1
|
Wang G, Zhu Y, Liu Y, Yang M, Zeng L. Mesenchymal Stem Cells-Derived Exosomal miR-223-3p Alleviates Ocular Surface Damage and Inflammation by Downregulating Fbxw7 in Dry Eye Models. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39352716 PMCID: PMC11451833 DOI: 10.1167/iovs.65.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose Our previous study indicated that exosomes derived from mouse adipose-derived mesenchymal stem cells (mADSC-Exos) alleviated the benzalkonium chloride (BAC)-induced mouse dry eye model. However, the specific active molecules in mADSC-Exos that contribute to anti-dry eye therapy remain unidentified. In this study, we aimed to investigate the efficacy and mechanisms of miR-223-3p derived from mADSC-Exos in dry eye models. Methods Enzyme-linked immunosorbent assay (ELISA) experiments were conducted to determine miR-223-3p derived from mADSC-Exos that exerted anti-inflammatory effects on hyperosmolarity-induced mouse corneal epithelial cells (MCECs). The therapeutic efficacy of miR-223-3p was evaluated in mice with dry eye induced by either BAC or scopolamine (Scop). Mice were randomly assigned to 5 groups: sham, model, miR-223-3p overexpression, miR-223-3p knockdown, and 0.1% pranoprofen (positive group). Post-treatment, the severity of dry eye symptoms, and the pro-inflammatory cytokine levels were assessed. The effect of miR-223-3p on silencing the target gene was verified using ELISA and dual luciferase reporter assays. Results The mADSC-Exos that knocked out miR-223-3p did not reduce interleukin (IL)-6 content. Supplementing with miR-223-3p could restore the reduction of IL-6. The miR-223-3p effectively ameliorated ocular surface damage and decreased pro-inflammatory cytokines or chemokines in both BAC- and Scop-induced mouse dry eye models. Furthermore, miR-223-3p inhibited cell apoptosis. F-box and WD repeat domain-containing 7 (Fbxw7) was the potential direct target of miR-223-3p. The miR-223-3p suppressed the 3'-untranslated region of Fbxw7. The Fbxw7 knockdown suppressed hyperosmolarity-induced inflammation in MCECs. Conclusions The mADSC-derived exosomal miR-223-3p mitigates ocular surface damage and inflammation, indicating its potential as a promising treatment option for dry eye.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Yuzhen Liu
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Mulin Yang
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, Hunan, China
| |
Collapse
|
2
|
Alisi L, Giovannetti F, Armentano M, Lucchino L, Lambiase A, Bruscolini A. Challenging corneal diseases and microRNA expression: Focus on rare diseases and new therapeutic frontiers. Surv Ophthalmol 2024:S0039-6257(24)00120-6. [PMID: 39343317 DOI: 10.1016/j.survophthal.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
MicroRNAs (miRNAs) function as posttranscriptional regulators of gene expression by targeting specific messenger RNA (mRNA). This interaction modulates mRNA stability or translational efficiency, ultimately impacting the level of protein production. Emerging evidence suggests that miRNAs act as critical regulators in corneal diseases. These molecules finetune key processes like cell proliferation, differentiation, inflammation, and wound healing. We reviewed the literature to understand the role that miRNAs may play in the development of challenging and poorly understood corneal diseases. We focused on vernal keratoconjunctivitis, neurotrophic keratitis, keratoconus, Fuchs endothelial corneal dystrophy, and limbal stem cell deficiency. Furthermore, we explored currently studied agonists or antagonists of miRNAs that share similar pathways with ocular diseases and could be employed in ophthalmology in the future. The distinct miRNA expression profiles observed in different ocular surface pathologies, combined with the remarkable stability and relatively easy access of miRNA sampling in biofluids, present possibilities for the development of noninvasive and highly accurate diagnostic tools. Furthermore, comprehending miRNA's pathophysiological role could open new frontiers to a more comprehensive understanding of the pathophysiology underlying ocular surface diseases, thereby paving the way for the creation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ludovico Alisi
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Francesca Giovannetti
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Marta Armentano
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Luca Lucchino
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Alessandro Lambiase
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy.
