1
|
Abd Raboh NM, Hakim SA, Abd El Atti RM. Implications of androgen receptor and FUS expression on tumor progression in urothelial carcinoma. Histol Histopathol 2020; 36:325-337. [PMID: 33354760 DOI: 10.14670/hh-18-295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Androgen receptor (AR) interact with many pathways involved in bladder cancer development and progression. FUS (fused in liposarcoma), a multifunctional protein essential for different cellular processes, has been demonstrated as a key link between androgen receptor signaling and cell-cycle progression in prostate cancer but has not been examined in urothelial carcinoma (UC) despite an intimate association between prostate and bladder carcinogenesis. AIM To examine the immunohistochemical expression of AR and FUS in urothelial carcinoma in relation to prognostic parameters and to extrapolate any possible link between the expression of both markers and tumor progression. STUDY DESIGN Retrospective study using immunohistochemical staining for AR and FUS on (88) cases of urothelial carcinoma. RESULTS AR shows statistically significant relations with late tumor stage, high tumor grade, and non-papillary tumor pattern. On the other hand, FUS expression correlates with early tumor stage, low tumor grade and papillary pattern. An inverse relation is found between AR and FUS expression (p=0.001). Cases with high AR IHC expression show statistically significant shorter OS, RFS and PFS compared to cases with low AR expression. Cases with high FUS IHC expression reveal statistically significant longer OS, RFS and PFS compared to cases with low FUS expression. CONCLUSION FUS expression is associated with favorable prognostic parameters of UC. A possible interaction is suggested between FUS and AR pathways involved in urothelial cancer progression. Manipulating FUS levels and androgen deprivation therapy can provide new promising targets for treatment trials.
Collapse
Affiliation(s)
| | - Sarah Adel Hakim
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Abdal Dayem A, Kim K, Lee SB, Kim A, Cho SG. Application of Adult and Pluripotent Stem Cells in Interstitial Cystitis/Bladder Pain Syndrome Therapy: Methods and Perspectives. J Clin Med 2020; 9:jcm9030766. [PMID: 32178321 PMCID: PMC7141265 DOI: 10.3390/jcm9030766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic disease without definite etiology characterized by bladder-related pelvic pain. IC/BPS is associated with pain that negatively affects the quality of life. There are various therapeutic approaches against IC/BPS. However, no efficient therapeutic agent against IC/BPS has been discovered yet. Urothelium dysfunction is one of the key factors of IC/BPS-related pathogenicity. Stem cells, including adult stem cells (ASCs) and pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced PSCs (iPSCs), possess the abilities of self-renewal, proliferation, and differentiation into various cell types, including urothelial and other bladder cells. Therefore, stem cells are considered robust candidates for bladder regeneration. This review provides a brief overview of the etiology, pathophysiology, diagnosis, and treatment of IC/BPS as well as a summary of ASCs and PSCs. The potential of ASCs and PSCs in bladder regeneration via differentiation into bladder cells or direct transplantation into the bladder and the possible applications in IC/BPS therapy are described in detail. A better understanding of current studies on stem cells and bladder regeneration will allow further improvement in the approaches of stem cell applications for highly efficient IC/BPS therapy.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| |
Collapse
|
3
|
Quan Y, Lei H, Wahafu W, Liu Y, Ping H, Zhang X. Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer. Biomed Pharmacother 2019; 120:109490. [DOI: 10.1016/j.biopha.2019.109490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022] Open
|
4
|
Inoue Y, Kishida T, Kotani SI, Akiyoshi M, Taga H, Seki M, Ukimura O, Mazda O. Direct conversion of fibroblasts into urothelial cells that may be recruited to regenerating mucosa of injured urinary bladder. Sci Rep 2019; 9:13850. [PMID: 31554870 PMCID: PMC6761134 DOI: 10.1038/s41598-019-50388-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023] Open
Abstract
Urothelial cells play essential roles in protection of urine exudation and bacterial invasion at the urothelial mucosa, so that defect or damage of urothelial cells associated with urinary tract diseases may cause serious problems. If a sufficient number of functional urothelial cells are prepared in culture and transplanted into the damaged urothelial lesions, such technology may provide beneficial effects to patients with diseases of the urinary tract. Here we found that human adult dermal fibroblasts were converted into urothelial cells by transducing genes for four transcription factors, FOXA1, TP63, MYCL and KLF4 (FTLK). The directly converted urothelial cells (dUCs) formed cobblestone-like colonies and expressed urothelium-specific markers. dUCs were successfully expanded and enriched after serial passages using a specific medium that we optimized for the cells. The passaged dUCs showed similar genome-wide gene expression profiles to normal urothelial cells and had a barrier function. The FTLK-transduced fibroblasts were also converted into urothelial cells in vivo and recruited to the regenerating urothelial tissue after they were transplanted into the bladder of mice with interstitial cystitis. Our technology may provide a promising solution for a number of patients with urinary tract disorders.
