1
|
Campbell JM, Mahbub SB, Anwer AG, Habibalahi A, Gronthos S, Paton S, Grey ST, Wu LE, Gilchrist RB, Goldys EM. Multispectral Imaging of Collagen, NAD(P)H and Flavin Autofluorescence in Mesenchymal Stem Cells Undergoing Trilineage Differentiation. Cells 2024; 13:1731. [PMID: 39451249 PMCID: PMC11505937 DOI: 10.3390/cells13201731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the molecular mechanisms of differentiation is important for regenerative medicine and developmental biology. This study aims to characterise the role of the glycolysis/oxidative phosphorylation balance as a driver of mesenchymal stem cell (MSC) differentiation. Cells were maintained in normal conditions or stimulated towards the MSC trilineage cell types over 21 days. Multispectral imaging of cell autofluorescence was applied as a non-invasive methodology to continuously image cultures in situ. Spectral signals for collagen, NAD(P)H, and flavins were unmixed. MSCs cultured under chondrogenic conditions exhibited increased collagen levels relative to controls. Following osteogenic induction, MSCs showed increased collagen levels relative to controls during the earlier stages of culture; however, control cells increased their collagen levels as they became confluent. MSCs cultured under adipogenic conditions exhibited lower levels of collagen than controls. The redox ratio (RR; NAD(P)H/flavins) immediately decreased during chondrogenesis, with this early effect persisting throughout the culture compared to control cells, which appeared to increase their RR, similar to osteogenesis. Adipogenesis resulted in a small increase in RR on day 2 relative to control cells, followed by a persistent decrease. Chondrogenic and adipogenic differentiation favoured oxidative phosphorylation, whereas osteogenesis and MSC overgrowth resulted in a glycolytic metabolism. Following consideration of these findings, as well as the diverse reports in the literature, it is concluded that neither enhanced oxidative phosphorylation nor glycolysis are fundamental to the canonical modes of differentiation, and researchers should avoid interpreting shifts as indicating differentiation.
Collapse
Affiliation(s)
- Jared M. Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Saabah B. Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.G.)
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.G.)
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Shane T. Grey
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lindsay E. Wu
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert B. Gilchrist
- School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| |
Collapse
|
2
|
Sinha S, Ramesh PV, Nishant P, Morya AK, Prasad R. Novel automated non-invasive detection of ocular surface squamous neoplasia using artificial intelligence. World J Methodol 2024; 14:92267. [PMID: 38983656 PMCID: PMC11229874 DOI: 10.5662/wjm.v14.i2.92267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
Ocular surface squamous neoplasia (OSSN) is a common eye surface tumour, characterized by the growth of abnormal cells on the ocular surface. OSSN includes invasive squamous cell carcinoma (SCC), in which tumour cells penetrate the basement membrane and infiltrate the stroma, as well as non-invasive conjunctival intraepithelial neoplasia, dysplasia, and SCC in-situ thereby presenting a challenge in early detection and diagnosis. Early identification and precise demarcation of the OSSN border leads to straightforward and curative treatments, such as topical medicines, whereas advanced invasive lesions may need orbital exenteration, which carries a risk of death. Artificial intelligence (AI) has emerged as a promising tool in the field of eye care and holds potential for its application in OSSN management. AI algorithms trained on large datasets can analyze ocular surface images to identify suspicious lesions associated with OSSN, aiding ophthalmologists in early detection and diagnosis. AI can also track and monitor lesion progression over time, providing objective measurements to guide treatment decisions. Furthermore, AI can assist in treatment planning by offering personalized recommendations based on patient data and predicting the treatment response. This manuscript highlights the role of AI in OSSN, specifically focusing on its contributions in early detection and diagnosis, assessment of lesion progression, treatment planning, telemedicine and remote monitoring, and research and data analysis.
Collapse
Affiliation(s)
- Sony Sinha
- Department of Ophthalmology–Vitreo Retina, Neuro Ophthalmology and Oculoplasty, All India Institute of Medical Sciences, Patna 801507, India
| | | | - Prateek Nishant
- Department of Ophthalmology, ESIC Medical College, Patna 801113, India
| | - Arvind Kumar Morya
- Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, India
| | - Ripunjay Prasad
- Department of Ophthalmology, RP Eye Institute, Delhi 110001, India
| |
Collapse
|
3
|
Campbell JM, Walters SN, Habibalahi A, Mahbub SB, Anwer AG, Handley S, Grey ST, Goldys EM. Pancreatic Islet Viability Assessment Using Hyperspectral Imaging of Autofluorescence. Cells 2023; 12:2302. [PMID: 37759524 PMCID: PMC10527874 DOI: 10.3390/cells12182302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Islets prepared for transplantation into type 1 diabetes patients are exposed to compromising intrinsic and extrinsic factors that contribute to early graft failure, necessitating repeated islet infusions for clinical insulin independence. A lack of reliable pre-transplant measures to determine islet viability severely limits the success of islet transplantation and will limit future beta cell replacement strategies. We applied hyperspectral fluorescent microscopy to determine whether we could non-invasively detect islet damage induced by oxidative stress, hypoxia, cytokine injury, and warm ischaemia, and so predict transplant outcomes in a mouse model. In assessing islet spectral signals for NAD(P)H, flavins, collagen-I, and cytochrome-C in intact islets, we distinguished islets compromised by oxidative stress (ROS) (AUC = 1.00), hypoxia (AUC = 0.69), cytokine exposure (AUC = 0.94), and warm ischaemia (AUC = 0.94) compared to islets harvested from pristine anaesthetised heart-beating mouse donors. Significantly, with unsupervised assessment we defined an autofluorescent score for ischaemic islets that accurately predicted the restoration of glucose control in diabetic recipients following transplantation. Similar results were obtained for islet single cell suspensions, suggesting translational utility in the context of emerging beta cell replacement strategies. These data show that the pre-transplant hyperspectral imaging of islet autofluorescence has promise for predicting islet viability and transplant success.
Collapse
Affiliation(s)
- Jared M. Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2033, Australia; (A.H.); (S.B.M.); (A.G.A.); (S.H.); (E.M.G.)
| | - Stacey N. Walters
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; (S.N.W.); (S.T.G.)
| | - Abbas Habibalahi
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2033, Australia; (A.H.); (S.B.M.); (A.G.A.); (S.H.); (E.M.G.)
| | - Saabah B. Mahbub
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2033, Australia; (A.H.); (S.B.M.); (A.G.A.); (S.H.); (E.M.G.)
| | - Ayad G. Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2033, Australia; (A.H.); (S.B.M.); (A.G.A.); (S.H.); (E.M.G.)