| | - Alice Bruscolini
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| |
Collapse
|
3
|
Roszkowska AM, Aguennouz M, Aragona E, Gargano R, Oliverio GW, Inferrera L, Aragona P. Extensive Contact Lens Wear Modulates Expression of miRNA-320 and miRNA-423-5p in the Human Corneal Epithelium: Possible Biomarkers of Corneal Health and Environmental Impact. Genes (Basel) 2024; 15:816. [PMID: 38927751 PMCID: PMC11202410 DOI: 10.3390/genes15060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The identification of new biomarkers of ocular diseases is nowadays of outmost importance both for early diagnosis and treatment. Epigenetics is a rapidly growing emerging area of research and its involvement in the pathophysiology of ocular disease and regulatory mechanisms is of undisputable importance for diagnostic purposes. Environmental changes may impact the ocular surface, and the knowledge of induced epigenetic changes might help to elucidate the mechanisms of ocular surface disorders. In this pilot study, we investigated the impact of extensive contact lens (CL) wearing on human corneal epithelium epigenetics. We performed ex vivo analysis of the expression of the miR-320 and miR-423-5p involved in the processes of cellular apoptosis and chronic inflammation. The human corneal epithelium was harvested from healthy patients before the photorefractive keratectomy (PRK). The patients were divided into two age- and sex-matched groups accordingly to CL wearing history with no CL wearers used as a control. The epithelium was stored frozen in dry ice at -80 °C and forwarded for miRNA extraction; afterwards, miRNA levels were detected using real-time PCR. Both miRNAs were highly expressed in CL wearers (p < 0.001), suggesting epigenetic modifications occurring in chronic ocular surface stress. These preliminary results show the relationships between selected miRNA expression and the chronic ocular surface stress associated with extensive CL use. MicroRNAs might be considered as biomarkers for the diagnosis of ocular surface conditions and the impact of environmental factors on ocular surface epigenetic. Furthermore, they might be considered as new therapeutic targets in ocular surface diseases.
Collapse
Affiliation(s)
- Anna M. Roszkowska
- Ophthalmology Unit, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy; (G.W.O.); (L.I.); (P.A.)
- Ophthalmology Department, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Kraków, Poland
| | - M’hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Ophthalmology Clinic, Vita Salute San Raffaele University, 20132 Milan, Italy;
| | - Romana Gargano
- Department of Economics, University of Messina, 98122 Messina, Italy;
| | - Giovanni William Oliverio
- Ophthalmology Unit, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy; (G.W.O.); (L.I.); (P.A.)
| | - Leandro Inferrera
- Ophthalmology Unit, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy; (G.W.O.); (L.I.); (P.A.)
- Eye Clinic, Department of Medical, Surgical Sciences and Health, University of Trieste, 34127 Trieste, Italy
| | - Pasquale Aragona
- Ophthalmology Unit, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy; (G.W.O.); (L.I.); (P.A.)
| |
Collapse
|
4
|
Li X, Peng H, Kang J, Sun X, Liu J. IL-1β induced down-regulation of miR-146a-5p promoted pyroptosis and apoptosis of corneal epithelial cell in dry eye disease through targeting STAT3. BMC Ophthalmol 2024; 24:144. [PMID: 38553670 PMCID: PMC10981279 DOI: 10.1186/s12886-024-03396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
AIM To elaborate the underlying mechanisms by which IL-1β promote progression of Dry eye disease(DED) through effect on pyroptosis and apoptosis of corneal epithelial cells(CECs). METHODS 400 mOsM solutions were used to establish the DED model (hCECs- DED). RT-qPCR was performed to measure IL-1β mRNA and miR-146a-5p in CECs. Western blotting was performed to measure STAT3, GSDMD, NLRP3, and Caspase-1 levels. Cell counting kit-8 assay was adopted to check cell viability. Apoptosis was detected by flow cytometry. ELISAs were performed to determine IL-18, IL-33 and LDH. The luciferase test detects targeting relationships. RESULTS After treatment with 400 mOsM solution, cell viability decreased and apoptosis increased. Compared with hCECs, IL-1β was increased and miR-146a-5p was decreased in hCECs-DED. At the same time, GSDMD, NLRP3, Caspase-1, IL-18, IL-33 and LDH were significantly higher in hCECs-DED than in hCECs, while IL-1β silencing reversed this effect. In addition, IL-1β negatively regulated miR-146a-5p. MiR-146a-5p mimics eliminated the inhibition of hCECs-DED pyroptosis and apoptosis caused by IL-1β silencing. At the same time, miR-146a-5p reduced STAT3 levels in hCECs. CONCLUSION Highly expressed IL-1β promoted pyroptosis and apoptosis of hCECs- DED through downregulated miR-146a-5p and inhibited STAT3.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Hua Peng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Jianshu Kang
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Xiaomei Sun
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, 650500, Kunming, Yunnan, China
| | - Jian Liu
- Department of Ophthalmology, China Academy of C.M.S. Eye Hospital, NO. 33 Lugu Road, Shijingshan District, 100040, Beijing, China.