Collapse
Affiliation(s)
- Yuta Inoue
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Urology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shin-Ichiro Kotani
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mika Akiyoshi
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,CellAxia Inc. 1-10-9-6F Nihonbashi Horidome-cho, Chuo-ku, Tokyo, 103-0012, Japan
| | - Hideto Taga
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Urology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Makoto Seki
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.,CellAxia Inc. 1-10-9-6F Nihonbashi Horidome-cho, Chuo-ku, Tokyo, 103-0012, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefecture University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
5
|
Gil D, Zarzycka M, Dulińska-Litewka J, Ciołczyk-Wierzbicka D, Lekka M, Laidler P. Dihydrotestosterone increases the risk of bladder cancer in men. Hum Cell 2019; 32:379-389. [PMID: 31119584 PMCID: PMC6570698 DOI: 10.1007/s13577-019-00255-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
Men are at a higher risk of developing bladder cancer than women. Although the urinary bladder is not regarded as an sex organ, it has the potential to respond to androgen signals. The mechanisms responsible for the gender differences remain unexplained. Androgen receptor (AR) after binding with 5α-dihydrotestosteron (DHT) undergoes a conformational change and translocates to nucleus to induce transcriptional regulation of target genes. However androgen/AR signaling can also be activated by interacting with several signaling molecules and exert its non-genomic function. The aim of present study was to explain whether the progression of bladder cancer in men is dependent on androgen/AR signaling. Studies were carried out on human bladder cancer cell lines: HCV29, T24, HT1376 and HTB9. Bladder cancer cells were treated for 48 h with 10 nM DHT or not, with replacement after 24 h. Expression of cell signaling proteins, was analyzed using Western Blot and RT-PCR. Subcellular localization of protein was studied using the ProteoExtract Subcellular Proteome Extraction Kit and Western blot analysis. We showed that DHT treatment significantly increased AR expression in bladder cell line HCV29. We also observed DHT-mediated activation of Akt/GSK-3β signaling pathway which plays a central role in cancer progression. Presented results also show that androgen/AR signaling is implicated in phosphorylation of eIF4E which can promote epithelial-mesenchymal transition (EMT). We indicate that AR plays an essential role in bladder cancer progression in male patients. Therefore, androgen-activated AR signaling is an attractive regulatory target for the inhibition or prevention of bladder cancer incidence in men.
Collapse
Affiliation(s)
- Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland, ul.Kopernika 7, 31-034, Kraków, Poland.
| | - Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland, ul.Kopernika 7, 31-034, Kraków, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland, ul.Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland, ul.Kopernika 7, 31-034, Kraków, Poland
| | - Małgorzata Lekka
- Laboratory of Biophysical Microstudies, The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Poland, ul. Radzikowskiego 152, 31-342, Kraków, Poland
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland, ul.Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
6
|
Androgen Receptor Signaling in Bladder Cancer. Cancers (Basel) 2017; 9:cancers9020020. [PMID: 28241422 PMCID: PMC5332943 DOI: 10.3390/cancers9020020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 01/21/2023] Open
Abstract
Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.