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2033, Australia; (A.H.); (S.B.M.); (A.G.A.); (S.H.); (E.M.G.)
| | - Shane T. Grey
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2052, Australia; (S.N.W.); (S.T.G.)
| | - Ewa M. Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2033, Australia; (A.H.); (S.B.M.); (A.G.A.); (S.H.); (E.M.G.)
| |
Collapse
|
4
|
Campbell JM, Habibalahi A, Handley S, Agha A, Mahbub SB, Anwer AG, Goldys EM. Emerging clinical applications in oncology for non-invasive multi- and hyperspectral imaging of cell and tissue autofluorescence. JOURNAL OF BIOPHOTONICS 2023; 16:e202300105. [PMID: 37272291 DOI: 10.1002/jbio.202300105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence is an emerging technology in which fluorescence imaging is applied to biological materials across multiple spectral channels. This produces a stack of images where each matched pixel contains information about the sample's spectral properties at that location. This allows precise collection of molecularly specific data from a broad range of native fluorophores. Importantly, complex information, directly reflective of biological status, is collected without staining and tissues can be characterised in situ, without biopsy. For oncology, this can spare the collection of biopsies from sensitive regions and enable accurate tumour mapping. For in vivo tumour analysis, the greatest focus has been on oral cancer, whereas for ex vivo assessment head-and-neck cancers along with colon cancer have been the most studied, followed by oral and eye cancer. This review details the scope and progress of research undertaken towards clinical translation in oncology.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Li G, Cheng L, Liu S, Wang T, Zhang C, Zhang Y, Zhao A, Kong L, Wang S, Wang K, Lin L. Non-invasive detection of haemoglobin, platelets, and total bilirubin using hyperspectral cameras. Talanta 2023; 260:124634. [PMID: 37149941 DOI: 10.1016/j.talanta.2023.124634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Hyperspectral imaging has emerged as a promising high-resolution and real-time imaging technology with potential applications in medical diagnostics and surgical guidance. In this study, we developed a high-speed hyperspectral camera by integrating a Fabry-Perot cavity filter on each CMOS pixel. We used it to non-invasively detect three blood components (haemoglobin, platelet, and total bilirubin). Specifically, we acquired transmission images of the subject's fingers, extracted spectral signals at each wavelength, and used dynamic spectroscopy to obtain non-invasive blood absorption spectra. The prediction models were established using the PLSR method and were modelled and validated based on the standard clinical-biochemical test values. The experimental results demonstrated excellent performance. The best predictions were obtained for haemoglobin, with a high related coefficient (R) of 0.85 or more in both the calibration and prediction sets and a mean absolute percentage error (MAPE) of only 5.7%. The results for total bilirubin were also ideal, with R values exceeding 0.8 in both sets and a MAPE of 10.6%. Although the prediction results for platelets were slightly less satisfactory, the error was still less than 15%, indicating that the results were also acceptable. Overall, our study highlights the potential of hyperspectral imaging technology for the development of portable and affordable devices for blood analysis, which can be used in various settings.
Collapse
Affiliation(s)
- Gang Li
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Leiyang Cheng
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Shuyang Liu
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Tianhe Wang
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Chen Zhang
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Yunhao Zhang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China; Tianjin Jinhang Institute of Technical Physics, China.
| | - Anna Zhao
- Tianjin Jinhang Institute of Technical Physics, China.
| | - Li Kong
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Shuo Wang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Kang Wang
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| | - Ling Lin
- Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, China.
| |
Collapse
|
6
|
Campbell JM, Mahbub SB, Habibalahi A, Agha A, Handley S, Anwer AG, Goldys EM. Clinical applications of non-invasive multi and hyperspectral imaging of cell and tissue autofluorescence beyond oncology. JOURNAL OF BIOPHOTONICS 2023; 16:e202200264. [PMID: 36602432 DOI: 10.1002/jbio.202200264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence employs fluorescence imaging, without exogenous fluorophores, across multiple excitation/emission combinations (spectral channels). This produces an image stack where each pixel (matched by location) contains unique information about the sample's spectral properties. Analysis of this data enables access to a rich, molecularly specific data set from a broad range of cell-native fluorophores (autofluorophores) directly reflective of biochemical status, without use of fixation or stains. This non-invasive, non-destructive technology has great potential to spare the collection of biopsies from sensitive regions. As both staining and biopsy may be impossible, or undesirable, depending on the context, this technology great diagnostic potential for clinical decision making. The main research focus has been on the identification of neoplastic tissues. However, advances have been made in diverse applications-including ophthalmology, cardiovascular health, neurology, infection, assisted reproduction technology and organ transplantation.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| |
Collapse
|
7
|
Zhou M, Lai W. Coal gangue recognition based on spectral imaging combined with XGBoost. PLoS One 2023; 18:e0279955. [PMID: 36656816 PMCID: PMC9851550 DOI: 10.1371/journal.pone.0279955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
The identification of coal gangue is of great significance for its intelligent separation. To overcome the interference of visible light, we propose coal gangue recognition based on multispectral imaging and Extreme Gradient Boosting (XGBoost). The data acquisition system is built in the laboratory, and 280 groups of spectral data of coal and coal gangue are collected respectively through the imager. The spectral intensities of all channels of each group of spectral data are averaged, and then the dimensionality is reduced by principal component analysis. XGBoost is used to identify coal and coal gangue based on the reduced dimension spectral data. The results show that PCA combined with XGBoost has the relatively best classification performance, and its recognition accuracy of coal and coal gangue is 98.33%. In this paper, the ensemble-learning algorithm XGBoost is combined with spectral imaging technology to realize the rapid and accurate identification of coal and coal gangue, which is of great significance to the intelligent separation of coal gangue and the intelligent construction of coal mines.
Collapse
Affiliation(s)
- Minghao Zhou
- Inner Mongolia University of Technology, School of science, Hohhot, China
- Anhui University of Science and Technology, School of Electrical and Information Engineering, Huainan, China
| | - Wenhao Lai
- Anhui University of Science and Technology, School of Electrical and Information Engineering, Huainan, China
- * E-mail:
| |
Collapse
|
8
|
Habibalahi A, Campbell JM, Walters SN, Mahbub SB, Anwer AG, Grey ST, Goldys EM. Automated pancreatic islet viability assessment for transplantation using bright-field deep morphological signature. Comput Struct Biotechnol J 2023; 21:1851-1859. [PMID: 36915378 PMCID: PMC10006710 DOI: 10.1016/j.csbj.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Islets transplanted for type-1 diabetes have their viability reduced by warm ischemia, dimethyloxalylglycine (DMOG; hypoxia model), oxidative stress and cytokine injury. This results in frequent transplant failures and the major burden of patients having to undergo multiple rounds of treatment for insulin independence. Presently there is no reliable measure to assess islet preparation viability prior to clinical transplantation. We investigated deep morphological signatures (DMS) for detecting the exposure of islets to viability compromising insults from brightfield images. Accuracies ranged from 98 % to 68 % for; ROS damage, pro-inflammatory cytokines, warm ischemia and DMOG. When islets were disaggregated to single cells to enable higher throughput data collection, good accuracy was still obtained (83-71 %). Encapsulation of islets reduced accuracy for cytokine exposure, but it was still high (78 %). Unsupervised modelling of the DMS for islet preparations transplanted into a syngeneic mouse model was able to predict whether or not they would restore glucose control with 100 % accuracy. Our strategy for constructing DMS' is effective for the assessment of islet pre-transplant viability. If translated into the clinic, standard equipment could be used to prospectively identify non-functional islet preparations unable to contribute to the restoration of glucose control and reduce the burden of unsuccessful treatments.
