1
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
3
|
Andersson KE. TRP Channels as Lower Urinary Tract Sensory Targets. Med Sci (Basel) 2019; 7:E67. [PMID: 31121962 PMCID: PMC6572419 DOI: 10.3390/medsci7050067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Several members of the transient receptor potential (TRP) superfamily, including TRPV1, TRPV2, TRPV4, TRM4, TRPM8 and TRPA1, are expressed in the lower urinary tract (LUT), not only in neuronal fibers innervating the bladder and urethra, but also in the urothelial and muscular layers of the bladder and urethral walls. In the LUT, TRP channels are mainly involved in nociception and mechanosensory transduction. Animal studies have suggested the therapeutic potential of several TRP channels for the treatment of both bladder over- and underactivity and bladder pain disorders,; however translation of this finding to clinical application has been slow and the involvement of these channels in normal human bladder function, and in various pathologic states have not been established. The development of selective TRP channel agonists and antagonists is ongoing and the use of such agents can be expected to offer new and important information concerning both normal physiological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA.
- Institute of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| |
Collapse
|
4
|
Neonatal Bladder Irritation Is Associated With Vanilloid Receptor TRPV1 Expression in Adult Rats. Int Neurourol J 2018; 22:169-176. [PMID: 30286579 PMCID: PMC6177733 DOI: 10.5213/inj.1836020.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate whether mild chemical irritation of the bladder in neonatal rats is associated with persistent vanilloid receptor transient receptor potential vanilloid subfamily 1 (TRPV1) activity in adult rats. METHODS Female Sprague-Dawley rats were used. Ten-day-old rat pups underwent bladder sensitization via intravesical infusion of 0.2% acetic acid in saline with or without prior bladder desensitization with capsaicin. After 8 weeks, 3 groups of rats (control [group 1], bladder sensitization [group 2], and bladder desensitization [group 3]) underwent cystometry. Inflammation of bladder tissue and the expression of TRPV1 in bladder tissue and dorsal root ganglia (DRG) were also evaluated. RESULTS The bladder sensitization group showed more frequent voiding contractions. TRPV1 expression in adult bladder tissue was elevated in group 2. TRPV1 mRNA levels in the bladder and DRG were significantly higher in group 2 than in group 1. Moreover, group 2 had significantly more DRG neurons (identified by uptake of the retrograde label Fast Blue) that exhibited TRPV1 immunoreactivity. CONCLUSION We found a significant association between neonatal bladder sensitization and persistent TRPV1 activity in adult rats. This is the first study to focus on the underlying pathogenesis of bladder overactivity from childhood to adulthood. Our findings could lead to the development of new strategies for the treatment and prevention of adult urinary symptoms arising from childhood urinary tract dysfunction.
Collapse
|
5
|
Grundy L, Daly DM, Chapple C, Grundy D, Chess-Williams R. TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder. Sci Rep 2018; 8:197. [PMID: 29317663 PMCID: PMC5760578 DOI: 10.1038/s41598-017-18136-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1-/-) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1-/- mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1-/- mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1-/- mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms.
