1
|
Chiec L, Bruno DS. Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. Int J Mol Sci 2024; 25:10861. [PMID: 39409190 PMCID: PMC11477297 DOI: 10.3390/ijms251910861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pleural mesothelioma is a rare malignancy associated with asbestos exposure and very poor prognosis, with a 5-year overall survival of 12%. Outcomes may vary according to stage at time of diagnosis and histologic subtype. Most recently, clinical trials utilizing dual checkpoint inhibitor regimens and chemotherapy in combination with immune oncologic agents have demonstrated impactful changes in outcomes. In this article, we review studies that have led to the successful implementation of immunotherapy in clinical practice for the treatment of this disease and highlight ongoing clinical trials exploring the use of different immunotherapy strategies for the treatment of pleural mesothelioma. We also discuss the challenges of immunotherapy-based approaches in the context of mesothelioma and future strategies currently being investigated to overcome them.
Collapse
Affiliation(s)
- Lauren Chiec
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Debora S. Bruno
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Szlosarek PW, Creelan BC, Sarkodie T, Nolan L, Taylor P, Olevsky O, Grosso F, Cortinovis D, Chitnis M, Roy A, Gilligan D, Kindler H, Papadatos-Pastos D, Ceresoli GL, Mansfield AS, Tsao A, O’Byrne KJ, Nowak AK, Steele J, Sheaff M, Shiu CF, Kuo CL, Johnston A, Bomalaski J, Zauderer MG, Fennell DA. Pegargiminase Plus First-Line Chemotherapy in Patients With Nonepithelioid Pleural Mesothelioma: The ATOMIC-Meso Randomized Clinical Trial. JAMA Oncol 2024; 10:475-483. [PMID: 38358753 PMCID: PMC10870227 DOI: 10.1001/jamaoncol.2023.6789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 02/16/2024]
Abstract
Importance Arginine deprivation using ADI-PEG20 (pegargiminase) combined with chemotherapy is untested in a randomized study among patients with cancer. ATOMIC-Meso (ADI-PEG20 Targeting of Malignancies Induces Cytotoxicity-Mesothelioma) is a pivotal trial comparing standard first-line chemotherapy plus pegargiminase or placebo in patients with nonepithelioid pleural mesothelioma. Objective To determine the effect of pegargiminase-based chemotherapy on survival in nonepithelioid pleural mesothelioma, an arginine-auxotrophic tumor. Design, Setting, and Participants This was a phase 2-3, double-blind randomized clinical trial conducted at 43 centers in 5 countries that included patients with chemotherapy-naive nonepithelioid pleural mesothelioma from August 1, 2017, to August 15, 2021, with at least 12 months' follow-up. Final follow-up was on August 15, 2022. Data analysis was performed from March 2018 to June 2023. Intervention Patients were randomly assigned (1:1) to receive weekly intramuscular pegargiminase (36.8 mg/m2) or placebo. All patients received intravenous pemetrexed (500 mg/m2) and platinum (75-mg/m2 cisplatin or carboplatin area under the curve 5) chemotherapy every 3 weeks up to 6 cycles. Pegargiminase or placebo was continued until progression, toxicity, or 24 months. Main Outcomes and Measures The primary end point was overall survival, and secondary end points were progression-free survival and safety. Response rate by blinded independent central review was assessed in the phase 2 portion only. Results Among 249 randomized patients (mean [SD] age, 69.5 [7.9] years; 43 female individuals [17.3%] and 206 male individuals [82.7%]), all were included in the analysis. The median overall survival was 9.3 months (95% CI, 7.9-11.8 months) with pegargiminase-chemotherapy as compared with 7.7 months (95% CI, 6.1-9.5 months) with placebo-chemotherapy (hazard ratio [HR] for death, 0.71; 95% CI, 0.55-0.93; P = .02). The median progression-free survival was 6.2 months (95% CI, 5.8-7.4 months) with pegargiminase-chemotherapy as compared with 5.6 months (95% CI, 4.1-5.9 months) with placebo-chemotherapy (HR, 0.65; 95% CI, 0.46-0.90; P = .02). Grade 3 to 4 adverse events with pegargiminase occurred in 36 patients (28.8%) and with placebo in 21 patients (16.9%); drug hypersensitivity and skin reactions occurred in the experimental arm in 3 patients (2.4%) and 2 patients (1.6%), respectively, and none in the placebo arm. Rates of poststudy treatments were comparable in both arms (57 patients [45.6%] with pegargiminase vs 58 patients [46.8%] with placebo). Conclusions and Relevance In this randomized clinical trial of arginine depletion with pegargiminase plus chemotherapy, survival was extended beyond standard chemotherapy with a favorable safety profile in patients with nonepithelioid pleural mesothelioma. Pegargiminase-based chemotherapy as a novel antimetabolite strategy for mesothelioma validates wider clinical testing in oncology. Trial Registration ClinicalTrials.gov Identifier: NCT02709512.