Collapse
Key Words
- AI, artificial intelligence
- DMOG, dimethyloxalylglycine
- DMS, deep morphological signatures
- Deep morphological signature
- ECG, electrocardiogram
- EEG, electroencephalogram
- EMCCD, electron multiplying charge coupling device
- FD, Fisher Distance
- GSIS, glucose stimulated insulin secretion
- IoU, intersection over union
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- PCA, principal component analysis
- Pancreatic islet
- ROS, reactive oxygen species
- SI, swarm intelligence
- SVM, support vector machine
- Transplantation
Collapse
Affiliation(s)
- Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia
| | - Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia
| | - Stacey N Walters
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St Vincent's Clinical School, The University of New South Wales, Sydney, NSW, 2010 Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia
| | - Shane T Grey
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St Vincent's Clinical School, The University of New South Wales, Sydney, NSW, 2010 Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Mat Lazim N, Kandhro AH, Menegaldo A, Spinato G, Verro B, Abdullah B. Autofluorescence Image-Guided Endoscopy in the Management of Upper Aerodigestive Tract Tumors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:159. [PMID: 36612479 PMCID: PMC9819287 DOI: 10.3390/ijerph20010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
At this juncture, autofluorescence and narrow-band imaging have resurfaced in the medicine arena in parallel with current technology advancement. The emergence of newly developed optical instrumentation in addition to the discovery of new fluorescence biomolecules have contributed to a refined management of diseases and tumors, especially in the management of upper aerodigestive tract tumors. The advancement in multispectral imaging and micro-endoscopy has also escalated the trends further in the setting of the management of this tumor, in order to gain not only the best treatment outcomes but also facilitate early tumor diagnosis. This includes the usage of autofluorescence endoscopy for screening, diagnosis and treatment of this tumor. This is crucial, as microtumoral deposit at the periphery of the gross tumor can be only assessed via an enhanced endoscopy and even more precisely with autofluorescence endoscopic techniques. Overall, with this new technique, optimum management can be achieved for these patients. Hence, the treatment outcomes can be improved and patients are able to attain better prognosis and survival.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Abdul Hafeez Kandhro
- Institute of Medical Technology, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | - Anna Menegaldo
- Department of Neurosciences, Section of Otolaryngology and Regional Centre for Head and Neck Cancer, University of Padova, 31100 Treviso, Italy
| | - Giacomo Spinato
- Department of Neurosciences, Section of Otolaryngology and Regional Centre for Head and Neck Cancer, University of Padova, 31100 Treviso, Italy
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 31100 Treviso, Italy
| | - Barbara Verro
- Division of Otorhinolaryngology, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90127 Palermo, Italy
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| |
Collapse
|
10
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Tan TCY, Brown HM, Thompson JG, Mustafa S, Dunning KR. Optical imaging detects metabolic signatures associated with oocyte quality. Biol Reprod 2022; 107:1014-1025. [PMID: 35863764 PMCID: PMC9562116 DOI: 10.1093/biolre/ioac145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte developmental potential is intimately linked to metabolism. Existing approaches to measure metabolism in the cumulus oocyte complex (COC) do not provide information on the separate cumulus and oocyte compartments. Development of an assay that achieves this may lead to an accurate diagnostic for oocyte quality. Optical imaging of the autofluorescent cofactors NAD(P)H and FAD provides a spatially resolved indicator of metabolism via the optical redox ratio ($\mathrm{FAD}/\left[\mathrm{NAD}\left(\mathrm{P}\right)\mathrm{H}+\mathrm{FAD}\right]$). This may provide an assessment of oocyte quality. Here, we determined whether the optical redox ratio is a robust methodology for measuring metabolism in the cumulus and oocyte compartments compared with oxygen consumption in the whole COC. We also determined whether optical imaging could detect metabolic differences associated with poor oocyte quality (etomoxir-treated). We used confocal microscopy to measure NAD(P)H and FAD, and extracellular flux to measure oxygen consumption. We found that the optical redox ratio was an accurate reflection of metabolism in the oocyte compartment when compared with oxygen consumption (whole COC). Etomoxir-treated COCs showed significantly lower levels of NAD(P)H and FAD compared to control. While confocal imaging demonstrated the premise, we validated this approach using hyperspectral imaging, which is clinically compatible due to its low energy dose. This confirmed lower NAD(P)H and FAD in etomoxir-treated COCs. When comparing imaged vs non-imaged COCs, subsequent preimplantation development and post-transfer viability were comparable. Collectively, these results demonstrate that label-free optical imaging of metabolic cofactors is a safe and sensitive assay for measuring metabolism and has potential to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hannah M Brown
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Sanam Mustafa
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Wu HHL, Goldys EM, Pollock CA, Saad S. Exfoliated Kidney Cells from Urine for Early Diagnosis and Prognostication of CKD: The Way of the Future? Int J Mol Sci 2022; 23:7610. [PMID: 35886957 PMCID: PMC9324667 DOI: 10.3390/ijms23147610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| |
Collapse
|
13
|
Unique Deep Radiomic Signature Shows NMN Treatment Reverses Morphology of Oocytes from Aged Mice. Biomedicines 2022; 10:biomedicines10071544. [PMID: 35884850 PMCID: PMC9313081 DOI: 10.3390/biomedicines10071544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study is to develop a deep radiomic signature based on an artificial intelligence (AI) model. This radiomic signature identifies oocyte morphological changes corresponding to reproductive aging in bright field images captured by optical light microscopy. Oocytes were collected from three mice groups: young (4- to 5-week-old) C57BL/6J female mice, aged (12-month-old) mice, and aged mice treated with the NAD+ precursor nicotinamide mononucleotide (NMN), a treatment recently shown to rejuvenate aspects of fertility in aged mice. We applied deep learning, swarm intelligence, and discriminative analysis to images of mouse oocytes taken by bright field microscopy to identify a highly informative deep radiomic signature (DRS) of oocyte morphology. Predictive DRS accuracy was determined by evaluating sensitivity, specificity, and cross-validation, and was visualized using scatter plots of the data associated with three groups: Young, old and Old + NMN. DRS could successfully distinguish morphological changes in oocytes associated with maternal age with 92% accuracy (AUC~1), reflecting this decline in oocyte quality. We then employed the DRS to evaluate the impact of the treatment of reproductively aged mice with NMN. The DRS signature classified 60% of oocytes from NMN-treated aged mice as having a ‘young’ morphology. In conclusion, the DRS signature developed in this study was successfully able to detect aging-related oocyte morphological changes. The significance of our approach is that DRS applied to bright field oocyte images will allow us to distinguish and select oocytes originally affected by reproductive aging and whose quality has been successfully restored by the NMN therapy.