Collapse
|
7
|
de Graaf P, van der Linde EM, Rosier PFWM, Izeta A, Sievert KD, Bosch JLHR, de Kort LMO. Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:257-267. [PMID: 27809709 DOI: 10.1089/ten.teb.2016.0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. PURPOSE To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. METHODS A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. RESULTS Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characterized by different gene expression profiles, the signaling pathways underlying their development are similar, including Shh, BMP, Wnt, and FGF. The progenitor of the urothelium and the urethral epithelium is the early fetal urogenital sinus (UGS). The urethral plate and the urothelium are both formed from the p63+ cells of the UGS. Keratin 20 and uroplakins are exclusively expressed in urothelium, not in the urethral epithelium. Further research has to be done on unique markers for the urethral epithelium. CONCLUSION This review has summarized the current knowledge about embryonic development of urothelium versus urethral epithelium and especially focuses on the influencing factors that are potentially specific for the eventual morphological differences of both cell linings, to be a basis for developmental or tissue engineering of urethral tissue.
Collapse
Affiliation(s)
- Petra de Graaf
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands .,2 Regenerative Medicine Center Utrecht , Utrecht, The Netherlands
| | | | - Peter F W M Rosier
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Ander Izeta
- 3 Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastián, Spain .,4 Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra , San Sebastián, Spain
| | | | - J L H Ruud Bosch
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Laetitia M O de Kort
- 1 Department of Urology, University Medical Centre Utrecht , Utrecht, The Netherlands
| |
Collapse
|
8
|
Abstract
Genomic and transcriptional studies have identified discrete molecular subtypes of bladder cancer. These observations could be the starting point to identify new treatments. Several members of the forkhead box (FOX) superfamily of transcription factors have been found to be differentially expressed in the different bladder cancer subtypes. In addition, the FOXA protein family are key regulators of embryonic bladder development and patterning. Both experimental and clinical data support a role for FOXA1 and FOXA2 in urothelial carcinoma. FOXA1 is expressed in embryonic and adult urothelium and its expression is altered in urothelial carcinomas and across disparate molecular bladder cancer subtypes. FOXA2 is normally absent from the adult urothelium, but developmental studies identified FOXA2 as a marker of a transient urothelial progenitor cell population during bladder development. Studies also implicate FOXA2 in bladder cancer and several other FOX proteins might be involved in development and/or progression of this disease; for example, FOXA1 and FOXO3A have been associated with clinical patient outcomes. Future studies should investigate to what extent and by which mechanisms FOX proteins might be directly involved in bladder cancer pathogenesis and treatment responses.
Collapse
|
9
|
Lombard AP, Mudryj M. The emerging role of the androgen receptor in bladder cancer. Endocr Relat Cancer 2015; 22:R265-77. [PMID: 26229034 DOI: 10.1530/erc-15-0209] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 01/03/2023]
Abstract
Men are three to four times more likely to get bladder cancer than women. The gender disparity characterizing bladder cancer diagnoses has been investigated. One hypothesis is that androgen receptor (AR) signaling is involved in the etiology and progression of this disease. Although bladder cancer is not typically described as an endocrine-related malignancy, it has become increasingly clear that AR signaling plays a role in bladder tumors. This review summarizes current findings regarding the role of the AR in bladder cancer. We discuss work demonstrating AR expression in bladder cancer and its role in promoting formation and progression of tumors. Additionally, we discuss the therapeutic potential of targeting the AR in this disease.