Collapse
Affiliation(s)
- Peter W. Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- The Mid and South Essex University Hospitals Group, Chelmsford, United Kingdom
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | | | - Thomas Sarkodie
- The Mid and South Essex University Hospitals Group, Chelmsford, United Kingdom
| | - Luke Nolan
- Southampton University Hospital NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Taylor
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Olga Olevsky
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Meenali Chitnis
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Amy Roy
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - David Gilligan
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Hedy Kindler
- University of Chicago Medicine, Chicago, Illinois
| | | | | | | | - Anne Tsao
- The University of Texas MD Anderson Cancer Center, Houston
| | - Kenneth J. O’Byrne
- Princess Alexandra Hospital and Queensland University of Technology, Brisbane, Australia
| | - Anna K. Nowak
- Medical School, The University of Western Australia and Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Jeremy Steele
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | - Michael Sheaff
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | | | | | | | | | - Marjorie G. Zauderer
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Dean A. Fennell
- University of Leicester & University Hospitals of Leicester NHS, United Kingdom
| |
Collapse
|
3
|
Gold LT, Bray SE, Kernohan NM, Henderson N, Nowicki M, Masson GR. The amino-acid stress sensing eIF2α kinase GCN2 is a survival biomarker for malignant mesothelioma. BJC REPORTS 2023; 1:4. [PMID: 39516654 PMCID: PMC11523953 DOI: 10.1038/s44276-023-00004-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 11/16/2024]
Abstract
BACKGROUND Malignant mesothelioma is a tumour that is strongly associated with a history of asbestos exposure, and which derives from mesothelial cells that line the serous cavities of the body. The tumour most commonly arises in the pleural cavity, but can also arise in the pericardium, peritoneum, and tunica vaginalis. At present the lesion has a very poor prognosis and is an incurable form of cancer with median survival times of up to 19 months being quoted for some histological subtypes. A large proportion of mesotheliomas have been shown to be arginine auxotrophic, leading to new research for therapeutics which might exploit this potential vulnerability. METHODS We measured the levels of General Control Non-derepressible 2 (GCN2) protein in malignant mesothelioma tumour samples and determined whether these levels correlate with clinical outcomes. RESULTS We observed that the expression levels of GCN2 correlated with patient survival and was an independent prognostic variable in pairwise comparisons with all available clinical data. CONCLUSION These findings suggest that GCN2 levels provides prognostic information and may allow for stratification of care pathways. It may suggest that targeting GCN2 is a viable strategy for mesothelioma therapy development.
Collapse
Affiliation(s)
- Lyssa T Gold
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland
| | - Susan E Bray
- Tayside Biorepository, University of Dundee, Dundee, Scotland
| | | | - Nina Henderson
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland
| | - Maisie Nowicki
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland
| | - Glenn R Masson
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland.
| |
Collapse
|
4
|
Offin M, Fitzgerald B, Zauderer MG, Doroshow D. The past, present, and future of targeted therapeutic approaches in patients with diffuse pleural mesotheliomas. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:21. [PMID: 38895597 PMCID: PMC11185317 DOI: 10.20517/2394-4722.2022.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Despite our growing understanding of the genomic landscape of diffuse pleural mesotheliomas (DPM), there has been limited success in targeted therapeutic strategies for the disease. This review summarizes attempts to develop targeted therapies in DPM, focusing on the following targets being clinically explored in recent and ongoing clinical trials: vascular endothelial growth factor, mesothelin, BRCA1-associated protein 1, Wilms tumor 1 protein, NF2/YAP/TAZ, CDKN2, methylthioadenosine phosphorylase, v-domain Ig suppressor T-cell activation, and argininosuccinate synthetase 1. Although preclinical data for these targets are promising, few have efficaciously translated to benefit our patients. Future efforts should seek to expand the availability of preclinical models that faithfully recapitulate DPM biology, develop clinically relevant biomarkers, and refine patient selection criteria for clinical trials.