Collapse
|
14
|
Habibalahi A, Allende A, Michael J, Anwer AG, Campbell J, Mahbub SB, Bala C, Coroneo MT, Goldys EM. Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique. Cancers (Basel) 2022; 14:1591. [PMID: 35326744 PMCID: PMC8946656 DOI: 10.3390/cancers14061591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were imaged by multispectral microscopy. Tissue autofluorescence images were obtained with a custom-built fluorescent microscope with 59 spectral channels, each with specific excitation and emission wavelength ranges, suitable for the most abundant tissue fluorophores such as elastin, flavins, porphyrin, and lipofuscin. Images were analyzed using a new classification framework called fused-classification, designed to minimize interpatient variability, as an established support vector machine learning method. Normal, PTG, and OSSN regions were automatically detected and delineated, with accuracy evaluated against expert assessment by a specialist in OSSN pathology. Signals from spectral channels yielding signals from elastin, flavins, porphyrin, and lipofuscin were significantly different between regions classified as normal, PTG, and OSSN (p < 0.01). Differential diagnosis of PTG/OSSN and normal tissue had accuracy, sensitivity, and specificity of 88 ± 6%, 84 ± 10% and 91 ± 6%, respectively. Our automated diagnostic method generated maps of the reasonably well circumscribed normal/PTG and OSSN interface. PTG and OSSN margins identified by our automated analysis were in close agreement with the margins found in the H&E sections. Such a map can be rapidly generated on a real time basis and potentially used for intraoperative assessment.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Alexandra Allende
- Douglass Hanly Moir Pathology, Macquarie Park, NSW 2113, Australia;
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jesse Michael
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Jared Campbell
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Saabah B. Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Chandra Bala
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Minas T. Coroneo
- Department of Ophthalmology, University of New South Wales at Prince of Wales Hospital, High Street, Randwick, NSW 2031, Australia;
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| |
Collapse
|
15
|
Campbell JM, Mahbub SB, Bertoldo MJ, Habibalahi A, Goss DM, Ledger WL, Gilchrist RB, Wu LE, Goldys EM. Multispectral autofluorescence characteristics of reproductive aging in old and young mouse oocytes. Biogerontology 2022; 23:237-249. [PMID: 35211812 PMCID: PMC9023381 DOI: 10.1007/s10522-022-09957-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Increasing age has a major detrimental impact on female fertility, which, with an ageing population, has major sociological implications. This impact is primarily mediated through deteriorating quality of the oocyte. Deteriorating oocyte quality with biological age is the greatest rate-limiting factor to female fertility. Here we have used label-free, non-invasive multi-spectral imaging to identify unique autofluorescence profiles of oocytes from young and aged animals. Discriminant analysis demonstrated that young oocytes have a distinct autofluorescent profile which accurately distinguishes them from aged oocytes. We recently showed that treatment with the nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide mononucleotide (NMN) restored oocyte quality and fertility in aged animals, and when our analysis was applied to oocytes from aged animals treated with NMN, 85% of these oocytes were classified as having the autofluorescent signature of young animals. Spectral unmixing using the Robust Dependent Component Analysis (RoDECA) algorithm demonstrated that NMN treatment altered the metabolic profile of oocytes, increasing free NAD(P)H, protein bound NAD(P)H, redox ratio and the ratio of bound to free NAD(P)H. The frequency of oocytes with simultaneously high NAD(P)H and flavin content was also significantly increased in mice treated with NMN. Young and Aged + NMN oocytes had a smoother spectral distribution, with the distribution of NAD(P)H in young oocytes specifically differing from that of aged oocytes. Identifying the multispectral profile of oocyte autofluorescence during aging could have utility as a non-invasive and sensitive measure of oocyte quality.
Collapse
Affiliation(s)
- Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia.
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Michael J Bertoldo
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Dale M Goss
- School of Medical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - William L Ledger
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Robert B Gilchrist
- Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Lindsay E Wu
- School of Medical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Tan TCY, Mahbub SB, Campbell JM, Habibalahi A, Campugan CA, Rose RD, Chow DJX, Mustafa S, Goldys EM, Dunning KR. Non-invasive, label-free optical analysis to detect aneuploidy within the inner cell mass of the preimplantation embryo. Hum Reprod 2021; 37:14-29. [PMID: 34741175 DOI: 10.1093/humrep/deab233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can label-free, non-invasive optical imaging by hyperspectral autofluorescence microscopy discern between euploid and aneuploid cells within the inner cell mass (ICM) of the mouse preimplantation embryo? SUMMARY ANSWER Hyperspectral autofluorescence microscopy enables discrimination between euploid and aneuploid ICM in mouse embryos. WHAT IS KNOWN ALREADY Euploid/aneuploid mosaicism affects up to 17.3% of human blastocyst embryos with trophectoderm biopsy or spent media currently utilized to diagnose aneuploidy and mosaicism in clinical in vitro fertilization. Based on their design, these approaches will fail to diagnose the presence or proportion of aneuploid cells within the foetal lineage ICM of some blastocyst embryos. STUDY DESIGN, SIZE, DURATION The impact of aneuploidy on cellular autofluorescence and metabolism of primary human fibroblast cells and mouse embryos was assessed using a fluorescence microscope adapted for imaging with multiple spectral channels (hyperspectral imaging). Primary human fibroblast cells with known ploidy were subjected to hyperspectral imaging to record native cell fluorescence (4-6 independent replicates, euploid n = 467; aneuploid n = 969). For mouse embryos, blastomeres from the eight-cell stage (five independent replicates: control n = 39; reversine n = 44) and chimeric blastocysts (eight independent replicates: control n = 34; reversine n = 34; 1:1 (control:reversine) n = 30 and 1:3 (control:reversine) n = 37) were utilized for hyperspectral imaging. The ICM from control and reversine-treated embryos were mechanically dissected and their karyotype confirmed by whole genome sequencing (n = 13 euploid and n = 9 aneuploid). PARTICIPANTS/MATERIALS, SETTING, METHODS Two models were employed: (i) primary human fibroblasts with known karyotype and (ii) a mouse model of embryo aneuploidy where mouse embryos were treated with reversine, a reversible spindle assembly checkpoint inhibitor, during the four- to eight-cell division. Individual blastomeres were dissociated from control and reversine-treated eight-cell embryos and either imaged directly or used to generate chimeric blastocysts with differing ratios of control:reversine-treated cells. Individual blastomeres and embryos were interrogated by hyperspectral imaging. Changes in cellular metabolism were determined by quantification of metabolic co-factors (inferred from their autofluorescence signature): NAD(P)H and flavins with the subsequent calculation of the optical redox ratio (ORR: flavins/[NAD(P)H + flavins]). Autofluorescence signals obtained from hyperspectral imaging were examined mathematically to extract features from each cell/blastomere/ICM. This was used to discriminate between different cell populations. MAIN RESULTS AND THE ROLE OF CHANCE An increase in the relative abundance of NAD(P)H and decrease in flavins led to a significant reduction in the ORR for aneuploid cells in primary human fibroblasts and reversine-treated mouse blastomeres (P < 0.05). Mathematical analysis of endogenous cell autofluorescence achieved separation between (i) euploid and aneuploid primary human fibroblast cells, (ii) control and reversine-treated mouse blastomeres cells, (iii) control and reversine-treated chimeric blastocysts, (iv) 1:1 and 1:3 chimeric blastocysts and (v) confirmed euploid and aneuploid ICM from mouse blastocysts. The accuracy of these separations was supported by receiver operating characteristic curves with areas under the curve of 0.97, 0.99, 0.87, 0.88 and 0.93, respectively. We believe that the role of chance is low as mathematical features separated euploid from aneuploid in both human fibroblasts and ICM of mouse blastocysts. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although we were able to discriminate between euploid and aneuploid ICM in mouse blastocysts, confirmation of this approach in human embryos is required. While we show this approach is safe in mouse, further validation is required in large animal species prior to implementation in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS We have developed an original, accurate and non-invasive optical approach to assess aneuploidy within the ICM of mouse embryos in the absence of fluorescent tags. Hyperspectral autofluorescence imaging was able to discriminate between euploid and aneuploid human fibroblast and mouse blastocysts (ICM). This approach may potentially lead to a new diagnostic for embryo analysis. STUDY FUNDING/COMPETING INTEREST(S) K.R.D. is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58-2019). This study was funded by the Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CE140100003) and the National Health and Medical Research Council (APP2003786). The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Saabah B Mahbub