| |
Collapse
|
5
|
Shi X, Xue Z, Ye K, Yuan J, Zhang Y, Qu J, Su J. Roles of non-coding RNAs in eye development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1785. [PMID: 36849659 DOI: 10.1002/wrna.1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
The prevalence of ocular disorders is dramatically increasing worldwide, especially those that cause visual impairment and permanent loss of vision, including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. Extensive evidence has shown that ncRNAs are key regulators in various biogenesis and biological functions, controlling gene expression related to histogenesis and cell differentiation in ocular tissues. Aberrant expression and function of ncRNA can lead to dysfunction of visual system and mediate progression of eye disorders. Here, we mainly offer an overview of the role of precise modulation of ncRNAs in eye development and function in patients with eye diseases. We also highlight the challenges and future perspectives in conducting ncRNA studies, focusing specifically on the role of ncRNAs that may hold expanded promise for their diagnostic and therapeutic applications in various eye diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaicheng Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Yan Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Zhejiang, China
- Institute of PSI Genomics, Zhejiang, China
| |
Collapse
|
6
|
Luo G, Xu W, Chen X, Xu W, Yang S, Wang J, Lin Y, Reinach PS, Yan D. The RNA m5C Methylase NSUN2 Modulates Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 36862118 PMCID: PMC9983701 DOI: 10.1167/iovs.64.3.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Purpose The emerging epitranscriptomics offers insights into the physiopathological roles of various RNA modifications. The RNA methylase NOP2/Sun domain family member 2 (NSUN2) catalyzes 5-methylcytosine (m5C) modification of mRNAs. However, the role of NSUN2 in corneal epithelial wound healing (CEWH) remains unknown. Here we describe the functional mechanisms of NSUN2 in mediating CEWH. Methods RT-qPCR, Western blot, dot blot, and ELISA were used to determine the NSUN2 expression and overall RNA m5C level during CEWH. NSUN2 silencing or overexpression was performed to explore its involvement in CEWH both in vivo and in vitro. Multi-omics was integrated to reveal the downstream target of NSUN2. MeRIP-qPCR, RIP-qPCR, and luciferase assay, as well as in vivo and in vitro functional assays, clarified the molecular mechanism of NSUN2 in CEWH. Results The NSUN2 expression and RNA m5C level increased significantly during CEWH. NSUN2 knockdown significantly delayed CEWH in vivo and inhibited human corneal epithelial cells (HCEC) proliferation and migration in vitro, whereas NSUN2 overexpression prominently enhanced HCEC proliferation and migration. Mechanistically, we found that NSUN2 increased ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) translation through the binding of RNA m5C reader Aly/REF export factor. Accordingly, UHRF1 knockdown significantly delayed CEWH in vivo and inhibited HCEC proliferation and migration in vitro. Furthermore, UHRF1 overexpression effectively rescued the inhibitory effect of NSUN2 silencing on HCEC proliferation and migration. Conclusions NSUN2-mediated m5C modification of UHRF1 mRNA modulates CEWH. This finding highlights the critical importance of this novel epitranscriptomic mechanism in control of CEWH.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Wenji Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yong Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Xu L, Hou S, Huang X, Wang M, Li C, Dong N, Lin Z. Highly sensitive homogeneous electrochemiluminescence biosensor for microRNA-155 based on enzyme-free cascade signal amplification and magnetic assisted enrichment. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
8
|
Safonova TN, Zaitseva GV, Burdenny AM. [The role of miRNA in the pathogenesis of diseases associated with functional dysregulation of the lacrimal gland]. Vestn Oftalmol 2023; 139:112-118. [PMID: 37379117 DOI: 10.17116/oftalma2023139031112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
At this time, the mechanism causing lacrimal gland dysfunction is not understood completely. In diseases associated with lacrimal gland involvement (Sjogren's syndrome, sarcoidosis, IgG4-associated disease, etc.) patients have been observed to experience elevated cellular apoptosis, active production of autoantibodies to glandular tissue, increased level of pro-inflammatory cytokines, functional disruption of signaling molecules leading to changes in tear production. Difficulties in differential diagnosis of lacrimal gland dysfunction in above-listed diseases are associated, on the one hand, with similarity of the clinical picture of ophthalmological manifestations, and on the other hand - with complicated morphological interpretation of changes in the glandular tissues. In this view, miRNA is a promising diagnostic and prognostic marker that would help with differential diagnosis as well as with choosing the treatment tactics. Methods of molecular profiling and identification of "molecular phenotypes" of lacrimal gland and ocular surface damage will allow the use of miRNA as biomarkers and prognostic factors for personalized treatment.
