liming Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Yanli Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Xianghui Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
2
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
3
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
4
|
Tavassoli S, Cheraghi S, Etemadifar P, Mollahosseini A, Joodaki S, Sedighi N. Optimization and characterization of silver nanoparticle-modified luffa for the adsorption of ketoprofen and reactive yellow 15 from aqueous solutions. Sci Rep 2024; 14:4398. [PMID: 38388671 PMCID: PMC10884008 DOI: 10.1038/s41598-024-54790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
In the current work, luffa was modified with silver nanoparticles to prepare LF/AgNPs adsorbent for the elimination of ketoprofen and reactive yellow 15 (RY15) from aqueous media. Various characterization techniques, including FT-IR, XRD, BET, and SEM-EDS analysis, were employed to confirm the successful modification of LF/AgNPs. Several key parameters such as contact time, adsorbent dosage, concentration, pH, and agitation technique were fine-tuned to optimize the adsorption process. Ketoprofen removal was found to be most effective in weakly acidic conditions (pH = 5), while reactive yellow 15 adsorption was enhanced in an acidic environment (pH = 2). At 298 K, the highest adsorption capacities reached 56.88 mg/g for ketoprofen and 97.76 mg/g for reactive yellow 15. In both scenarios involving the elimination of ketoprofen and RY15, the Temkin isotherm exhibits higher R2 values, specifically 0.997 for ketoprofen and 0.963 for RY15, demonstrating a strong correlation with the observed adsorption data. Additionally, the kinetics of ketoprofen adsorption were best described by the Pseudo-first order model (R2 = 0.989), whereas the Pseudo-second order model provided the most accurate fit for reactive yellow 15 adsorption (R2 = 0.997). Importantly, the LF/AgNPs adsorbent displayed consistent performance over five consecutive reuse cycles, affirming its stability and efficacy in removing both contaminants. These findings underscore the exceptional potential of LF/AgNPs as a reliable adsorbent for the removal of reactive yellow 15 and ketoprofen from aqueous solutions.
Collapse
Affiliation(s)
- Soheil Tavassoli
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Setareh Cheraghi
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Pardis Etemadifar
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Shirin Joodaki
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Niloofar Sedighi
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|
5
|
Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, Govarthanan M. β-cyclodextrin polymer composites for the removal of pharmaceutical substances, endocrine disruptor chemicals, and dyes from aqueous solution- A review of recent trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119830. [PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
Collapse
Affiliation(s)
- M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
6
|
Jia J, Wu D, Yu J, Gao T, Guo L, Li F. Upgraded β-cyclodextrin-based broad-spectrum adsorbents with enhanced antibacterial property for high-efficient dyeing wastewater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132610. [PMID: 37757550 DOI: 10.1016/j.jhazmat.2023.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The dyeing wastewater contains amounts of refractory organic compounds, and severely endangers the ecosystem and human health. To alleviate this problem, in this study, the low-cost broad-spectrum nano-adsorbent (denoted as CD/CA-g-CS) with strong antibacterial activity has been synthesized by chemical binding of β-cyclodextrin (β-CD) with chitosan (CS) and citric acid (CA) for high-efficient dyes scavenger. Taking advantage of the extraordinary water insolubility, porous nature and abundant surface groups, the synthesized CD/CA-g-CS outperforms the previously reported adsorbents in terms of adsorption performance. The CD/CA-g-CS exhibits ultrahigh adsorption capacities of 801.66, 770.50 and 946.66 mg/g, respectively mg/g for the cationic dyes of malachite green (MG), basic red (BR) and methylene blue (MB), respectively, while 389.64, 619.60 and 429.22 mg/g for the anionic dyes of acid blue (AB), acid red (AR) and acid yellow (AY), respectively. The chemical monolayer absorption is further demonstrated by the analysis based on the pseudo-second-order adsorption kinetics and Langmuir isotherm models. The regenerable CD/CA-g-CS not only performs well in one-step removal of the mixed dyes in the simulated sewage, but also exhibits superior performance in purifying real industrial wastewater. Moreover, CD/CA-g-CS endowed with antibacterial activity leads to an inhibition rate of over 99.99 % for E. coli. The newly developed CD/CA-g-CS adsorbents are highly promising for high-efficient dyeing wastewater remediation.