Collapse
Affiliation(s)
- Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bailey Fitzgerald
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marjorie G. Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Deborah Doroshow
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Phillips MM, Pavlyk I, Allen M, Ghazaly E, Cutts R, Carpentier J, Berry JS, Nattress C, Feng S, Hallden G, Chelala C, Bomalaski J, Steele J, Sheaff M, Balkwill F, Szlosarek PW. A role for macrophages under cytokine control in mediating resistance to ADI-PEG20 (pegargiminase) in ASS1-deficient mesothelioma. Pharmacol Rep 2023; 75:570-584. [PMID: 37010783 DOI: 10.1007/s43440-023-00480-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Pegylated arginine deiminase (ADI-PEG20; pegargiminase) depletes arginine and improves survival outcomes for patients with argininosuccinate synthetase 1 (ASS1)-deficient malignant pleural mesothelioma (MPM). Optimisation of ADI-PEG20-based therapy will require a deeper understanding of resistance mechanisms, including those mediated by the tumor microenvironment. Here, we sought to reverse translate increased tumoral macrophage infiltration in patients with ASS1-deficient MPM relapsing on pegargiminase therapy. METHODS Macrophage-MPM tumor cell line (2591, MSTO, JU77) co-cultures treated with ADI-PEG20 were analyzed by flow cytometry. Microarray experiments of gene expression profiling were performed in ADI-PEG20-treated MPM tumor cells, and macrophage-relevant genetic "hits" were validated by qPCR, ELISA, and LC/MS. Cytokine and argininosuccinate analyses were performed using plasma from pegargiminase-treated patients with MPM. RESULTS We identified that ASS1-expressing macrophages promoted viability of ADI-PEG20-treated ASS1-negative MPM cell lines. Microarray gene expression data revealed a dominant CXCR2-dependent chemotactic signature and co-expression of VEGF-A and IL-1α in ADI-PEG20-treated MPM cell lines. We confirmed that ASS1 in macrophages was IL-1α-inducible and that the argininosuccinate concentration doubled in the cell supernatant sufficient to restore MPM cell viability under co-culture conditions with ADI-PEG20. For further validation, we detected elevated plasma VEGF-A and CXCR2-dependent cytokines, and increased argininosuccinate in patients with MPM progressing on ADI-PEG20. Finally, liposomal clodronate depleted ADI-PEG20-driven macrophage infiltration and suppressed growth significantly in the MSTO xenograft murine model. CONCLUSIONS Collectively, our data indicate that ADI-PEG20-inducible cytokines orchestrate argininosuccinate fuelling of ASS1-deficient mesothelioma by macrophages. This novel stromal-mediated resistance pathway may be leveraged to optimize arginine deprivation therapy for mesothelioma and related arginine-dependent cancers.
Collapse
Affiliation(s)
- Melissa M Phillips
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Iuliia Pavlyk
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Michael Allen
- Center for Tumor Microenvironment, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Essam Ghazaly
- Centre for Haemato-Oncology, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
- Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK
| | - Rosalind Cutts
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Josephine Carpentier
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Joe Scott Berry
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Callum Nattress
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Shenghui Feng
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Gunnel Hallden
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Claude Chelala
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - John Bomalaski
- Polaris Pharmaceuticals, Inc., San Diego, CA, 92121, USA
| | - Jeremy Steele
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Michael Sheaff
- Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, London, E1 1BB, UK
| | - Frances Balkwill
- Center for Tumor Microenvironment, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK
| | - Peter W Szlosarek
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)-a Cancer Research UK Center of Excellence, Queen Mary University of London, John Vane Science Center, London, EC1M 6BQ, UK.
