1
|
Bamberger C, Pankow S, Yates JR. Nvp63 and nvPIWIL1 Suppress Retrotransposon Activation in the Sea Anemone Nematostella vectensis. J Proteome Res 2022; 21:2586-2595. [PMID: 36195974 DOI: 10.1021/acs.jproteome.2c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factors p63 and p73 have high similarity to the tumor suppressor protein p53. While the importance of p53 in DNA damage control is established, the functions of p63 or p73 remain elusive. Here, we analyzed nvp63, the cnidarian homologue of p63, that is expressed in the mesenteries of the starlet sea anemone Nematostella vectensis and that is activated in response to DNA damage. We used ultraviolet light (UV) to induce DNA damage and determined the chromatin-bound proteome with quantitative, bottom-up proteomics. We found that genotoxic stress or nvp63 knockdown recruited the protein nvPIWIL1, a homologue of the piRNA-binding PIWI protein family. Knockdown nvPIWIL1 increased protein expression from open reading frames (ORFs) that overlap with class I and II transposable element DNA sequences in the genome of N. vectensis. UV irradiation induced apoptosis, and apoptosis was reduced in the absence of nvp63 but increased with the loss of nvPIWIL1. Loss of nvp63 increased the presence of class I LTR and non-LTR retrotransposon but not of class II DNA transposon-associated protein products. These results suggest that an evolutionary early function of nvp63 might be to control genome stability in response to activation of transposable elements, which induce DNA damage during reintegration in the genome.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department for Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9203 United States
| | - Sandra Pankow
- Department for Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9203 United States
| | - John R Yates
- Department for Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 9203 United States
| |
Collapse
|
2
|
Dufresne J, Gregory M, Pinel L, Cyr DG. Differential gene expression and hallmarks of stemness in epithelial cells of the developing rat epididymis. Cell Tissue Res 2022; 389:327-349. [PMID: 35590013 DOI: 10.1007/s00441-022-03634-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Epididymal development can be subdivided into three phases: undifferentiated, a period of differentiation, and expansion. The objectives of this study were (1) to assess gene expression profiles in epididymides, (2) predict signaling pathways, and (3) develop a novel 3D cell culture method to assess the regulation of epididymal development in vitro. Microarray analyses indicate that the largest changes in differential gene expression occurred between the 7- to 18-day period, in which 1452 genes were differentially expressed, while 671 differentially expressed genes were noted between days 18 and 28, and there were 560 differentially expressed genes between days 28 and 60. Multiple signaling pathways were predicted at different phases of development. Pathway associations indicated that in epididymides of 7- to 18-day old rats, there was a significant association of regulated genes implicated in stem cells, estrogens, thyroid hormones, and kidney development, while androgen- and estrogen-related pathways were enriched at other phases of development. Organoids were derived from CD49f + columnar cells from 7-day old rats, while no organoids developed from CD49f- cells. Cells cultured in an epididymal basal cell organoid medium versus a commercial kidney differentiation medium supplemented with DHT revealed that irrespective of the culture medium, cells within differentiating organoids expressed p63, AQP9, and V-ATPase after 14 days of culture. The commercial kidney medium resulted in an increase in the number of organoids positive for p63, AQP9, and V-ATPase. Together, these data indicate that columnar cells represent an epididymal stem/progenitor cell population.
Collapse
Affiliation(s)
- Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada
| | - Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada. .,Department of Obstetrics, Gynecology, and Reproduction, Laval University, Québec, QC, Canada.