Collapse
Affiliation(s)
- Jie Jia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Dequn Wu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Tingting Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Leiming Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China.
| | - Faxue Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
7
|
Hoang LTTT, Phan HVT, Nguyen PN, Dang TT, Tran TN, Vo DT, Nguyen VK, Dao MT. Annona glabra L. Seeds: An Agricultural Waste Biosorbent for the Eco-Friendly Removal of Methylene Blue. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:48-57. [PMID: 38063883 DOI: 10.1007/s00244-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
The seeds of Annona glabra L., an invasive plant in Vietnam, were first employed as a new biosorbent for the adsorption of methylene blue (MB) from aqueous media. The characterizations of the material using FT-IR, SEM, nitrogen adsorption-desorption analysis, and point of zero charge reveals that it possesses a rough and irregular surface, various polar functional groups, and pHpzc of 5.5. Certain adsorption conditions including adsorbent dose, solution pH, contact time, and initial concentration of MB were found to affect adsorption efficiency. The kinetic data are well fitted with pseudo-second-order model with the adsorption rate of 0.002 g mg-1 min-1 and initial rate of 4.46 mg g-1 min-1. For the adsorption isotherm, three nonlinear models were used to analyze the experiment data, including Langmuir, Freundlich, and Temkin. The results indicate that the Langmuir model best describes the adsorption of Annona glabra L. seeds powder (AGSP) with a maximum adsorption capacity of 98.0 mg g-1. The investigation underpins the adsorption mechanism, whereby the electrostatic attraction between positively charged MB and negatively charged surface of AGSP is expected to be the predominant mechanism, together with hydrogen bonding and pi-pi interaction. These results make AGSP an interesting biosorbent concerning its environmental friendliness, cost-effectiveness, and relatively high dye adsorption capacity.
Collapse
Affiliation(s)
- Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Phuong-Nam Nguyen
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, 820000, Vietnam
| | - Thanh-Truc Dang
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, 820000, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, 820000, Vietnam
| | - Duc-Thuong Vo
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, 820000, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh, 700000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, 820000, Vietnam.
| |
Collapse
|
8
|
Yilmaz AS, Ozturk S, Salih B, Ayyala RS, Sahiner N. ESI-IM-MS characterization of cyclodextrin complexes and their chemically cross-linked alpha (α-), beta (β-) and gamma (γ-) cyclodextrin particles as promising drug delivery materials with improved bioavailability. Colloids Surf B Biointerfaces 2023; 230:113522. [PMID: 37657404 DOI: 10.1016/j.colsurfb.2023.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Cyclodextrins (CDs) are natural cyclic oligosaccharides with a relatively hydrophobic cavity and a hydrophilic outer surface. In this study, alpha (α-), beta (β-) and gamma (γ-) CD particles were prepared by directly using α-, β-, and γ-CDs as monomeric units and divinyl sulfone (DVS) as a crosslinker in a single-step via reverse micelle microemulsion crosslinking technique. Particles of p(α-CD), p(β-CD), and p(γ-CD) were perfectly spherical in sub- 10 µm size ranges. The prepared p(CD) particles at 1.0 mg/mL concentrations were found biocompatible with > 95 % cell viability against L929 fibroblasts. Furthermore, p(α-CD) and p(β-CD) particles were found non-hemolytic with < 2 % hemolysis ratios, whereas p(γ-CD) particles were found to be slightly hemolytic with its 2.1 ± 0.4 % hemolysis ratio at 1.0 mg/mL concentration. Furthermore, a toxic compound, Bisphenol A (BPA) and a highly antioxidant polyphenol, curcumin (CUR) complexation with α-, β-, and γ-CD molecules was investigated via Electrospray-Ion Mobility-Mass Spectrometry (ESI-IM-MS) and tandem mass spectrometry (MS/MS) analysis. It was determined that the most stable noncovalent complex was in the case of β-CD, but the complex stoichiometry was changed by the hydrophobic nature of the guest molecules. In addition, BPA and CUR were separately loaded into prepared p(CD) particles as active agents. The drug loading and release studies showed that p(CD) particles possess governable loading and releasing profiles.