Collapse
Affiliation(s)
- Luke Grundy
- Centre for Urology Research, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
- Visceral Pain Group, University of Adelaide, SAHMRI, Adelaide, Australia
| | - Donna M Daly
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| |
Collapse
|
6
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
7
|
Andersson KE. Potential Future Pharmacological Treatment of Bladder Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:75-85. [DOI: 10.1111/bcpt.12577] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
- Aarhus Institute for Advanced Sciences (AIAS); Aarhus University; Aarhus Denmark
| |
Collapse
|
8
|
Charrua A, Cruz CD, Jansen D, Rozenberg B, Heesakkers J, Cruz F. Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. BJU Int 2015; 115:452-60. [DOI: 10.1111/bju.12861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ana Charrua
- Department of Renal; Urologic and Infectious Disease; Porto Portugal
- Department of Experimental Biology; Faculty of Medicine of the University of Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular da Universidade do Porto; Porto Portugal
| | - Célia D. Cruz
- Department of Experimental Biology; Faculty of Medicine of the University of Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular da Universidade do Porto; Porto Portugal
| | - Dick Jansen
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Boy Rozenberg
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - John Heesakkers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Francisco Cruz
- Department of Urology; S. João Hospital; Porto Portugal
- Department of Renal; Urologic and Infectious Disease; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular da Universidade do Porto; Porto Portugal
| |
Collapse
|
9
|
Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int 2015; 115:686-97. [DOI: 10.1111/bju.12876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yves Deruyver
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Thomas Voets
- Laboratory for Ion Channel Research; Department of Molecular Cell Biology; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
- Royal Melbourne Hospital; Melbourne Australia
| |
Collapse
|
10
|
Nash MS, Verkuyl JM, Bhalay G. TRPV1 Antagonism: From Research to Clinic. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capsaicin receptor, TRPV1, has been one of the most extensively studied molecules in sensory research. Its contribution to the sensation of pain in numerous pre-clinical inflammatory and neuropathic paradigms has been well-established and expression analysis suggests a potential role clinically in pain and bladder conditions. The field has now reached an exciting point in time with the development of a number of high quality TRPV1 antagonist drug candidates and the release of clinical data. What has become apparent from this work is that inhibition of TRPV1 function brings with it the potential liabilities of increased body temperature and altered thermal perception. However, there is cause for optimism because it appears that not all antagonists have the same properties and compounds can be identified that lack significant on-target side-effects whilst retaining efficacy, at least pre-clinically. What is perhaps now more critical to address is the question of how effective the analgesia provided by a TRPV1 antagonist will be. Although tantalizing clinical data showing effects on experimentally-induced pain or pain following molar extraction have been reported, no clear efficacy in a chronic pain condition has yet been demonstrated making it difficult to perform an accurate risk-benefit analysis for TRPV1 antagonists. Here we provide an overview of some of the most advanced clinical candidates and discuss the approaches being taken to avoid the now well established on-target effects of TRPV1 antagonists.
Collapse
Affiliation(s)
- Mark S. Nash
- Novartis Institutes for Biomedical Research Forum 1, Novartis Campus CH - 4056 Basel Switzerland
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| | - Gurdip Bhalay
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| |
Collapse
|
11
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
12
|
DeBerry JJ, Schwartz ES, Davis BM. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain 2014; 155:1280-1287. [PMID: 24704367 DOI: 10.1016/j.pain.2014.03.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/13/2014] [Accepted: 03/27/2014] [Indexed: 01/07/2023]
Abstract
Urinary bladder pain is a primary symptom associated with interstitial cystitis/painful bladder syndrome. We used systemic injections of cyclophosphamide (CYP), an alkylating antineoplastic agent, to induce cystitis and examine the roles of 2 channels previously demonstrated to be required for inflammatory visceral hyperalgesia: transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1). Injection of CYP (100 mg/kg, i.p.) every other day for 5 days was accompanied by bladder edema and urothelial ulceration, but without significant plasma extravasation or infiltration of neutrophils. Toluidine blue staining showed a significant increase in the number of degranulated bladder mast cells after CYP treatment. Despite this mild pathology, CYP-treated mice exhibited bladder hyperalgesia 1 day after the final injection that persisted 7 days later. Although many previous studies of visceral hyperalgesia have reported changes in dorsal root ganglion neuron TRPV1 expression and/or function, we found no change in bladder afferent TRPV1 expression or sensitivity on the basis of the percentage of bladder afferents responsive to capsaicin, including at submaximal concentrations. In contrast, the percentage of bladder afferents expressing functional TRPA1 protein (i.e., those responsive to mustard oil) increased ∼2.5-fold 1 day after CYP treatment, and remained significantly elevated 7 days later. Moreover, bladder hyperalgesia was reversed by acute treatment with the TRPA1 antagonist HC-030031 (300 mg/kg, i.p.). Our results indicate that CYP-induced bladder hyperalgesia can be induced without robust inflammation or changes in primary afferent TRPV1. However, significant changes were observed in TRPA1 expression, and blockade of TRPA1 alleviated CYP-induced bladder hyperalgesia.