| |
Collapse
|
3
|
Jamalpoor A, van Gelder CAGH, Yousef Yengej FA, Zaal EA, Berlingerio SP, Veys KR, Pou Casellas C, Voskuil K, Essa K, Ammerlaan CME, Rega LR, van der Welle REN, Lilien MR, Rookmaaker MB, Clevers H, Klumperman J, Levtchenko E, Berkers CR, Verhaar MC, Altelaar M, Masereeuw R, Janssen MJ. Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol Med 2021; 13:e13067. [PMID: 34165243 PMCID: PMC8261496 DOI: 10.15252/emmm.202013067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide-cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Charlotte AGH van Gelder
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CenterUtrechtThe Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Division of Cell Biology, Cancer & MetabolismDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Sante P Berlingerio
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Koenraad R Veys
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Carla Pou Casellas
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Koen Voskuil
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Khaled Essa
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Carola ME Ammerlaan
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laura Rita Rega
- Renal Diseases Research Unit, Genetics and Rare Diseases Research AreaBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Reini EN van der Welle
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marc R Lilien
- Department of Pediatric NephrologyWilhelmina Children’s HospitalUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Division of Cell Biology, Cancer & MetabolismDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CenterUtrechtThe Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Manoe J Janssen
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Gregory M, Cyr DG. Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod 2020; 100:123-132. [PMID: 30060123 DOI: 10.1093/biolre/ioy171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions are responsible for intercellular communication. In the adult mammalian epididymis, gap junction protein alpha 1 (GJA1) is localized between basal and either principal or clear cells. GJA1 levels and localization change during the differentiation of basal cells. The present objective was to determine the role of basal cells and prostaglandin E2 (PGE2) on GJA1 in the rat epididymis. Prior to basal cell differentiation, GJA1 is colocalized with TJP1 at the apical lateral margins between adjacent epithelial cells. When basal cells are present, GJA1 becomes associated between basal and principal cells, where it is primarily immunolocalized until adulthood. Basal cells express TP63, differentiate from epithelial cells, and produce prostaglandin-endoperoxide synthase 1 by 21 days of age. Prior to day 21, GJA1and TP63 are not strongly associated at the apical region. However, by day 28, TP63-positive basal cells migrate to the base of the epithelium, and also express GJA1. To assess effects of PGE2 on GJA1, rat caput epididymal (RCE) cells were exposed to PGE2 (50 μM) for 3 h. PGE2 increased levels of Gja1 mRNA in RCE cells, while levels of Gjb1, Gjb2, Gjb4, and GjB5 were unaltered. Furthermore, PGE2 increased protein levels of GJA1, phospho-GJA1, phospho-AKT, CTNNB1, and phospho-CTNNB1. Total AKT and the tight junction protein claudin1 were also not altered by PGE2. Data suggest that development of the epididymal epithelium and differentiation of epididymal basal cells regulate the targeting of GJA1, and that this appears to be mediated by PGE2.
Collapse
Affiliation(s)
- Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| |
Collapse
|
5
|
Naik MA, Pai SA. Epididymis-like Tubules in Adult Renal Hypodysplasia: Immunohistochemical Features Indicate a Mesonephric Origin. Int J Surg Pathol 2016; 25:206-215. [PMID: 27852932 DOI: 10.1177/1066896916678926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the presence of epididymis-like tubules in unilateral renal hypodysplasia in 3 adult men. Microscopy showed dilated tubules lined by ciliated columnar epithelium and smaller basal cells, morphologically resembling epididymal tubules. Small tubules lined by cuboidal epithelium were also present in all cases, with glomeruli in 2 cases. The epididymis-like tubules expressed CD10, CK7, PAX8, and AR in the luminal epithelium, while the basal cells were positive for p63, CK7, and focally for CD10. The smooth muscle bundles around the epididymis-like tubules were focally AR and WT1 (cytoplasmic) positive. The epididymis-like tubules were negative for ER, PR, and WT1. CK7 and PAX8 stained all the collecting ducts, with AR staining some. Bowman's capsule, parietal and visceral epithelial cells expressed CD10; WT1 stained the visceral and parietal epithelial cells. Glomerular parietal cells expressed PAX8 and focally, CK7. Proximal tubules were positive for CD10 (luminal membranous and weak cytoplasmic). Distal tubules expressed CK7, PAX8 and AR. An occasional small tubule was ER positive. Scattered stromal cells expressed ER, PR, and AR. The urothelium of the renal pelvis/upper ureter expressed CK7 in all layers, CD10 in the superficial layers, PAX8 in the basal layers and p63 in all layers except the umbrella layer. The epididymis-like tubules replicate the pattern of the mesonephros-derived normal epididymis in expressing CK7, PAX8, CD10, and AR. This supports a mesonephric rather than metanephric origin for these tubules. The aberrant expression of some markers may be a manifestation of the dysplastic nature of the kidneys.
Collapse
Affiliation(s)
| | - Sanjay A Pai
- 2 Columbia Asia Referral Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Mandon M, Hermo L, Cyr DG. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells. Biol Reprod 2015; 93:115. [PMID: 26400399 DOI: 10.1095/biolreprod.115.133967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells.