Collapse
Affiliation(s)
- Aynur Sanem Yilmaz
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Serhat Ozturk
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA; Department of Chemical & Biomedical Engineering, Materials Science and Engineering Program, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
9
|
Zhong ZR, Jiang HL, Shi N, Lv HW, Liu ZJ, He FA. A novel tetrafluoroterephthalonitrile-crosslinked quercetin/chitosan adsorbent and its adsorption properties for dyes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Contribution Evaluation of Physical Hole Structure, Hydrogen Bond, and Electrostatic Attraction on Dye Adsorption through Individual Experiments. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4596086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Disagreements over various unanswered questions about contribution of the adsorption process and functional groups on dye adsorption still exist. The main aim of this research was to evaluate the contributions of physical hole structure, hydrogen bond, and electrostatic attraction on dye adsorption. Three ideal representatives, namely, a sponge with porous structure, P(AM) containing -CONH2 groups, and P(AANa/AM) containing -COONa groups, were chosen to evaluate the above contributions. The methylene blue (MB) removal rates of these three products were compared through individual experiments. The results revealed that physical hole structure did not play a role in decreasing dye concentration. Hydrogen bond existed in dye adsorption but did not remarkably reduce dye concentration. The excellent removal results of P(AANa/AM) demonstrated that electrostatic attraction was critical in enriching dye contaminants from the solution into solid adsorbent. The results could provide insights into the dye adsorption mechanisms for further research.
Collapse
|
11
|
Adsorption of Orange G in Liquid Solution by the Amino Functionalized GO. SEPARATIONS 2022. [DOI: 10.3390/separations9120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dye effluent damaged the water environment and human health with its massive discharge. In order to eliminate dye from the water environment, a variety of adsorbents were used to investigate dye removal. Graphene oxide (GO) attracted extensive attention due to its excellent surface property in the degradation of dye wastewater. Modified GO with multifunctional groups helped to improve adsorption performance. 3-Aminopropyltriethoxysilane modified GO (AS-GO) was fabricated for the removal of Orange G (OG) in this study. The results showed that AS-GO had an excellent adsorption ability of OG. During the reaction process, the maximum adsorptive capacity of OG was up to 576.6 mg/g at T = 313 K and pH = 3 with the initial OG concentration of 100 mg/L and the initial adsorbent dose of 2.5 g/L. The adsorption kinetic process of AS-GO conformed to the pseudo-second-order and Langmuir models. The spontaneous and endothermic adsorption of OG occurred in the adsorption process. The main adsorption mechanisms were electrostatic, π–π and hydrogen bonding interactions in the reaction process. After four cycles of AS-GO, it maintained high removal efficiency owing to its remarkable stability. The scheme of GO modified with AS could hinder the agglomeration of GO and provide more active sites, which would further enhance the adsorption properties and expand its application in water purification.
Collapse
|
12
|
Low-cost treated lignocellulosic biomass waste supported with FeCl 3/Zn(NO 3) 2 for water decolorization. Sci Rep 2022; 12:16442. [PMID: 36180518 PMCID: PMC9525308 DOI: 10.1038/s41598-022-20883-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Dye pollution has always been a serious concern globally, threatening the lives of humans and the ecosystem. In the current study, treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 was utilized as an effective composite for removing Reactive Orange 16 (RO16). SEM/EDAX, FTIR, and XRD analyses exhibited that the prepared material was successfully synthesized. The removal efficiency of 99.1% was found at an equilibrium time of 110 min and dye concentration of 5 mg L-1 Adsorbent mass of 30 mg resulted in the maximum dye elimination, and the efficiency of the process decreased by increasing the temperature from 25 to 40 °C. The effect of pH revealed that optimum pH was occurred at acidic media, having the maximum dye removal of greater than 90%. The kinetic and isotherm models revealed that RO16 elimination followed pseudo-second-order (R2 = 0.9982) and Freundlich (R2 = 0.9758) assumptions. Surprisingly, the performance of modified sawdust was 15.5 times better than the raw sawdust for the dye removal. In conclusion, lignocellulosic sawdust-Fe/Zn composite is promising for dye removal.