Collapse
Affiliation(s)
- T N Safonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - G V Zaitseva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A M Burdenny
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
9
|
MicroRNA and their implications in dental pulp inflammation: current trends and future perspectives. Odontology 2022:10.1007/s10266-022-00762-0. [DOI: 10.1007/s10266-022-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
10
|
Compagnoni C, Zelli V, Bianchi A, Di Marco A, Capelli R, Vecchiotti D, Brandolini L, Cimini AM, Zazzeroni F, Allegretti M, Alesse E, Tessitore A. MicroRNAs Expression in Response to rhNGF in Epithelial Corneal Cells: Focus on Neurotrophin Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073597. [PMID: 35408969 PMCID: PMC8998691 DOI: 10.3390/ijms23073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Nerve growth factor efficacy was demonstrated for corneal lesions treatment, and recombinant human NGF (rhNGF) was approved for neurotrophic keratitis therapy. However, NGF-induced molecular responses in cornea are still largely unknown. We analyzed microRNAs expression in human epithelial corneal cells after time-dependent rhNGF treatment. METHODS Nearly 700 microRNAs were analyzed by qRT-PCR. MicroRNAs showing significant expression differences were examined by DIANA-miRpath v.3.0 to identify target genes and pathways. Immunoblots were performed to preliminarily assess the strength of the in silico results. RESULTS Twenty-one microRNAs (miR-26a-1-3p, miR-30d-3p, miR-27b-5p, miR-146a-5p, miR-362-5p, mir-550a-5p, mir-34a-3p, mir-1227-3p, mir-27a-5p, mir-222-5p, mir-151a-5p, miR-449a, let7c-5p, miR-337-5p, mir-29b-3p, miR-200b-3p, miR-141-3p, miR-671-3p, miR-324-5p, mir-411-3p, and mir-425-3p) were significantly regulated in response to rhNGF. In silico analysis evidenced interesting target genes and pathways, including that of neurotrophin, when analyzed in depth. Almost 80 unique target genes (e.g., PI3K, AKT, MAPK, KRAS, BRAF, RhoA, Cdc42, Rac1, Bax, Bcl2, FasL) were identified as being among those most involved in neurotrophin signaling and in controlling cell proliferation, growth, and apoptosis. AKT and RhoA immunoblots demonstrated congruence with microRNA expression, providing preliminary validation of in silico data. CONCLUSIONS MicroRNA levels in response to rhNGF were for the first time analyzed in corneal cells. Novel insights about microRNAs, target genes, pathways modulation, and possible biological responses were provided. Importantly, given the putative role of microRNAs as biomarkers or therapeutic targets, our results make available data which might be potentially exploitable for clinical applications.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Andrea Bianchi
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Antinisca Di Marco
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.zza S. Tommasi, 67100 L’Aquila, Italy;
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-086-243-3518; Fax: +39-0862433131
| |
Collapse
|
11
|
Liao CH, Tseng CL, Lin SL, Liang CL, Juo SHH. MicroRNA Therapy for Dry Eye Disease. J Ocul Pharmacol Ther 2021; 38:125-132. [PMID: 34962143 DOI: 10.1089/jop.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose: We tested the role of microRNA-328 in dry eye disease (DED). Benzalkonium chloride (BAC) has been used to induce DED in animal models. We first demonstrated that both BAC and hyperosmotic stress induced overexpression of miR-328 in corneal cells and then tested whether anti-miR-328 could be a new therapy. Methods: BAC was instilled to both eyes of 41 rabbits and 19 mice from day 0 to 21 to induce DED. Animals of each species were divided to receive topical instillation of saline or anti-miR-328 eye drops between day 8 and 21. The DED signs were assessed by corneal fluorescein staining, histological examination, apoptosis of corneal cells, and inflammatory cytokines in rabbit eyes. For mice, only corneal fluorescein staining was assessed for the therapeutic effects. The corneal fluorescein staining scores ranged from 0 of no staining to 4 of coalescent. Results: For the rabbits, the staining score was significantly reduced (P = 0.038) after the 14-day anti-miR-328 treatment (n = 42 eyes), but the score was not improved by saline treatment (n = 40 eyes). Furthermore, rabbit eyes treated with anti-miR-328 had thicker corneal epithelium (P = 9.4 × 10-5), fewer apoptotic cells in corneal epithelium (P = 0.002), and stroma (P = 0.029) compared with the saline-treated eyes. Anti-miR-328 was more effective than saline to reduce the block of orifices of Meibomian glands, although such an effect was only marginally significant (P = 0.059). Similarly, anti-miR-328 was more effective than saline in reducing corneal staining in mouse eyes (P = 0.005). Conclusion: Overexpression of miR-328 may contribute to DED. Anti-miR-328 protects corneal cells and promotes re-epithelialization for DED treatment.
Collapse
Affiliation(s)
- Chun-Huei Liao
- Department of Medical Research, Center for Myopia and Eye Disease, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan.,International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Shiun-Long Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Ling Liang
- Department of Medical Research, Center for Myopia and Eye Disease, China Medical University Hospital, Taichung, Taiwan.,Bright Eyes Clinic, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Department of Medical Research, Center for Myopia and Eye Disease, China Medical University Hospital, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Modern insights into ophthalmic manifestations of rheumatic diseases. OPHTHALMOLOGY JOURNAL 2021. [DOI: 10.17816/ov58730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This literature review is devoted to the analysis of modern insights into ophthalmological manifestations (according to the data of foreign scientific literature in the PubMed system for 20172020) of the most common rheumatic diseases (rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, systemic scleroderma, systemic vasculitis), which are characterized by damage to all structures of the eye and its adnexa: eyelids, orbital tissues, eyeball tunics, vessels, optic nerve and vitreous. Ocular lesion may be an onset, one of the diagnostic signs, or a biomarker of underlying medical condition.