Collapse
Affiliation(s)
- Marion Mandon
- Laboratory for Reproductive Toxicology, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Fujimoto A, Kurban M, Nakamura M, Farooq M, Fujikawa H, Kibbi AG, Ito M, Dahdah M, Matta M, Diab H, Shimomura Y. GJB6, of which mutations underlie Clouston syndrome, is a potential direct target gene of p63. J Dermatol Sci 2012; 69:159-66. [PMID: 23219093 DOI: 10.1016/j.jdermsci.2012.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Clouston syndrome is a rare autosomal dominant condition characterized by hypotrichosis, nail dystrophy, and occasionally palmoplantar keratoderma. The disease is caused by mutations in GJB6 gene, which encodes a gap junction protein connexin 30 (Cx30). OBJECTIVE To disclose the molecular basis of Clouston syndrome in a Lebanese-German family, and also to determine precise expression of Cx30 in normal skin of humans and mice, as well as transcriptional regulation for the GJB6 expression. METHODS We searched for mutations in the GJB6 gene using DNA of the family members with Clouston syndrome. We performed immunostaining to localize the Cx30 expression in normal human skin and mouse embryos. In addition, we did a series of in vitro studies to investigate if the GJB6 could be a direct transcriptional target gene of p63. RESULTS We identified a recurrent heterozygous mutation c.31G>C (p.Gly11Arg) in the GJB6 gene in the Lebanese-German family with Clouston syndrome. Immunostaining in normal human skin sections demonstrated predominant expression of Cx30 in hair follicles, nails, and palmoplantar epidermis, which partially overlapped with p63 expression. We also showed co-expression of Cx30 and p63 in developing mouse hair follicles and nail units. In cultured cells, the GJB6 expression was significantly upregulated by ΔNp63α isoform. Further in vitro analyses suggested that ΔNp63α was potentially involved in the GJB6 expression via binding to the sequences in intron 1 of the GJB6 gene. CONCLUSION Our data further underscore the crucial roles of Cx30 in morphogenesis and development of skin and its appendages.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Laboratory of Genetic Skin Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kurita T. Normal and abnormal epithelial differentiation in the female reproductive tract. Differentiation 2011; 82:117-26. [PMID: 21612855 PMCID: PMC3178098 DOI: 10.1016/j.diff.2011.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 11/23/2022]
Abstract
In mammals, the female reproductive tract (FRT) develops from a pair of paramesonephric or Müllerian ducts (MDs), which arise from coelomic epithelial cells of mesodermal origin. During development, the MDs undergo a dynamic morphogenetic transformation from simple tubes consisting of homogeneous epithelium and surrounding mesenchyme into several distinct organs namely the oviduct, uterus, cervix and vagina. Following the formation of anatomically distinctive organs, the uniform MD epithelium (MDE) differentiates into diverse epithelial cell types with unique morphology and functions in each organ. Classic tissue recombination studies, in which the epithelium and mesenchyme isolated from the newborn mouse FRT were recombined, have established that the organ specific epithelial cell fate of MDE is dictated by the underlying mesenchyme. The tissue recombination studies have also demonstrated that there is a narrow developmental window for the epithelial cell fate determination in MD-derived organs. Accordingly, the developmental plasticity of epithelial cells is mostly lost in mature FRT. If the signaling that controls epithelial differentiation is disrupted at the critical developmental stage, the cell fate of MD-derived epithelial tissues will be permanently altered and can result in epithelial lesions in adult life. A disruption of signaling that maintains epithelial cell fate can also cause epithelial lesions in the FRT. In this review, the pathogenesis of cervical/vaginal adenoses and uterine squamous metaplasia is discussed as examples of such incidences.
Collapse
Affiliation(s)
- Takeshi Kurita
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Oleksiewicz MB, Southgate J, Iversen L, Egerod FL. Rat Urinary Bladder Carcinogenesis by Dual-Acting PPARalpha + gamma Agonists. PPAR Res 2009; 2008:103167. [PMID: 19197366 PMCID: PMC2632771 DOI: 10.1155/2008/103167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/07/2008] [Indexed: 12/25/2022] Open
Abstract
Despite clinical promise, dual-acting activators of PPARalpha and gamma (here termed PPARalpha+gamma agonists) have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPARalpha is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARgamma can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARalpha as well as PPARgamma, making it plausible that the urothelial carcinogenicity of PPARalpha+gamma agonists may be caused by receptor-mediated effects (exaggerated pharmacology). Based on previously published mode of action data for the PPARalpha+gamma agonist ragaglitazar, and the available literature about the role of PPARalpha and gamma in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARalpha+gamma agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds.