Collapse
|
13
|
Preparation of the hexachlorocyclotriphosphazene crosslinked sodium alginate polymer/multi-walled carbon nanotubes composite powder for the removal of the cationic dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Highly efficient and ultra-rapid adsorption of malachite green by recyclable crab shell biochar. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Imgharn A, Anchoum L, Hsini A, Naciri Y, Laabd M, Mobarak M, Aarab N, Bouziani A, Szunerits S, Boukherroub R, Lakhmiri R, Albourine A. Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights. CHEMOSPHERE 2022; 295:133786. [PMID: 35114254 DOI: 10.1016/j.chemosphere.2022.133786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A polyaniline@Fe-ZSM-5 composite was synthesized via an in situ interfacial polymerization procedure. The morphology, crystallinity, and structural features of the as-developed PANI@Fe-ZSM-5 composite were assessed using scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The composite was efficiently employed for the first time as an adsorbent Orange G (OG) dyestuff from water. The OG dye adsorption performance was investigated as a function of several operating conditions. The kinetic study demonstrated that a pseudo-second-order model was appropriate to anticipate the OG adsorption process. The maximum adsorption capacity was found to be 217 mg/g. The adsorption equilibrium data at different temperatures were calculated via advanced statistical physics formalism. The entropy function indicated that the disorder of OG molecules improved at low concentrations and lessened at high concentrations. The free enthalpy and internal energy functions suggested that the OG adsorption was a spontaneous process and physisorption in nature. Regeneration investigation showed that the PANI@Fe-ZSM-5 could be effectively reused up to five cycles. The main results of this work provided a deep insight on the experimental study supported by advanced statistical physics prediction for the adsorption of Orange G dye onto the novel polyaniline@Fe-ZSM-5 hybrid composite. Additionally, the experimental and advanced statistical physics findings stated in this study may arouse research interest in the field of wastewater treatment.
Collapse
Affiliation(s)
- Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Lahoucine Anchoum
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; National HigheNational Higher School of Chemistry (NHSC), University Ibn Tofail, BP. 133-14000, Kenitra, Morocco; Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Science, Ibn Tofail University, BP 133, 14000, Kenitra, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Asmae Bouziani
- Chemical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F, 59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F, 59000, France
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Valorization Resources, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
16
|
Teng Y, Song G, Chen R, Zhang X, Sun Y, Wu H, Liu B, Xu Y. Carboxymethyl β-cyclodextrin immobilized on hydrated lanthanum oxide for simultaneous adsorption of nitrate and phosphate. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Hong YL, Sun J, Yang HW, Wang C, Liu Y, Tan ZW, Liu CM. A reactive nitrile-rich phosphonium polyelectrolyte derived from toxic PH3 tail gas: Synthesis, post-polymerization modifications, and unexpected LCST behaviour in DMF solution. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Köse K, Tüysüz M, Aksüt D, Uzun L. Modification of cyclodextrin and use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:182-209. [PMID: 34212318 DOI: 10.1007/s11356-021-15005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Water pollution, which has become a global problem in parallel with environmental pollution, is a problem that needs to be solved urgently, considering the gradual depletion of water resources. The inadequacy of the water treatment methods and the materials used somehow directed the researchers to look for dual character structures such as biocompatible and biodegradable β-cyclodextrin (β-CD). β-CD, which is normally insoluble in water, is used in demanding wastewater applications by being modified with the help of different agents to be water soluble or transformed into polymeric adsorbents as a result of co-polymerization via cross-linkers. In this way, in addition to the host-guest interactions offered by β-CD, secondary forces arising from these interactions provide advantages in terms of regeneration and reusability. However, the adsorption efficiency and synthesis steps need to be improved. Based on the current studies presented in this review, in which cross-linkers and modification methods are also mentioned, suggestions for novel synthesis methods of new-generation β-CD-based materials, criticisms, and recent methods of removal of micropollutants such as heavy metals, industrial dyes, harmful biomolecules, and pharmaceutics wastes are mentioned.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, 19040, Çorum, Turkey.
| | - Miraç Tüysüz
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Davut Aksüt
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Abstract
Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.