Collapse
|
13
|
Greenan E, Murphy CC, Ní Gabhann-Dromgoole J. Optimising the method for isolating ocular surface microRNA using impression cytology. Ocul Surf 2021; 22:83-85. [PMID: 34343715 DOI: 10.1016/j.jtos.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Affiliation(s)
- E Greenan
- Royal Victoria Eye and Ear Hospital, Adelaide Rd, Dublin 2, D02 XK51, Ireland; Department of Ophthalmology, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Ireland
| | - C C Murphy
- Royal Victoria Eye and Ear Hospital, Adelaide Rd, Dublin 2, D02 XK51, Ireland; Department of Ophthalmology, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Ireland.
| | - J Ní Gabhann-Dromgoole
- Department of Ophthalmology, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Ireland
| |
Collapse
|
14
|
Rastmanesh R. Aquaporin5-Targeted Treatment for Dry Eye Through Bioactive Compounds and Gut Microbiota. J Ocul Pharmacol Ther 2021; 37:464-471. [PMID: 34328795 DOI: 10.1089/jop.2021.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dry eye and dry mouth are the principal sources of morbidity for patients with Sjögren's syndrome (SS). There are few effective treatments, particularly systemic ones. Targeting aquaprin-5 (AQP5)-mediated tear secretion has been tested as a novel ancillary strategy and has proved promising. Patients have a great interest in using complementary medicine, including nutraceuticals and bioactive compounds to alleviate their symptoms. Potential mechanisms by which phytocompounds and bioactive compounds may benefit SS ocular and mouth symptoms through modulation of AQP5 activity are presented within this review. Supplementation with prebiotics (such as polyphenols with high bioavailability) in SS patients with lower Firmicutes/Bacteroides (F/B) community ratio phenotype, through administration of butyrate-producing diets, is proposed as ancillary strategy for dry eye and mouth. The potential use of natural bioactive compounds to treat dry eye could also apply to dry mouth occurring in the context of aging and SS. This novel hypothesis could have implications with respect to planning a successful dietary regimen for achieving and maintaining a normal gut microbiota in SS patients. This regimen would include augmenting butyrate-producing foodstuffs and/or polyphenol-rich syrups, and high amounts of some specific probiotic-rich foodstuffs such as yogurt, soy yogurt, or as probiotic supplements. There are applications for pharmaceutical and nutraceutical products aiming to relieve dry eye and mouth.
Collapse
|
15
|
Zhang Z, Liang X, Zhou J, Meng M, Gao Y, Yi G, Fu M. Exosomes in the pathogenesis and treatment of ocular diseases. Exp Eye Res 2021; 209:108626. [PMID: 34087205 DOI: 10.1016/j.exer.2021.108626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Exosomes have diverse functions and rich content and are involved in intercellular communication, immune regulation, viral infection, tissue regeneration, and the occurrence, development and metastasis of tumours. Notably, various stem cell-derived exosomes are expected to become new therapeutic approaches for inflammatory diseases and tumours and have good clinical application prospects. However, few studies have examined exosomes in ophthalmic diseases. Therefore, based on the functions of exosomes, this paper summarizes progress in the possible use of exosomes as treatment for specific ophthalmic diseases, aiming to determine the pathogenesis of exosomes to achieve more effective clinical diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihan Zhang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotian Liang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhou
- Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Meng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Ya Gao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Abstract
A biomarker is a "characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions." Recently, calls for biomarkers for ocular surface diseases have increased, and advancements in imaging technologies have aided in allowing imaging biomarkers to serve as a potential solution for this need. This review focuses on the state of imaging biomarkers for ocular surface diseases, specifically non-invasive tear break-up time (NIBUT), tear meniscus measurement and corneal epithelial thickness with anterior segment optical coherence tomography (OCT), meibomian gland morphology with infrared meibography and in vivo confocal microscopy (IVCM), ocular redness with grading scales, and cellular corneal immune cells and nerve assessment by IVCM. Extensive literature review was performed for analytical and clinical validation that currently exists for potential imaging biomarkers. Our summary suggests that the reported analytical and clinical validation state for potential imaging biomarkers is broad, with some having good to excellent intra- and intergrader agreement to date. Examples of these include NIBUT for dry eye disease, ocular redness grading scales, and detection of corneal immune cells by IVCM for grading and monitoring inflammation. Further examples are nerve assessment by IVCM for monitoring severity of diabetes mellitus and neurotrophic keratitis, and corneal epithelial thickness assessment with anterior segment OCT for the diagnosis of early keratoconus. However, additional analytical validation for these biomarkers is required before clinical application as a biomarker.