Collapse
Affiliation(s)
- Alan P Lombard
- Veterans Affairs-Northern California Health Care System Mather, California, USA Department of Medical Microbiology and Immunology Biochemistry Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, University of California, 1 Shields Avenue, Tupper Hall 3147, UC Davis, Davis, California 95616, USA Veterans Affairs-Northern California Health Care System Mather, California, USA Department of Medical Microbiology and Immunology Biochemistry Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, University of California, 1 Shields Avenue, Tupper Hall 3147, UC Davis, Davis, California 95616, USA Veterans Affairs-Northern California Health Care System Mather, California, USA Department of Medical Microbiology and Immunology Biochemistry Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, University of California, 1 Shields Avenue, Tupper Hall 3147, UC Davis, Davis, California 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System Mather, California, USA Department of Medical Microbiology and Immunology Biochemistry Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, University of California, 1 Shields Avenue, Tupper Hall 3147, UC Davis, Davis, California 95616, USA Veterans Affairs-Northern California Health Care System Mather, California, USA Department of Medical Microbiology and Immunology Biochemistry Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, University of California, 1 Shields Avenue, Tupper Hall 3147, UC Davis, Davis, California 95616, USA
| |
Collapse
|
10
|
Osborn SL, Thangappan R, Luria A, Lee JH, Nolta J, Kurzrock EA. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med 2014; 3:610-9. [PMID: 24657961 DOI: 10.5966/sctm.2013-0131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In vitro generation of human urothelium from stem cells would be a major advancement in the regenerative medicine field, providing alternate nonurologic and/or nonautologous tissue sources for bladder grafts. Such a model would also help decipher the mechanisms of urothelial differentiation and would facilitate investigation of deviated differentiation of normal progenitors into urothelial cancer stem cells, perhaps elucidating areas of intervention for improved treatments. Thus far, in vitro derivation of urothelium from human embryonic stem cells (hESCs) or human induced pluripotent stem (hiPS) cells has not been reported. The goal of this work was to develop an efficient in vitro protocol for the induction of hESCs into urothelium through an intermediary definitive endoderm step and free of matrices and cell contact. During directed differentiation in a urothelial-specific medium ("Uromedium"), hESCs produced up to 60% urothelium, as determined by uroplakin expression; subsequent propagation selected for 90% urothelium. Alteration of the epithelial and mesenchymal cell signaling contribution through noncell contact coculture or conditioned media did not enhance the production of urothelium. Temporospatial evaluation of transcription factors known to be involved in urothelial specification showed association of IRF1, GET1, and GATA4 with uroplakin expression. Additional hESC and hiPS cell lines could also be induced into urothelium using this in vitro system. These results demonstrate that derivation and propagation of urothelium from hESCs and hiPS cells can be efficiently accomplished in vitro in the absence of matrices, cell contact, or adult cell signaling and that the induction process appears to mimic normal differentiation.
Collapse
Affiliation(s)
- Stephanie L Osborn
- Departments of Urology and Internal Medicine, Davis School of Medicine, and Stem Cell Program, Institute for Regenerative Cures, Davis Medical Center, University of California, Sacramento, California, USA
| | | | | | | | | | | |
Collapse
|
11
|
Taylor RA, Risbridger GP. Cross-species stromal signaling programs human embryonic stem cell differentiation. Differentiation 2014; 87:76-82. [DOI: 10.1016/j.diff.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/17/2022]
|
12
|
Sumino Y, Mimata H. Regenerative medicine as a new therapeutic strategy for lower urinary tract dysfunction. Int J Urol 2013; 20:670-5. [PMID: 23594124 DOI: 10.1111/iju.12137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
The use of regenerative medicine for the treatment of organic and functional disorders intractable to conventional treatment has increased worldwide. This innovative medical field might particularly hold promise for the treatment of life-threatening diseases or healing of irreplaceable organs, such as the heart, liver and brain. Dysfunction of the urogenital tract and associated organs other than the kidney might not have immediate life-threatening implications; furthermore, the effectiveness of alternative therapy, such as enterocystoplasty for bladder cancer, has been shown. Therefore, most physicians or scientists do not give much importance to these disorders. However, urological disease has increased in developed societies in recent years. Furthermore, medical costs have also escalated. Disorders of the lower urinary tract, such as urinary disturbance or incontinence, can lead to other complications, impairing quality of life and ultimately increasing short- and long-term medical expenses. Regenerative medicine might hold potential solutions to these problems. Recent advances in urogenital regenerative medicine are reviewed in the present article, with particular reference to lower urinary tract reconstruction. The potential of regenerative medicine for the treatment of intractable lower urinary tract dysfunction compared with conventional treatment is also discussed.