Collapse
|
21
|
Sellaoui L, Dhaouadi F, Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Trejo-Valencia R, Taamalli S, Louis F, El Bakali A, Chen Z. Physicochemical assessment of anionic dye adsorption on bone char using a multilayer statistical physics model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67248-67255. [PMID: 34245418 DOI: 10.1007/s11356-021-15264-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The statistical physics modeling is a reliable approach to interpret and understand the adsorption mechanism of both organic and inorganic adsorbates. Herein, a theoretical study of the adsorption mechanism of anionic dyes, namely reactive blue 4 (RB4), acid blue 74 (AB74), and acid blue 25 (AB25), on bone char was performed with a multilayer statistical physics model. This model was applied to fit the equilibrium adsorption data of these dyes at 298-313 K and pH 4. Results indicated that the global number of formed dye layers on the bone char varied from 1.62 to 2.24 for RB4, AB74, and AB25 dyes depending on the solution temperature where the saturation adsorption capacities ranged from 0.08 to 0.12 mmol/g. Dye molecular aggregation was also identified for these dyes where dimers and trimers prevailed at different operating conditions especially for adsorbates RB4 and AB74. Adsorption mechanism of these dyes was multimolecular and endothermic with adsorption energies from 10.6 to 20.8 kJ/mol where van der Waals interactions and hydrogen bonding could be present. This investigation contributes to understand the physicochemical variables associated to dye adsorption using low-cost adsorbents as bone char.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | | | | | | | | | - Sonia Taamalli
- CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, 59000, Lille, France
| | - Florent Louis
- CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, 59000, Lille, France
| | - Abderrahman El Bakali
- CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, 59000, Lille, France
| | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
22
|
Mahmoud RK, Taha M, Zaher A, Amin RM. Understanding the physicochemical properties of Zn-Fe LDH nanostructure as sorbent material for removing of anionic and cationic dyes mixture. Sci Rep 2021; 11:21365. [PMID: 34725383 PMCID: PMC8560778 DOI: 10.1038/s41598-021-00437-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
In our work, the removal of cationic and anionic dyes from water was estimated both experimentally and computationally. We check the selectivity of the adsorbent, Zn-Fe layered double hydroxide (LDH) toward three dyes. The physical and chemical properties of the synthesis adsorbent before and after the adsorption process were investigated using X-ray photoelectron spectroscopy, energy dispersive X-ray, X-ray diffraction, FT-IR, HRTEM, and FESEM analysis, particle size, zeta potential, optical and electric properties were estimated. The effect of pH on the adsorption process was estimated. The chemical stability was investigated at pH 4. Monte Carlo simulations were achieved to understand the mechanism of the adsorption process and calculate the adsorption energies. Single dye adsorption tests revealed that Zn-Fe LDH effectively takes up anionic methyl orange (MO) more than the cationic dyes methylene blue (MB) and malachite green (MG). From MO/MB/MG mixture experiments, LDH selectively adsorbed in the following order: MO > MB > MG. The adsorption capacity of a single dye solution was 230.68, 133.29, and 57.34 mg/g for MO, MB, and MG, respectively; for the ternary solution, the adsorption capacity was 217.97, 93.122, and 49.57 mg/g for MO, MB, and MG, respectively. Zn-Fe LDH was also used as a photocatalyst, giving 92.2% and 84.7% degradation at concentrations of 10 and 20 mg/L, respectively. For visible radiation, the Zn-Fe LDH showed no activity.
Collapse
Affiliation(s)
- Rehab K Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rafat M Amin
- Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
23
|
Moradi O, Sharma G. Emerging novel polymeric adsorbents for removing dyes from wastewater: A comprehensive review and comparison with other adsorbents. ENVIRONMENTAL RESEARCH 2021; 201:111534. [PMID: 34146528 DOI: 10.1016/j.envres.2021.111534] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Dye molecules are one of the most hazardous compounds for human and animal health and the excess intake of these materials can create toxic impacts. Several studies show the practicality of the adsorption process for dye uptake from wastewaters. In recent years, various adsorbents were used to be efficient in this process. Among all, polymeric adsorbents demonstrate great applicability in different environmental conditions and attract many researchers to work on them, although there is not enough reliable and precise information regarding these adsorbents. This study aims to investigate some influential parameters such as their type, physical properties, experimental conditions, their capacity, and further modeling along with a comparison with non-polymeric adsorbents. The influence of the main factors of adsorption capacity was studied and the dominant mechanism is explained extensively.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; School of Life and Allied Health Sciences, Glocal University, Saharanpur, India.