Collapse
Affiliation(s)
- Jennifer J DeBerry
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
13
|
Cheng CL, de Groat WC. Effects of agonists for estrogen receptor α and β on ovariectomy-induced lower urinary tract dysfunction in the rat. Am J Physiol Renal Physiol 2013; 306:F181-7. [PMID: 24259512 DOI: 10.1152/ajprenal.00298.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The postmenopausal hypoestrogen status induces various lower urinary tract dysfunctions. Ovariectomized (OVX) rats exhibit voiding abnormalities, including increased postvoiding residual urine (PVR), decreased voiding efficiency (VE), and altered coordination between the detrusor and external urethral sphincter (EUS). Estradiol replacement partially normalizes voiding function in OVX rats. We determined if selective agonists for estrogen receptor (ER)α and/or ERβ can reverse lower urinary tract dysfunction in OVX rats. Cystometry and EUS electromyograms (EMGs) were recorded 6 wk after bilateral OVX in urethane-anesthetized female Sprague-Dawley rats. Animals received daily subcutaneous injections of selective ERα [propylpyrazole triol (PPT)] or ERβ [diarylpropionitrile (DPN)] agonists or vehicle for 1 wk starting on the fifth week after OVX. PPT (1 mg·kg(-1)·day(-1)) decreased PVR, improved VE, and shortened the EUS EMG active period (AP) during voiding. DPN (2 or 5 mg·kg(-1)·day(-1)) did not alter cystometric parameters or EUS EMG activity. Combined PPT + DPN treatment elicited changes in PVR, VE, and AP, similar to those induced by PPT alone, but also increased the EUS EMG silent period and volume threshold for triggering micturition. PPT increased uterine weight fourfold and decreased body weight by 11%. DPN increased uterine weight 30-45% but decreased body weight by 3-5%. Reduced voiding efficiency in OVX rats can be reversed by 1-wk drug treatment that selectively targets ERα and reduces AP during EUS bursting. Combined pharmacological activation of ERα and ERβ further enhanced EUS bursting by increasing the EUS EMG silent period and also facilitated bladder storage mechanisms by increasing the volume threshold.
Collapse
Affiliation(s)
- Chen-Li Cheng
- Div. of Urology, Dept. of Surgery, Taichung Veterans General Hospital, 1650, Taiwan Blvd. Section 4, Taichung, Taiwan 40705, Republic of China.
| | | |
Collapse
|
14
|
Kitagawa Y, Wada M, Kanehisa T, Miyai A, Usui K, Maekawa M, Sakata M, Matsuo A, Hayashi M, Matsushita M. JTS-653 Blocks Afferent Nerve Firing and Attenuates Bladder Overactivity Without Affecting Normal Voiding Function. J Urol 2013; 189:1137-46. [DOI: 10.1016/j.juro.2012.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Yoshihiro Kitagawa
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Masashi Wada
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Tomokazu Kanehisa
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Atsuko Miyai
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Kenji Usui
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Mariko Maekawa
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Masahiro Sakata
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Akira Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Mikio Hayashi
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | | |
Collapse
|
15
|
Abstract
The members of transient receptor potential (TRP) superfamily of cationic ion channels represent universal sensors, which convert multiple exogenous and endogenous chemical and physical stimuli into electrical and functional cellular responses. TRPs are widely distributed in many different tissues, and expression of numerous TRP types has been reported in lower urinary tract (LUT) tissues, neuronal fibers innervating the bladder and urethra, and epithelial and muscular layers of the bladder and urethral walls, where they are mainly involved in nociception and mechanosensory transduction. As such, they represent attractive targets for treating LUT disorders. Although information on the functional significance of many of the TRP proteins in the LUT remains very limited, compelling evidence has accumulated for a pivotal role of TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 in normal and pathological LUT function, mainly as sensors of stretch and chemical irritation. Further studies into these and other TRPs in the LUT will facilitate the development of improved therapeutic strategies to target these channels in LUT disorders.