Collapse
|
17
|
Wang Q, Xie X, Li H, Hao S. Discovery of microRNA expression profiles involved in regulating TGF- β2 expression in the tears of dry eye patients. Ann Clin Biochem 2020; 57:420-428. [PMID: 32936670 DOI: 10.1177/0004563220961746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND To date, the difference in microRNA expression profiles in tears of dry eye patients and healthy people has not been reported. In current study, we evaluated the significance of microRNAs and transforming growth factor beta2 (TGF-β2) in distinguishing dry eye. METHODS A total of 138 patients with dry eye from October 2017 to October 2018 were selected. During the same period, 138 healthy persons were collected. All patients were followed up for 12 months through outpatient, telephone or medical records and the time of corneal injury was recorded. RESULTS Compared with healthy people, TGF-β2 concentrations in dry eye patients were significantly decreased (P < 0.05). Array analysis, predictive software and dual-luciferase reporter assays showed that miR-450b-5p, miR-1283 and miR-3671 can target TGF-β2 expression. Tear miR-450b-5p, miR-1283 and miR-3671 concentrations were significantly higher in dry eye patients than healthy people. A logistic regression model combining miR-450b-5p, miR-1283, miR-3671 and TGF-β2 was performed. This model presented a high discriminating value (AUC: 0.907, 0.876-0.939, P < 0.001) than any single indicator, and the sensitivity and specificity were 77.7% and 92.7%, respectively. Compared with the low miR-450b-5p, low miR-1283, low miR-3671 and high TGF-β2 groups, the high miR-450b-5p, high miR-1283, high miR-3671 and low TGF-β2 groups had a significantly higher probability of corneal injury (TGF-β2: χ2 = 5.762, P = 0.016; miR-450b-5p: χ2 = 13.267, P < 0.001; miR-1283: χ2 = 19.431, P < 0.001; miR-3671: χ2 = 8.131, P = 0.004). CONCLUSION Current model combining tear miR-450b-5p, miR-1283, miR-3671 and TGF-β2 had important values in the identification of dry eye and was of great value in evaluating the risk of corneal injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Ophthalmology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, P.R. China
| | - Xiangrong Xie
- Department of Ophthalmology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, P.R. China
| | - Huilin Li
- Department of Ophthalmology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, P.R. China
| | - Shaofeng Hao
- Department of Ophthalmology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, P.R. China
| |
Collapse
|
18
|
Zhang Y, Xue Z, Guo F, Yu F, Xu L, Chen H. Nc2Eye: A Curated ncRNAomics Knowledgebase for Bridging Basic and Clinical Research in Eye Diseases. Front Cell Dev Biol 2020; 8:75. [PMID: 32117995 PMCID: PMC7033623 DOI: 10.3389/fcell.2020.00075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/29/2020] [Indexed: 01/24/2023] Open
Abstract
Eye diseases (EDs) represent a group of disorders affecting the visual system, most of which can lead to visual impairment and blindness. Accumulating evidence reveals that non-coding RNAs (ncRNAs) are closely associated with a wide variety of EDs. However, abundant associations between ncRNAs and EDs are scattered across the published literature, obstructing a global view of ncRNA-ED associations. A public resource of high-quality manually curated ncRNAomics knowledge associated with EDs remains unavailable. To address this gap, we thus developed Nc2Eye (http://nc2eye.bio-data.cn/), which is the first knowledgebase dedicated to providing a comprehensive ncRNAomics resource for bridging basic and clinical research in EDs. Through a comprehensive review of more than 2400 published papers, Nc2Eye catalogs 7088 manually curated ncRNA-ED associations involving 4363 ncRNAs across eight species. We also provide detailed descriptions and annotation information for each ncRNA-disease association such as ncRNA categories, experimental methods, expression pattern and related clinical drugs. To further expand the pathogenic ncRNAs, we also collected more than 90 high-throughput EDs-related transcriptome datasets. Furthermore, a user-friendly interface was constructed for convenient and flexible data browsing, querying, and retrieving. We believe that Nc2Eye is a timely and valuable knowledgebase for significantly improving and useful for discovery of new diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yan Zhang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhengbo Xue
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangjie Guo
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fulong Yu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liangde Xu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Liu B, Zhao L, Wei Y, Chen S, Bian L, Guo D, Gao M, Nian H. MicroRNA expression profile of Lacrimal Glands in rabbit autoimmune dacryoadenitis model. Int J Med Sci 2020; 17:2879-2887. [PMID: 33162816 PMCID: PMC7645348 DOI: 10.7150/ijms.50248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose: To identify the differential expression of microRNAs (miRs) and the related gene networks and signal pathways in lacrimal glands (LGs) of rabbit autoimmune dacryoadenitis. Methods: Autoimmune dacryoadenitis in rabbits was induced by transferring activated peripheral blood lymphocytes (PBLs). The LGs of normal and model group rabbits were collected for small RNA sequencing. The most differentially expressed miRs were validated by quantitative real time-polymerase chain reaction (qRT-PCR). Further, bioinformatics analysis including target gene prediction, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Results: A total of 15 miRs were differentially expressed in the LGs of rabbit autoimmune dacryoadenitis relative to normal controls. GO and KEGG analysis revealed that most target genes of these dysregulated miRs were implicated in MAPK signaling pathway. Conclusion: Our results showed for the first time the differentially expressed miRs and the related pathways involved in the pathogenesis of rabbit autoimmune dacryoadenitis. These results may contribute to elucidating molecular pathogenesis of Sjögren's syndrome (SS) dry eye.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lingzhai Bian