| |
Collapse
|
24
|
Onukwuli O, Nnaji P, Menkiti M, Anadebe V, Oke E, Ude C, Ude C, Okafor N. Dual-purpose optimization of dye-polluted wastewater decontamination using bio-coagulants from multiple processing techniques via neural intelligence algorithm and response surface methodology. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Li Y, Tang J, Liu Y, Xiao Z, Zhang YF. Concentration-driven selective adsorption of Congo red in binary dyes solution using polyacrolein: Experiments, characterization and mechanism studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Munagapati VS, Wen HY, Wen JC, Gollakota ARK, Shu CM, Lin KYA, Wen JH. Adsorption of Reactive Red 195 from aqueous medium using Lotus ( Nelumbo nucifera) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:131-144. [PMID: 34057865 DOI: 10.1080/15226514.2021.1929060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NOVELTY STATEMENT In the modern era, dyes are inevitable and their surging usage leads to colossal contamination of aqueous streams, thereby threatening both the land and aquatic species. One among such dye is anionic Reactive Red 195 (RR 195), and traceable even at minute concentrations of aqueous streams, posing a severe threat to living species. Moreover, RR 195 is highly recalcitrant offering resistance to biodegradation due to the presence of an azo (-N=N-) group within its structure. Thus, there is a definite need to address the issue of eliminating RR 195 from industrial wastewater effluents. In lieu of this, the primitive objective of this study is to test the effectiveness of the natural adsorbent lotus leaf (Nelumbo nucifera) for the selective sorption of RR 195 from the aqueous stream. Although ample literature is available on the direct utilization of lotus leaf as adsorbent, yet no study was performed on the chemical modification (dimethylamine) of the aforementioned adsorbent. Hence, an attempt has been made in this direction to add a new sorbent into the adsorbents database.
Collapse
Affiliation(s)
- Venkata Subbaiah Munagapati
- Research Center for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Hsin-Yu Wen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jet-Chau Wen
- Research Center for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Taiwan.,Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Anjani R K Gollakota
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Jhy-Horng Wen
- Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
| |
Collapse
|
27
|
Lv Y, Ma J, Liu K, Jiang Y, Yang G, Liu Y, Lin C, Ye X, Shi Y, Liu M, Chen L. Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123666. [PMID: 33264872 DOI: 10.1016/j.jhazmat.2020.123666] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 05/09/2023]
Abstract
A porous β-cyclodextrin modified cellulose nano-fiber membrane (CA-P-CDP) was fabricated and employed to treat the trace bisphenol pollutants (bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)) in water. The characterization highlighted the porous structure, stable crystal structure, good thermal stability of the obtained CA-P-CDP, as well as abundant functional groups, which could greatly improve the adsorption of bisphenol pollutants and recovery. During the static adsorption process, the adsorbents dosage, temperature and pH showed significant influence on the adsorption performance. At the selected conditions (25 °C, 7.0 of pH and 0.1 g L-1 of CA-P-CDP dosage), the BPA/BPS/BPF adsorption on CA-P-CDP could rapidly reached the equilibrium in 15 min by following the pseudo-second-order kinetic model, and the maximum adsorption capacities were 50.37, 48.52 and 47.25 mg g-1, respectively, according to Liu isotherm model. The mechanisms between the bisphenol pollutants and CA-P-CDP mainly involved the synergism of hydrophobic effects, hydrogen-bonding interactions and π-π stacking interactions. Besides, the dynamic adsorption data showed that the volume of treated water for CA-P-CDP (0.58 L) was 14.5 times larger than that of pristine cellulose membrane (0.04 L), revealing satisfactory adsorption performance of trace BPA in water. Furthermore, during the treatment of real water samples (lake water and river water) with trace bisphenol pollutants, the complete removal of the pollutants were evidently observed, which strongly verified the possibility of CA-P-CDP for the practical application.