Collapse
|
16
|
Andersson KE, Gratzke C, Hedlund P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int 2011; 106:1114-27. [PMID: 21156013 DOI: 10.1111/j.1464-410x.2010.09650.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
• The pathophysiology of lower urinary tract symptoms (LUTS), detrusor overactivity (DO), and the overactive bladder (OAB) syndrome is multifactorial and remains poorly understood. • The transient receptor potential (TRP) channel superfamily has been shown to be involved in nociception and mechanosensory transduction in various organ systems, and studies of the LUT have indicated that several TRP channels, including TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1, are expressed in the bladder, and may act as sensors of stretch and/or chemical irritation. • However, the roles of these individual channels for normal LUT function and in LUTS/DO/OAB, have not been established. • TRPV1 is the channel best investigated. It is widely distributed in LUT structures, but despite extensive information on morphology and function in animal models, the role of this channel in normal human bladder function is still controversial. Conversely, its role in the pathophysiology and treatment of particularly neurogenic DO is well established. • TRPV1 is co-expressed with TRPA1, and TRPA1 is known to be present on capsaicin-sensitive primary sensory neurones. Activation of this channel can induce DO in animal models. • TRPV4 is a Ca(2+)-permeable stretch-activated cation channel, involved in stretch-induced ATP release, and TRPV4-deficient mice exhibit abnormal frequencies of voiding and non-voiding contractions in cystometric experiments. • TRPM8 is a cool receptor expressed in the urothelium and suburothelial sensory fibres. It has been implicated in the bladder-cooling reflex and in idiopathic DO. • The occurrence of other members of the TRP superfamily in the LUT has been reported, but information on their effects on LUT functions is scarce. There seem to be several links between activation of different members of the TRP superfamily and LUTS/DO/OAB, and further exploration of the involvement of these channels in LUT function, normally and in dysfunction, may be rewarding.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | | | | |
Collapse
|
17
|
TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:637-65. [DOI: 10.1007/978-94-007-0265-3_34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Abstract
Much of the current research on lower urinary tract dysfunction is focused on afferent mechanisms. The main goals are to define and modulate the signaling pathways by which afferent information is generated and conveyed to the central nervous system. Alterations in bladder afferent mechanisms are a potential source of voiding dysfunction and an emerging source of drug targets. Even some established drug therapies such as muscarinic receptor antagonists, as well as emerging therapies such as botulinum toxin type-A, may act partly through afferent mechanisms. This review presents up-to-date findings on the localization of afferent fiber types within the bladder wall, afferent receptors and transmitters, and how these may communicate with the urothelium, interstitial cells, and detrusor smooth muscle to regulate micturition in normal and pathological bladders. Peripheral and central mechanisms of afferent sensitization and myogenic mechanisms that lead to detrusor overactivity, overactive bladder symptoms, and urgency sensations are also covered as well as new therapeutic approaches and new and established methods of measuring afferent activity.
Collapse
Affiliation(s)
- Anthony J Kanai
- University of Pittsburgh, School of Medicine, Pittsburgh, PA15261, USA.
| |
Collapse
|
19
|
Wein AJ. Voiding Function and Dysfunction, Bladder Physiology and Pharmacology, and Female Urology. J Urol 2010. [DOI: 10.1016/j.juro.2010.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
Several papers published in the last 2-3 years suggest that transient receptor potential vanilloid 4 (TRPV4) channels are candidates as mechanosensors in the urinary bladder (including human) and indicate that modulation (inhibition) of these channels could represent a novel therapy for overactive bladder and storage dysfunction. The effects of only agonists on the bladder have been described up to now, although some compounds endowed with antagonistic activity were reported in the last year. Therefore, it is to be hoped that the effects of these compounds in different models of bladder overactivity will be evaluated.
Collapse
Affiliation(s)
- Patrizia Angelico
- Pharmaceutical R&D Division, RECORDATI S.p.A. Via Civitali 1, 20148 Milano Italy
| | | |
Collapse
|
21
|
In brief. Nat Rev Urol 2009. [DOI: 10.1038/nrurol.2009.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|