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Di Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Min Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science; Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
20
|
Xiao H, Liu Z. Effects of microRNA‑217 on high glucose‑induced inflammation and apoptosis of human retinal pigment epithelial cells (ARPE‑19) and its underlying mechanism. Mol Med Rep 2019; 20:5125-5133. [PMID: 31702814 PMCID: PMC6854520 DOI: 10.3892/mmr.2019.10778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Diabetic retinopathy is a major complication of diabetes. Increasing evidence has indicated that microRNAs (miRs) serves an important role in diabetic retinopathy. However, the expression and mechanism of miR-217 in high glucose-induced human retinal pigment epithelial cells ARPE-19 is still unclear. Therefore, the aim of this study was to investigate the role of miR-217 in high glucose-induced retinal epithelial cell damage, and further to explore the molecular mechanisms. In our study, we found that compared with control group, miR-217 was upregulated in high glucose-induced ARPE-19 cells. In addition, TargetScan and a dual-luciferase reporter gene assay showed that Sirtuin 1 (SIRT1) was a direct target of miR-217. Then, we performed reverse transcription-quantitative polymerase chain reaction assay and western blot assay to explore the expression of SIRT1 in high glucose-induced ARPE-19 cells. Our results demonstrated that SIRT1 was downregulated at the mRNA and protein levels in high glucose-induced ARPE-19 cells. Then, ARPE-19 cells were transfected with inhibitor control, miR-217 inhibitor or miR-217 inhibitor + SIRT1-small interfering RNA for 6 h, and then the cells were treated with 50 mM D-glucose for 24 h. We then investigated the effects of miR-217 inhibitor on ARPE-19 cell viability and apoptosis. An MTT assay revealed that miR-217 inhibitor significantly increased the viability and decreased the apoptosis of high glucose-induced ARPE-19 cells. ELISA indicated that miR-217 inhibitor significantly reduced the expression of inflammatory factors, such as interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 in high glucose-treated ARPE-19 cells. Additionally, a western blot assay demonstrated that miR-217 inhibitor suppressed the expression of p-p65. The effects of miR-217 inhibitor on high glucose-treated ARPE-19 cells were significantly reversed by the silencing the SIRT1 gene. Therefore, our findings suggested that miR-217 inhibitor protected against retinal epithelial cell damage caused by high glucose via targeting SIRT1, thereby playing a protective role in diabetic retinopathy. Targeting miR-217 may have therapeutic potential in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hongxia Xiao
- Department of Ophthalmology, Jing Men No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Zhen Liu
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing 400020, P.R. China
| |
Collapse
|
21
|
Xu S, Hazlett LD. MicroRNAs in Ocular Infection. Microorganisms 2019; 7:microorganisms7090359. [PMID: 31533211 PMCID: PMC6780979 DOI: 10.3390/microorganisms7090359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding, regulatory RNA molecules and constitute a newly recognized, important layer of gene-expression regulation at post-transcriptional levels. miRNAs quantitatively fine tune the expression of their downstream genes in a cell type- and developmental stage-specific fashion. miRNAs have been proven to play important roles in the normal development and function as well as in the pathogenesis of diseases in all tissues and organ systems. miRNAs have emerged as new therapeutic targets and biomarkers for treatment and diagnosis of various diseases. Although miRNA research in ocular infection remains in its early stages, a handful of pioneering studies have provided insight into the roles of miRNAs in the pathogenesis of parasitic, fungal, bacterial, and viral ocular infections. Here, we review the current status of research in miRNAs in several major ocular infectious diseases. We predict that the field of miRNAs in ocular infection will greatly expand with the discovery of novel miRNA-involved molecular mechanisms that will inform development of new therapies and identify novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
22
|
Thia ZZ, Tong L. Update on the role of impression cytology in ocular surface disease. Taiwan J Ophthalmol 2019; 9:141-149. [PMID: 31572650 PMCID: PMC6759557 DOI: 10.4103/tjo.tjo_57_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding of the molecular pathology of ocular surface disease (OSD) is poor, and treatment is highly unsatisfactory. To facilitate treatment of OSD, a relatively noninvasive procedure, i.e. impression cytology (IC) has been shown to be useful. Recently, the technologies employed in research studies using IC in OSD have vastly improved, and standardized IC has even been used in clinical trials of dry eye. Here, this review aims to describe the advances of IC in the last 10 years, which serves as an update on the progress in this field since the last major review of IC. OSD that has been recently evaluated include meibomian gland dysfunction, Sjogren's syndrome, Steven–Johnson syndrome, and postmenopausal dry eye. The recent studies (4 longitudinal, 18 cross-sectional analyses) which utilized IC analyzed DNA, RNA, proteins, and ocular surface cells, including memory T-lymphocytes, dendritic cells (DCs), neutrophils, conjunctival epithelial cells, and goblet cells. These studies employed quantification of transcripts associated with inflammation, proteins involved in oxidative stress, enzymes such as matrix metalloproteinases, and cell surface proteins by flow cytometry, such as HLA-DR, cytokine and chemokine receptors, markers for T cell differentiation, and DC activation, in addition to the more traditional morphological evaluation of squamous metaplasia and staining for goblet cells. Some challenges in the clinical use of IC have also been described, including issues related to storage and normalization of data. In summary, advances in IC have permitted a more robust evaluation of the ocular surface and will facilitate progress in the understanding and treatment of OSD.