Collapse
Affiliation(s)
- Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Jiachen Ma
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Kaiyang Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Yanting Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Guifang Yang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Yongqian Shi
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Lihui Chen
- Key Laboratory of National Forestry & Grassland Bureau for Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
28
|
Salari N, M A Tehrani R, Motamedi M. Zeolite modification with cellulose nanofiber/magnetic nanoparticles for the elimination of reactive red 198. Int J Biol Macromol 2021; 176:342-351. [PMID: 33545183 DOI: 10.1016/j.ijbiomac.2021.01.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 01/31/2023]
Abstract
In this paper for the first time, a cost-effective reinforced zeolite with cellulose nanofibers and magnetic nanoparticles (MZeo/Cellulose nanofiber) was used for the elimination of reactive red 198 (RR198) dye. The fabricated sorbent was characterized by SEM, FTIR, and XRD. The effect of operational parameters, including pH, RR198 concentration, the mass ratios of zeolite to cellulose nanofiber and zeolite coated cellulose to Fe3O4 nanoparticles, contact time, agitation speed, sorbent dosage, and temperature were studied. The prepared sorbent exhibited the maximum removal efficiency of 99% for RR198 removal at 30 °C. The presence of other dyes along with the target dye did not negatively affect the adsorption process and RR198 removal efficiency from actual water samples seemed satisfactory and rational. Equilibrium studies confirmed that both Langmuir and Freundlich models described the RR198 adsorption on MZeo/Cellulose nanofiber indicating physical and chemical interactions between the sorbent and RR198 molecules. Kinetic studies demonstrated that pseudo-second-order fitted best with experimental data. Also, thermodynamic studies showed the endothermic nature of the adsorption process. Compared to zeolite, MZeo/Cellulose nanofiber represented a promising removal efficiency for the elimination of RR198 dye from contaminated water.
Collapse
Affiliation(s)
- Narges Salari
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin M A Tehrani
- Young Researcher and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Mahsa Motamedi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Lai KC, Lee LY, Hiew BYZ, Yang TCK, Pan GT, Thangalazhy-Gopakumar S, Gan S. Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: Characterisation, adsorption mechanism and recyclability studies. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RDCS, Borges Valle JA, Scacchetti FAP, Tessaro AL. The Role of β-Cyclodextrin in the Textile Industry-Review. Molecules 2020; 25:molecules25163624. [PMID: 32784931 PMCID: PMC7465207 DOI: 10.3390/molecules25163624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/31/2023] Open
Abstract
β-Cyclodextrin (β-CD) is an oligosaccharide composed of seven units of D-(+)-glucopyranose joined by α-1,4 bonds, which is obtained from starch. Its singular trunk conical shape organization, with a well-defined cavity, provides an adequate environment for several types of molecules to be included. Complexation changes the properties of the guest molecules and can increase their stability and bioavailability, protecting against degradation, and reducing their volatility. Thanks to its versatility, biocompatibility, and biodegradability, β-CD is widespread in many research and industrial applications. In this review, we summarize the role of β-CD and its derivatives in the textile industry. First, we present some general physicochemical characteristics, followed by its application in the areas of dyeing, finishing, and wastewater treatment. The review covers the role of β-CD as an auxiliary agent in dyeing, and as a matrix for dye adsorption until chemical modifications are applied as a finishing agent. Finally, new perspectives about its use in textiles, such as in smart materials for microbial control, are presented.
Collapse
Affiliation(s)
- Fabricio Maestá Bezerra
- Textile Engineering (COENT), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
- Correspondence: (F.M.B.); (M.J.L.)
| | - Manuel José Lis
- INTEXTER-UPC, Terrassa, 0822 Barcelona, Spain
- Correspondence: (F.M.B.); (M.J.L.)
| | - Helen Beraldo Firmino
- Postgraduate Program in Materials Science & Engineering (PPGCEM), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
| | - Joyce Gabriella Dias da Silva
- Postgraduate Program in Environmental Engineering (PPGEA), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
| | - Rita de Cassia Siqueira Curto Valle
- Department of Textile Engineering, Universidade Federal de Santa Catarina (UFSC), Blumenau 89036-002, Santa Catarina, Brazil; (R.d.C.S.C.V.); (J.A.B.V.)
| | - José Alexandre Borges Valle
- Department of Textile Engineering, Universidade Federal de Santa Catarina (UFSC), Blumenau 89036-002, Santa Catarina, Brazil; (R.d.C.S.C.V.); (J.A.B.V.)
| | | | - André Luiz Tessaro
- Chemistry graduation (COLIQ), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
| |
Collapse
|
31
|
Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Mei Y, Qi Y, Li J, Deng X, Ma S, Yao T, Wu J. Construction of yolk/shell Fe3O4@MgSiO3 nanoreactor for enhanced Fenton-like reaction via spatial separation of adsorption sites and activation sites. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|