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Jared M Campbell
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Abbas Habibalahi
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Carl A Campugan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Ryan D Rose
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Fertility SA, St. Andrews Hospital, Adelaide, SA, Australia
| | - Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Ewa M Goldys
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, Australia.,Australian Research Council Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, NSW, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Dashtbani Moghari M, Young N, Moore K, Fulton RR, Evans A, Kyme AZ. Head movement during cerebral CT perfusion imaging of acute ischaemic stroke: Characterisation and correlation with patient baseline features. Eur J Radiol 2021; 144:109979. [PMID: 34678666 DOI: 10.1016/j.ejrad.2021.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To quantitatively characterise head motion prevalence and severity and to identify patient-based risk factors for motion during cerebral CT perfusion (CTP) imaging of acute ischaemic stroke. METHODS The head motion of 80 stroke patients undergoing CTP imaging was classified retrospectively into four categories of severity. Each motion category was then characterised quantitatively based on the average head movement with respect to the first frame for all studies. Statistical testing and principal component analysis (PCA) were then used to identify and analyse the relationship between motion severity and patient baseline features. RESULTS 46/80 (58%) of patients showed negligible motion, 19/80 (24%) mild-to-moderate motion, and 15/80 (19%) considerable-to-extreme motion sufficient to affect diagnostic/therapeutic accuracy even with correction. The most prevalent movement was "nodding" with maximal translation/rotation in the sagittal/axial planes. There was a tendency for motion to worsen as scan proceeded and for faster motion to occur in the first 15 s. Statistical analyses showed that greater stroke severity (National Institutes of Health Stroke Scale (NIHSS)), older patient age and shorter time from stroke onset were predictive of increased head movement (p < 0.05 Kruskal-Wallis). Using PCA, the combination of NIHSS and patient age was found to be highly predictive of head movement (p < 0.001). CONCLUSIONS Quantitative methods were developed to characterise CTP studies impacted by motion and to anticipate patients at-risk of motion. NIHSS, age, and time from stroke onset function as good predictors of motion likelihood and could potentially be used pre-emptively in CTP scanning of acute stroke.
Collapse
Affiliation(s)
- Mahdieh Dashtbani Moghari
- School of Biomedical Engineering, Faculty of Engineering and Computer Science, University of Sydney, Sydney, Australia.
| | - Noel Young
- Department of Radiology, Westmead Hospital, Sydney, Australia; Medical imaging group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Krystal Moore
- Department of Radiology, Westmead Hospital, Sydney, Australia
| | - Roger R Fulton
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Medical Physics, Westmead Hospital, Sydney, Australia; The Brain & Mind Centre, University of Sydney, Sydney, Australia
| | - Andrew Evans
- Department of Aged Care & Stroke, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Andre Z Kyme
- School of Biomedical Engineering, Faculty of Engineering and Computer Science, University of Sydney, Sydney, Australia; The Brain & Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Gosnell ME, Staikopoulos V, Anwer AG, Mahbub SB, Hutchinson MR, Mustafa S, Goldys EM. Autofluorescent imprint of chronic constriction nerve injury identified by deep learning. Neurobiol Dis 2021; 160:105528. [PMID: 34626794 DOI: 10.1016/j.nbd.2021.105528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Our understanding of chronic pain and the underlying molecular mechanisms remains limited due to a lack of tools to identify the complex phenomena responsible for exaggerated pain behaviours. Furthermore, currently there is no objective measure of pain with current assessment relying on patient self-scoring. Here, we applied a fully biologically unsupervised technique of hyperspectral autofluorescence imaging to identify a complex signature associated with chronic constriction nerve injury known to cause allodynia. The analysis was carried out using deep learning/artificial intelligence methods. The central element was a deep learning autoencoder we developed to condense the hyperspectral channel images into a four- colour image, such that spinal cord tissue based on nerve injury status could be differentiated from control tissue. This study provides the first validation of hyperspectral imaging as a tool to differentiate tissues from nerve injured vs non-injured mice. The auto-fluorescent signals associated with nerve injury were not diffuse throughout the tissue but formed specific microscopic size regions. Furthermore, we identified a unique fluorescent signal that could differentiate spinal cord tissue isolated from nerve injured male and female animals. The identification of a specific global autofluorescence fingerprint associated with nerve injury and resultant neuropathic pain opens up the exciting opportunity to develop a diagnostic tool for identifying novel contributors to pain in individuals.
Collapse
Affiliation(s)
- Martin E Gosnell
- Quantitative Pty Ltd, 118 Great Western Highway, Mount Victoria, NSW 2786, Australia
| | - Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, UNSW Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, UNSW Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Sanam Mustafa
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, UNSW Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Peguda HK, Mahbub SB, Sherpa TD, Subedi D, Habibalahi A, Anwer AG, Gu Z, Willcox MDP, Goldys EM, Carnt NA. The Autofluorescence Patterns of Acanthamoeba castellanii, Pseudomonas aeruginosa and Staphylococcus aureus: Effects of Antibiotics and Tetracaine. Pathogens 2021; 10:pathogens10070894. [PMID: 34358044 PMCID: PMC8308758 DOI: 10.3390/pathogens10070894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022] Open
Abstract
Acanthamoeba Keratitis (AK) can lead to substantial vision loss and morbidity among contact lens wearers. Misdiagnosis or delayed diagnosis is a major factor contributing to poor outcomes of AK. This study aimed to assess the effect of two antibiotics and one anaesthetic drug used in the diagnosis and nonspecific management of keratitis on the autofluorescence patterns of Acanthamoeba and two common bacteria that may also cause keratitis. Acanthamoeba castellanii ATCC 30868, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus ATCC 6538 were grown then diluted in either PBS (bacteria) or ¼ strength Ringer’s solution (Acanthamoeba) to give final concentrations of 0.1 OD at 660 nm or 104 cells/mL. Cells were then treated with ciprofloxacin, tetracycline, tetracaine, or no treatment (naïve). Excitation–emission matrices (EEMs) were collected for each sample with excitation at 270–500 nm with increments in 5 nm steps and emission at 280–700 nm at 2 nm steps using a Fluoromax-4 spectrometer. The data were analysed using MATLAB software to produce smoothed color-coded images of the samples tested. Acanthamoeba exhibited a distinctive fluorescence pattern compared to bacteria. The addition of antibiotics and anaesthetic had variable effects on autofluorescence. Tetracaine altered the fluorescence of all three microorganisms, whereas tetracycline did not show any effect on the fluorescence. Ciprofloxacin produced changes to the fluorescence pattern for the bacteria, but not Acanthamoeba. Fluorescence spectroscopy was able to differentiate Acanthamoeba from P. aeruginosa and S. aureus in vitro. There is a need for further assessment of the fluorescence pattern for different strains of Acanthamoeba and bacteria. Additionally, analysis of the effects of anti-amoebic drugs on the fluorescence pattern of Acanthamoeba and bacteria would be prudent before in vivo testing of the fluorescence diagnostic approach in the animal models.