Collapse
Affiliation(s)
- Zhang-Zhe Thia
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Corneal and External Eye Disease Service, Singapore National Eye Center, Singapore.,Singapore Eye Research Institute, Singapore.,Eye-academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
23
|
Assessment of miR-182, miR-183, miR-184, and miR-221 Expressions in Primary Pterygium and Comparison With the Normal Conjunctiva. Eye Contact Lens 2019; 45:208-211. [PMID: 30688676 DOI: 10.1097/icl.0000000000000573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the expression levels of miR-126-3p, miR-182-5p, miR-183-5p, miR-184, miR-221-3p, and miR-205-5p in primary pterygium tissue and compare these levels with those in healthy conjunctiva tissue. METHODS Twenty-four patients who were diagnosed with grade 3 primary pterygium and scheduled for surgery between January 2014 and January 2016 and had no systemic disease or other ocular pathology were included in the study. The control group comprised nasal interpalpebral conjunctival tissue specimens from 24 age- and sex-matched patients with no history of systemic disease or ocular pathology other than cataract. Expression levels of miR-126-3p, miR-182-5p, miR-183-5p, miR-184, miR-221-3p, and miR-205-5p were determined and compared between the pterygium and conjunctiva specimens. RESULTS Expression levels of miR-182-5p, miR-183-5p, and miR-184 were significantly higher in pterygium tissue compared with normal conjunctival specimens (P<0.0001, P=0.01, and P=0.01, respectively), whereas expression of miR-221-3p was significantly lower (P=0.02). Expression levels of miR-126-3p and miR-205-5p did not differ significantly between the 2 groups (P>0.05). CONCLUSIONS Expression levels of miR-182-5p, miR-183-5p, and miR-184 are increased, whereas expression of miR-221-3p is decreased in primary pterygium tissue, and these miRNAs may play a role in the pathogenesis of pterygium.
Collapse
|
24
|
de Oliveira FR, Fantucci MZ, Adriano L, Valim V, Cunha TM, Louzada-Junior P, Rocha EM. Neurological and Inflammatory Manifestations in Sjögren's Syndrome: The Role of the Kynurenine Metabolic Pathway. Int J Mol Sci 2018; 19:ijms19123953. [PMID: 30544839 PMCID: PMC6321004 DOI: 10.3390/ijms19123953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
For decades, neurological, psychological, and cognitive alterations, as well as other glandular manifestations (EGM), have been described and are being considered to be part of Sjögren's syndrome (SS). Dry eye and dry mouth are major findings in SS. The lacrimal glands (LG), ocular surface (OS), and salivary glands (SG) are linked to the central nervous system (CNS) at the brainstem and hippocampus. Once compromised, these CNS sites may be responsible for autonomic and functional disturbances that are related to major and EGM in SS. Recent studies have confirmed that the kynurenine metabolic pathway (KP) can be stimulated by interferon-γ (IFN-γ) and other cytokines, activating indoleamine 2,3-dioxygenase (IDO) in SS. This pathway interferes with serotonergic and glutamatergic neurotransmission, mostly in the hippocampus and other structures of the CNS. Therefore, it is plausible that KP induces neurological manifestations and contributes to the discrepancy between symptoms and signs, including manifestations of hyperalgesia and depression in SS patients with weaker signs of sicca, for example. Observations from clinical studies in acquired immune deficiency syndrome (AIDS), graft-versus-host disease, and lupus, as well as from experimental studies, support this hypothesis. However, the obtained results for SS are controversial, as discussed in this study. Therapeutic strategies have been reexamined and new options designed and tested to regulate the KP. In the future, the confirmation and application of this concept may help to elucidate the mosaic of SS manifestations.
Collapse
Affiliation(s)
- Fabíola Reis de Oliveira
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Marina Zilio Fantucci
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Leidiane Adriano
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Valéria Valim
- Espírito Santo Federal University, Vitoria, ES 29075-910, Brazil.
| | - Thiago Mattar Cunha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Paulo Louzada-Junior
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| | - Eduardo Melani Rocha
- Ribeirao Preto Medical School, Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Brazil.
| |
Collapse
|