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK.
| |
Collapse
|
6
|
Paajanen J, Bueno R, De Rienzo A. The Rocky Road from Preclinical Findings to Successful Targeted Therapy in Pleural Mesothelioma. Int J Mol Sci 2022; 23:13422. [PMID: 36362209 PMCID: PMC9658134 DOI: 10.3390/ijms232113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2023] Open
Abstract
Pleural mesothelioma (PM) is a rare and aggressive disease that arises from the mesothelial cells lining the pleural cavity. Approximately 80% of PM patients have a history of asbestos exposure. The long latency period of 20-40 years from the time of asbestos exposure to diagnosis, suggests that multiple somatic genetic alterations are required for the tumorigenesis of PM. The genomic landscape of PM has been characterized by inter- and intratumor heterogeneity associated with the impairment of tumor suppressor genes such as CDKN2A, NF2, and BAP1. Current systemic therapies have shown only limited efficacy, and none is approved for patients with relapsed PM. Advances in understanding of the molecular landscape of PM has facilitated several biomarker-driven clinical trials but so far, no predictive biomarkers for targeted therapies are in clinical use. Recent advances in the PM genetics have provided optimism for successful molecular strategies in the future. Here, we summarize the molecular mechanism underlying PM pathogenesis and review potential therapeutic targets.
Collapse
Affiliation(s)
| | - Raphael Bueno
- The Thoracic Surgery Oncology Laboratory and The International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|
8
|
Davis A, Ke H, Kao S, Pavlakis N. An Update on Emerging Therapeutic Options for Malignant Pleural Mesothelioma. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:1-12. [PMID: 35264891 PMCID: PMC8900635 DOI: 10.2147/lctt.s288535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
The treatment paradigm for malignant pleural mesothelioma (MPM) has changed little in the last 18 years. Radical intent treatment, consisting of surgical resection, radiotherapy and chemotherapy, has been offered to a highly select few; however, there is little randomised evidence to validate this approach. Prior to 2020 chemotherapy with platinum and an anti-folate was the only intervention with randomised evidence to demonstrate improved overall survival (OS) in MPM. No systemic therapy had been demonstrated to improve OS in the second line setting until 2020. The publication of the Checkmate 743 trial in 2021 demonstrated a survival benefit of combination immunotherapy over standard chemotherapy in newly diagnosed patients with MPM. This finding was shortly followed by the CONFIRM trial which demonstrates a modest but significant survival benefit of second line nivolumab versus placebo in patients having previously received standard chemotherapy. The results of these trials, recent biomarker directed therapy and chemotherapy adjuncts are discussed within this review. The integration of immunotherapy for the few patients in whom radical surgical therapy is intended is currently the subject of clinical trials and offers the prospect of improving outcomes in this rare but devastating disease.
Collapse
Affiliation(s)
- Alexander Davis
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia.,Department of Medical Oncology, Western Cancer Centre, Dubbo, NSW, Australia
| | - Helen Ke
- Asbestos Diseases Research Institute, Rhodes, NSW, Australia
| | - Steven Kao
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia.,Asbestos Diseases Research Institute, Rhodes, NSW, Australia.,School of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Nick Pavlakis
- School of Medicine, University of Sydney, Camperdown, NSW, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Medical Oncology, Genesis Care, St Leonards, NSW, Australia
| |
Collapse
|
9
|
Perryman L, Gray SG. Fibrosis in Mesothelioma: Potential Role of Lysyl Oxidases. Cancers (Basel) 2022; 14:981. [PMID: 35205728 PMCID: PMC8870010 DOI: 10.3390/cancers14040981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies (such as checkpoint inhibitors) and standard chemotherapies (such as cisplatin) have limitations in the successful treatment of malignant pleural mesothelioma (MPM). Fibrosis is the accumulation of collagen in the extracellular matrix (ECM) of tissues, making them denser than that of healthy tissues and thereby affecting drug delivery and immune cell infiltration. Moreover, fibrosis severely affects the patient's breathing and quality of life. The production of collagen and its assembly is highly regulated by various enzymes such as lysyl oxidases. Many solid tumors aberrantly express the family of lysyl oxidases (LOX/LOXL). This review examines how LOX/LOXLs were found to be dysregulated in noncancerous and cancerous settings, discusses their roles in solid tumor fibrosis and pathogenesis and explores the role of fibrosis in the development and poor clinical outcomes of patients with MPM. We examine the current preclinical status of drugs targeting LOX/LOXLs and how the incorporation of such drugs may have therapeutic benefits in the treatment and management of patients with MPM.
Collapse
Affiliation(s)
- Lara Perryman
- Drug Discovery Department, Pharmaxis Ltd., Sydney, NSW 2086, Australia;
| | - Steven G. Gray
- Thoracic Oncology, Labmed Directorate, St James’s Hospital, D08 RX0X Dublin, Ireland
| |
Collapse
|