Collapse
Affiliation(s)
- Hari Kumar Peguda
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (T.D.S.); (D.S.); (M.D.P.W.); (N.A.C.)
- Correspondence:
| | - Saabah B. Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (A.H.); (A.G.A.); (E.M.G.)
| | - Tashi Doma Sherpa
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (T.D.S.); (D.S.); (M.D.P.W.); (N.A.C.)
| | - Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (T.D.S.); (D.S.); (M.D.P.W.); (N.A.C.)
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (A.H.); (A.G.A.); (E.M.G.)
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (A.H.); (A.G.A.); (E.M.G.)
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia;
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (T.D.S.); (D.S.); (M.D.P.W.); (N.A.C.)
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (A.H.); (A.G.A.); (E.M.G.)
| | - Nicole A. Carnt
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (T.D.S.); (D.S.); (M.D.P.W.); (N.A.C.)
| |
Collapse
|
20
|
Valikodath NG, Al-Khaled T, Cole E, Ting DSW, Tu EY, Campbell JP, Chiang MF, Hallak JA, Chan RVP. Evaluation of pediatric ophthalmologists' perspectives of artificial intelligence in ophthalmology. J AAPOS 2021; 25:164.e1-164.e5. [PMID: 34087473 PMCID: PMC8328946 DOI: 10.1016/j.jaapos.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE To survey pediatric ophthalmologists on their perspectives of artificial intelligence (AI) in ophthalmology. METHODS This is a subgroup analysis of a study previously reported. In March 2019, members of the American Association for Pediatric Ophthalmology and Strabismus (AAPOS) were recruited via the online AAPOS discussion board to voluntarily complete a Web-based survey consisting of 15 items. Survey items assessed the extent participants "agreed" or "disagreed" with statements on the perceived benefits and concerns of AI in ophthalmology. Responses were analyzed using descriptive statistics. RESULTS A total of 80 pediatric ophthalmologists who are members of AAPOS completed the survey. The mean number of years since graduating residency was 21 years (range, 0-46). Overall, 91% (73/80) reported understanding the concept of AI, 70% (56/80) believed AI will improve the practice of ophthalmology, 68% (54/80) reported willingness to incorporate AI into their clinical practice, 65% (52/80) did not believe AI will replace physicians, and 71% (57/80) believed AI should be incorporated into medical school and residency curricula. However, 15% (12/80) were concerned that AI will replace physicians, 26% (21/80) believed AI will harm the patient-physician relationship, and 46% (37/80) reported concern over the diagnostic accuracy of AI. CONCLUSIONS Most pediatric ophthalmologists in this survey viewed the role of AI in ophthalmology positively.
Collapse
Affiliation(s)
- Nita G Valikodath
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois
| | - Tala Al-Khaled
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois
| | - Emily Cole
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel S W Ting
- Singapore National Eye Center, Duke-NUS Medical School Singapore, Singapore
| | - Elmer Y Tu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois
| | - J Peter Campbell
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Joelle A Hallak
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois
| | - R V Paul Chan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Non-invasive assessment of exfoliated kidney cells extracted from urine using multispectral autofluorescence features. Sci Rep 2021; 11:10655. [PMID: 34017033 PMCID: PMC8138006 DOI: 10.1038/s41598-021-89758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
Optimally preserved urinary exfoliated renal proximal tubule cells were assessed by multispectral imaging of cell autofluorescence. We demonstrated different multispectral autofluorescence signals in such cells extracted from the urine of patients with healthy or diseased kidneys. Using up to 10 features, we were able to differentiate cells from individuals with heathy kidneys and impaired renal function (indicated by estimated glomerular filtration rate (eGFR) values) with the receiver operating characteristic area under the curve (AUC) of 0.99. Using the same method, we were also able to discriminate such urine cells from patients with and without renal fibrosis on biopsy, where significant differences in multispectral autofluorescence signals (AUC = 0.90) were demonstrated between healthy and diseased patients (p < 0.05). These findings show that multispectral assessment of the cell autofluorescence in urine exfoliated proximal tubule kidney cells has the potential to be developed as a sensitive, non-invasive diagnostic method for CKD.
Collapse
|
22
|
Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WGN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao Y, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O'Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep 2021; 30:1670-1681.e7. [PMID: 32049001 PMCID: PMC7063679 DOI: 10.1016/j.celrep.2020.01.058] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals. Declining oocyte quality is considered an irreversible feature of aging and is rate limiting for human fertility. Bertoldo et al. show that reversing an age-dependent decline in NAD(P)H restores oocyte quality, embryo development, and functional fertility in aged mice. These findings may be relevant to reproductive medicine.
Collapse
Affiliation(s)
- Michael J Bertoldo
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Dave R Listijono
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wing-Hong Jonathan Ho
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Dale M Goss
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Dulama Richani
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Xing L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | | | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jayanthi Maniam
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ashley S A Wong
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kaisa Selesniemi
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA; Jumpstart Fertility Pty Ltd., Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Catherine Li
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yiqing Zhao
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Maria B Marinova
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lynn-Jee Kim
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Laurin Lau
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Rachael M Wu
- Graduate Entry Medical School, University of Limerick, Limerick, Republic of Ireland
| | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David G Le Couteur
- ANZAC Medical Research Institute, University of Sydney, Concord, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Kirsty A Walters
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Christopher O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - David A Sinclair
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA.
| | - Hayden A Homer
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia; Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Sun Y, Hua R. Long-Term Efficacy and Safety of Subconjunctival/Perilesional 5-Fluorouracil Injections for Ocular Surface Squamous Neoplasia. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5659-5665. [PMID: 33376309 PMCID: PMC7765748 DOI: 10.2147/dddt.s285752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 02/02/2023]
Abstract
Purpose To investigate the effectiveness and safety of subconjunctival/perilesional 5-fluorouracil injections on ocular surface squamous neoplasia (OSSN) during a 3-year follow-up period. Patients and Methods We followed up six patients with intraepithelial OSSN (in one eye each) that had regressed after subconjunctival/perilesional 5-fluorouracil injections. Conjunctival fluorescein angiography (FA) and indocyanine green angiography (ICGA), as well as anterior segment optical coherence tomography (AS-OCT), were performed to evaluate the OSSN status 3 years after initiation of treatment. Results The mean age of patients (five males, one female) at baseline was 62.3±11.6 years. The mean number of 5-fluorouracil injections was 17.0±8.6, with a mean treatment duration of 13.0±7.4 weeks. At the final visit, both intratumoral and conjunctival feeding vessels had disappeared on ICGA and FA, with no neovascularization-related leakage, in accordance with the results of AS-OCT. The period from complete tumor regression to final visit according to AS-OCT was 32.5±4.2 months, which was longer than that according to ICGA (31.3±3.2 months, p=0.034). The final best-corrected visual acuity was similar to that at baseline (p=0.128). No side effects were observed in any of the eyes. Conclusion Subconjunctival/perilesional 5-fluorouracil injections are an effective and safe treatment for OSSN. Future studies with a larger sample size are warranted for confirmation of our findings, as well as investigation into the reasons for residual areas of non-perfusion in the conjunctiva.