Collapse
Affiliation(s)
| | - Jennifer Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5YW, UK
| | - Lars Iversen
- Biopharm Toxicology and Safety Pharmacology, Novo Nordisk A/S, 2760 Maalov, Denmark
| | | |
Collapse
|
10
|
Combined VHLH and PTEN mutation causes genital tract cystadenoma and squamous metaplasia. Mol Cell Biol 2008; 28:4536-48. [PMID: 18474617 DOI: 10.1128/mcb.02132-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Patients with von Hippel-Lindau (VHL) disease develop tumors in a range of tissues, but existing mouse models of Vhlh mutation have failed to reproduce these lesions. Epididymal cystadenomas arise frequently in VHL patients, but VHL mutation alone is believed to be insufficient for tumor formation, implying a requirement for cooperating mutations in epididymal pathogenesis. Here we show that epididymal cystadenomas from VHL patients frequently also lack expression of the PTEN tumor suppressor and display activation of phosphatidylinositol 3-kinase (PI3K) pathway signaling. Strikingly, while conditional inactivation of either Vhlh or Pten in epithelia of the mouse genital tract fails to produce a tumor phenotype, their combined deletion causes benign genital tract tumors with regions of squamous metaplasia and cystadenoma. The latter are histologically identical to lesions found in VHL patients. Importantly, these lesions are characterized by expansion of basal stem cells, high levels of expression and activity of HIF1alpha and HIF2alpha, and dysregulation of PI3K signaling. Our studies suggest a model for cooperative tumor suppression in which inactivation of PTEN facilitates epididymal cystadenoma genesis initiated by loss of VHL.
Collapse
|
11
|
Immunoreactivity of p63 in Monolayered and In Vitro Stratified Human Urothelial Cell Cultures Compared with Native Urothelial Tissue. Eur Urol 2008; 53:1066-72. [DOI: 10.1016/j.eururo.2007.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 10/15/2007] [Indexed: 11/24/2022]
|
12
|
Aberrant diffuse expression of p63 in adenocarcinoma of the prostate on needle biopsy and radical prostatectomy: report of 21 cases. Am J Surg Pathol 2008; 32:461-7. [PMID: 18300803 DOI: 10.1097/pas.0b013e318157020e] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aberrant diffuse expression of p63 in prostate carcinoma cells is a rare and poorly understood phenomenon. We studied 19 cases of prostate cancer with aberrant diffuse expression of p63 on needle biopsy and reviewed the subsequent radical prostatectomies in 6 cases. In 19/21 cases, 100% of the cancer nuclei stained intensely for p63, with 70% staining in the remaining 2 cases. Two additional radical prostatectomies with aberrant p63 staining with no needle biopsies available for review were also analyzed. On the hematoxylin and eosin-stained slides, 19/21 cases (90.5%) showed a distinctive morphology composed predominantly of glands, nests, and cords with atrophic cytoplasm, hyperchromatic nuclei, and visible nucleoli. Needle biopsy cases ranged from Gleason patterns 3 to 5 with tumor identified on one or more cores, ranging from a minute focus to 80% of the core. In all 8 radical prostatectomies p63 positive cancer was present, with in 2/8 cases both p63 positive cancer and usual p63 negative acinar prostate cancer. In all 8 cases, the tumors were organ confined with negative margins and there was no seminal vesicle involvement or lymph node metastasis. The presence of p63 positive atypical glands with an infiltrative pattern and perineural invasion on radical prostatectomy confirmed the needle biopsy diagnosis of carcinoma. Rarely, prostate cancer can aberrantly express diffuse p63 staining in a nonbasal cell distribution leading to the erroneous diagnosis of atrophy or atypical basal cell proliferation. The diagnosis of prostate cancer is based on the morphology and confirmed by the absence of high molecular weight cytokeratin staining and positivity for alpha-methylacyl-CoA racemase in the atypical glands. Pathologists need to be aware of this rare and unusual phenomenon, which is a potential pitfall in prostate cancer diagnosis.
Collapse
|