Collapse
Affiliation(s)
- Yasuhiro Sumino
- Department of Urology, Oita University Faculty of Medicine, Oita, Japan
| | | |
Collapse
|
13
|
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One 2012; 7:e36669. [PMID: 22590586 PMCID: PMC3349679 DOI: 10.1371/journal.pone.0036669] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
Collapse
Affiliation(s)
- David J DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma AK. An examination of regenerative medicine-based strategies for the urinary bladder. Regen Med 2012; 6:583-98. [PMID: 21916594 DOI: 10.2217/rme.11.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Patients that are afflicted with dysfunctional urinary bladders due to developmental defect, trauma or malignant transformation have limited treatment options that would allow for complete recapitulation of the urinary bladder. Hence, novel tissue engineering techniques that are successful in regenerating functional urinary bladder tissue for replacement therapy would be invaluable. Current tissue engineering techniques are hampered by several problems including choice of appropriate cell type, inadequate development of new blood vessels to the regenerated tissue, tissue innervation and primitive bioscaffold design. This article describes the recent advances in stem cell biology and the material sciences to address these problems, and attempts to improve upon current tissue engineering techniques to make successful regeneration of urinary bladder tissue a reality.
Collapse
Affiliation(s)
- Arun K Sharma
- Children's Memorial Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA.
| |
Collapse
|
15
|
When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 2011; 31:802-11. [PMID: 21924649 DOI: 10.1016/j.urolonc.2011.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/23/2022]
Abstract
Differentiation is defined as the ability of a cell to acquire full functional behavior. For instance, the function of bladder urothelium is to act as a barrier to the diffusion of solutes into or out of the urine after excretion by the kidney. The urothelium also serves to protect the detrusor muscle from toxins present in stored urine. A major event in the initiation and progression of bladder cancer is loss of urothelial differentiation. This is important because less differentiated urothelial tumors (higher histologic tumor grade) are typically associated with increased biologic and clinical aggressiveness. The differentiation status of urothelial carcinomas can be assessed by histopathologic examination and is reflected in the assignment of a histologic grade (low-grade or high-grade). Although typically limited to morphologic evaluation in most routine diagnostic practices, tumor grade can also be assessed using biochemical markers. Indeed, current pathological analysis of tumor specimens is increasingly reliant on molecular phenotyping. Thus, high priorities for bladder cancer research include identification of (1) biomarkers that will enable the identification of high grade T1 tumors that pose the most threat and require the most aggressive treatment; (2) biomarkers that predict the likelihood that a low grade, American Joint Committee on Cancer stage pTa bladder tumor will progress into an invasive carcinoma with metastatic potential; (3) biomarkers that indicate which pTa tumors are most likely to recur, thus enabling clinicians to prospectively identify patients who require aggressive treatment; and (4) how these markers might contribute to biological processes that underlie tumor progression and metastasis, potentially through loss of terminal differentiation. This review will discuss the proteins associated with urothelial cell differentiation, with a focus on those implicated in bladder cancer, and other proteins that may be involved in neoplastic progression. It is hoped that ongoing discoveries associated with the study of these differentiation-promoting proteins can be translated into the clinic to positively impact patient care.
Collapse
|
16
|
Abstract
The term 'regenerative medicine' encompasses strategies for restoring or renewing tissue or organ function by: (i) in vivo tissue repair by in-growth of host cells into an acellular natural or synthetic biomaterial, (ii) implantation of tissue 'engineered'in vitro by seeding cultured cells into a biomaterial scaffold, and (iii) therapeutic cloning and stem cell-based tissue regeneration. In this article, we review recent developments underpinning the emerging science of regenerative medicine and critically assess where successful implementation of novel regenerative medicine approaches into urology practice might genuinely transform the quality of life of affected individuals. We advocate the need for an evidence-based approach supported by strong science and clinical objectivity.
Collapse
Affiliation(s)
- Felix Wezel
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
17
|
Yu RN, Estrada CR. Stem Cells: A Review and Implications for Urology. Urology 2010; 75:664-70. [DOI: 10.1016/j.urology.2009.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/11/2009] [Accepted: 03/25/2009] [Indexed: 01/23/2023]
|
18
|
|