Collapse
Affiliation(s)
- Yuzhao Sun
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Rui Hua
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
24
|
Yadav S, Gupta N, Singh R, Patil M, Meel R, Vanathi M, Kashyap S, Tandon R. Role of Conjunctival Ultraviolet Autofluorescence in Ocular Surface Squamous Neoplasia. Ocul Oncol Pathol 2020; 6:422-429. [PMID: 33447592 DOI: 10.1159/000509578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
Objective To evaluate the adjunctive role of conjunctival autofluorescence in the management of ocular surface squamous neoplasia (OSSN). Materials and Methods Seventeen patients with clinically diagnosed OSSN were included. Morphological characteristics, type of OSSN, and autofluorescence photographs of the lesion were captured. Presence and area of conjunctival ultraviolet autofluorescence (CUVAF) were the main outcome measures. Results Overall, 17 patients with 15 (88%) primary and 2 (12%) recurrent OSSN were included. Common locations were temporal (n = 10), nasal (n = 5), and diffuse variety (n = 2). Morphologically, there were 4 (22.2%) nodular, 4 (22.2%) leucoplakic, 3 (16.7%) gelatinous, and 1 (5.5%) each of papillary, nodulo-ulcerative, and diffuse variety. Mixed morphology was present in 4 eyes (22.2%). Sixteen of 18 eyes (88.9%) with OSSN displayed autofluorescence on CUVAF images. The mean area of CUVAF was 15.82 mm2 (10.77-19.59 mm2). Autofluorescence was reported in 8 eyes (44.4%) which had negative reports on impression cytology. Conclusions Conjunctival autofluorescence was seen in the majority of cases with OSSN, in spite of negative cytology reports. Our study demonstrates that CUVAF may serve as an effective ancillary, non-invasive, and resource-friendly tool for supplementing the clinical diagnosis of OSSN, especially in diffuse and recurrent lesions that are not amenable to surgical intervention.
Collapse
Affiliation(s)
- Saumya Yadav
- Cataract, Cornea, Refractive and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Noopur Gupta
- Cataract, Cornea, Refractive and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmi Singh
- Cataract, Cornea, Refractive and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Patil
- Cataract, Cornea, Refractive and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Meel
- Oculoplasty and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Murugesan Vanathi
- Cataract, Cornea, Refractive and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kashyap
- Ocular Pathology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Cataract, Cornea, Refractive and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Campbell JM, Mahbub S, Habibalahi A, Paton S, Gronthos S, Goldys E. Ageing human bone marrow mesenchymal stem cells have depleted NAD(P)H and distinct multispectral autofluorescence. GeroScience 2020; 43:859-868. [PMID: 32789662 PMCID: PMC8110641 DOI: 10.1007/s11357-020-00250-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
Stem cell exhaustion plays a major role in the ageing of different tissues. Similarly, in vitro cell ageing during expansion prior to their use in regenerative medicine can severely compromise stem cell quality through progressive declines in differentiation and growth capacity. We utilized non-destructive multispectral assessment of native cell autofluorescence to investigate the metabolic mechanisms of in vitro mesenchymal stem cell (MSC) ageing in human bone marrow MSCs over serial passages (P2-P10). The spectral signals for NAD(P)H, flavins and protein-bound NAD(P)H were successfully isolated using Robust Dependent Component Analysis (RoDECA). NAD(P)H decreased over the course of hMSC ageing in absolute terms as well as relative to flavins (optical redox ratio). Relative changes in other fluorophore levels (flavins, protein-bound NAD(P)H) suggested that this reduction was due to nicotinamide adenine dinucleotide depletion rather than a metabolic shift from glycolysis to oxidative phosphorylation. Using multispectral features, which are determined without cell fixation or fluorescent labelling, we developed and externally validated a reliable, linear model which could accurately categorize the age of culture-expanded hMSCs. The largest shift in spectral characteristics occurs early in hMSC ageing. These findings demonstrate the feasibility of applying multispectral technology for the non-invasive monitoring of MSC health in vitro.
Collapse
Affiliation(s)
- Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia. .,The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
26
|
Habibalahi A, Moghari MD, Campbell JM, Anwer AG, Mahbub SB, Gosnell M, Saad S, Pollock C, Goldys EM. Non-invasive real-time imaging of reactive oxygen species (ROS) using auto-fluorescence multispectral imaging technique: A novel tool for redox biology. Redox Biol 2020; 34:101561. [PMID: 32526699 PMCID: PMC7287272 DOI: 10.1016/j.redox.2020.101561] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Detecting reactive oxygen species (ROS) that play a critical role as redox modulators and signalling molecules in biological systems currently requires invasive methods such as ROS -specific indicators for imaging and quantification. We developed a non-invasive, real-time, label-free imaging technique for assessing the level of ROS in live cells and thawed cryopreserved tissues that is compatible with in-vivo imaging. The technique is based on autofluorescence multispectral imaging (AFMI) carried out in an adapted fluorescence microscope with an expanded number of spectral channels spanning specific excitation (365 nm-495 nm) and emission (420 nm-700 nm) wavelength ranges. We established a strong quantitative correlation between the spectral information obtained from AFMI and the level of ROS obtained from CellROX staining. The results were obtained in several cell types (HeLa, PANC1 and mesenchymal stem cells) and in live kidney tissue. Additioanly,two spectral regimes were considered: with and without UV excitation (wavelengths > 400 nm); the latter being suitable for UV-sensitive systems such as the eye. Data were analyzed by linear regression combined with an optimization method of swarm intelligence. This allowed the calibration of AFMI signals to the level of ROS with excellent correlation (R = 0.84, p = 0.00) in the entire spectral range and very good correlation (R = 0.78, p = 0.00) in the limited, UV-free spectral range. We also developed a strong classifier which allowed us to distinguish moderate and high levels of ROS in these two regimes (AUC = 0.91 in the entire spectral range and AUC = 0.78 for UV-free imaging). These results indicate that ROS in cells and tissues can be imaged non-invasively, which opens the way to future clinical applications in conditions where reactive oxygen species are known to contribute to progressive disease such as in ophthalmology, diabetes, kidney disease, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia.
| | - Mahdieh Dashtbani Moghari
- School of Biomedical Engineering, Faculty of Engineering, Darlington Campus, The University of Sydney, NSW, 2006, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | | | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| |
Collapse
|
27
|
Ortega S, Halicek M, Fabelo H, Callico GM, Fei B. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:3195-3233. [PMID: 32637250 PMCID: PMC7315999 DOI: 10.1364/boe.386338] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 05/08/2020] [Indexed: 05/06/2023]
Abstract
Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the potential to transform the fields of digital and computational pathology. Traditional digitized histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within and beyond the visual range can complement spatial information for the creation of computer-aided diagnostic tools for both stained and unstained histological specimens. In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research. Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an improvement in the detection of diseases and clinical practice compared with traditional RGB analysis, and brings new opportunities in histological analysis of samples, such as digital staining or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of studies in this field is currently limited, and more research is needed to confirm the advantages of this technology compared to conventional imagery.
Collapse
Affiliation(s)
- Samuel Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
- These authors contributed equally to this work
| | - Martin Halicek
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biomedical Engineering, Georgia Inst. of Tech. and Emory University, Atlanta, GA 30322, USA
- These authors contributed equally to this work
| | - Himar Fabelo
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Gustavo M Callico
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Baowei Fei
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX 75235, USA
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX 75235, USA
| |
Collapse
|
28
|
Deng W, McKelvey KJ, Guller A, Fayzullin A, Campbell JM, Clement S, Habibalahi A, Wargocka Z, Liang L, Shen C, Howell VM, Engel AF, Goldys EM. Application of Mitochondrially Targeted Nanoconstructs to Neoadjuvant X-ray-Induced Photodynamic Therapy for Rectal Cancer. ACS CENTRAL SCIENCE 2020; 6:715-726. [PMID: 32490188 PMCID: PMC7256935 DOI: 10.1021/acscentsci.9b01121] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/06/2023]
Abstract
In this work, we brought together two existing clinical techniques used in cancer treatment-X-ray radiation and photodynamic therapy (PDT), whose combination termed X-PDT uniquely allows PDT to be therapeutically effective in deep tissue. To this end, we developed mitochondrially targeted biodegradable polymer poly(lactic-co-glycolic acid) nanocarriers incorporating a photosensitizer verteporfin, ultrasmall (2-5 nm) gold nanoparticles as radiation enhancers, and triphenylphosphonium acting as the mitochondrial targeting moiety. The average size of the nanocarriers was about 160 nm. Upon X-ray radiation our nanocarriers generated cytotoxic amounts of singlet oxygen within the mitochondria, triggering the loss of membrane potential and mitochondria-related apoptosis of cancer cells. Our X-PDT strategy effectively controlled tumor growth with only a fraction of radiotherapy dose (4 Gy) and improved the survival rate of a mouse model bearing colorectal cancer cells. In vivo data indicate that our X-PDT treatment is cytoreductive, antiproliferative, and profibrotic. The nanocarriers induce radiosensitization effectively, which makes it possible to amplify the effects of radiation. A radiation dose of 4 Gy combined with our nanocarriers allows equivalent control of tumor growth as 12 Gy of radiation, but with greatly reduced radiation side effects (significant weight loss and resultant death).
Collapse
Affiliation(s)
- Wei Deng
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
| | - Kelly J. McKelvey
- Bill
Walsh Translational Cancer Research Laboratory, The Northern Clinical
School, Faculty of Medicine and Health, The University of Sydney and Northern Sydney Local Health District
Research (Kolling Institute), St
Leonards, New South Wales 2065, Australia
| | - Anna Guller
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
- Institute
for Regenerative Medicine, Sechenov First Moscow State Medical University
(Sechenov University), Moscow 119991, Russia
| | - Alexey Fayzullin
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
- Institute
for Regenerative Medicine, Sechenov First Moscow State Medical University
(Sechenov University), Moscow 119991, Russia
| | - Jared M. Campbell
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
| | - Sandhya Clement
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
| | - Abbas Habibalahi
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
| | - Zofia Wargocka
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
| | - Liuen Liang
- Department
of Physics and Astronomy, Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Chao Shen
- Faculty
of Science and Engineering, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Viive Maarika Howell
- Bill
Walsh Translational Cancer Research Laboratory, The Northern Clinical
School, Faculty of Medicine and Health, The University of Sydney and Northern Sydney Local Health District
Research (Kolling Institute), St
Leonards, New South Wales 2065, Australia
| | - Alexander Frank Engel
- Sydney Medical
School, University of Sydney, Sydney, New South Wales 2006, Australia
- Department
of Colorectal Surgery, Royal North Shore
Hospital, St Leonards, New South Wales 2065, Australia
| | - Ewa M. Goldys
- ARC
Centre of Excellence for Nanoscale Biophotonics, Graduate School of
Biomedical Engineering, University of New
South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
29
|
Campbell JM, Habibalahi A, Mahbub S, Gosnell M, Anwer AG, Paton S, Gronthos S, Goldys E. Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence. BMC Cancer 2019; 19:1242. [PMID: 31864316 PMCID: PMC6925881 DOI: 10.1186/s12885-019-6463-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Background Cell cycle analysis is important for cancer research. However, available methodologies have drawbacks including limited categorisation and reliance on fixation, staining or transformation. Multispectral analysis of endogenous cell autofluorescence has been shown to be sensitive to changes in cell status and could be applied to the discrimination of cell cycle without these steps. Methods Cells from the MIA-PaCa-2, PANC-1, and HeLa cell lines were plated on gridded dishes and imaged using a multispectral fluorescence microscope. They were then stained for proliferating cell nuclear antigen (PCNA) and DNA intensity as a reference standard for their cell cycle position (G1, S, G2, M). The multispectral data was split into training and testing datasets and models were generated to discriminate between G1, S, and G2 + M phase cells. A standard decision tree classification approach was taken, and a two-step system was generated for each line. Results Across cancer cell lines accuracy ranged from 68.3% (MIA-PaCa-2) to 73.3% (HeLa) for distinguishing G1 from S and G2 + M, and 69.0% (MIA-PaCa-2) to 78.0% (PANC1) for distinguishing S from G2 + M. Unmixing the multispectral data showed that the autofluorophores NADH, FAD, and PPIX had significant differences between phases. Similarly, the redox ratio and the ratio of protein bound to free NADH were significantly affected. Conclusions These results demonstrate that multispectral microscopy could be used for the non-destructive, label free discrimination of cell cycle phase in cancer cells. They provide novel information on the mechanisms of cell-cycle progression and control, and have practical implications for oncology research.
Collapse
Affiliation(s)
- Jared M Campbell
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia. .,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia. .,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Abbas Habibalahi
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,School of Engineering, Faculty of Science and Engineering, Macquarie University, 2109, North Ryde, NSW, 2109, Australia
| | - Saabah Mahbub
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martin Gosnell
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,Quantitative Pty Ltd, Mt Victoria, New South Wales, 2786, Australia
| | - Ayad G Anwer
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Ewa Goldys
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|