1
|
Durna YM, Yigit O, Edizer DT, Durna Daştan S, Gul M, Ovali E. Hypoxia and Normoxia Preconditioned Olfactory Stem Cells Against Noise-Induced Hearing Loss. J Craniofac Surg 2024:00001665-990000000-01998. [PMID: 39356227 DOI: 10.1097/scs.0000000000010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE Noise-induced hearing loss is one of the leading causes of permanent hearing loss in the adult population. In this experimental study, the authors aimed to investigate the effectiveness of hypoxia and normoxia preconditioned olfactory stem cells against noise trauma. METHODS Twenty-seven female guinea pigs were enrolled. Two guinea pigs were sacrificed for harvesting olfactory tissue and 1 for examining the architecture of the normal cochlea. The remaining 24 guinea pigs were exposed to noise trauma for 1 day and then randomly divided into 3 groups: intracochlear injection of (i) normoxic olfactory stem cells, (ii) hypoxic olfactory stem cells, and (iii) physiological serum. Auditory brainstem response (ABR) measurement was performed before and 2 weeks after noise trauma and weekly for 3 weeks following intracochlear injection. Both click and 16 kHz tone-burst stimuli were used for detection of ABR. RESULTS No significant difference was noted between the groups before and 2 weeks after noise trauma. ABR thresholds detected after intracochlear injections were significantly higher in the control group compared with stem cell groups. However, no significant difference was detected between the stem cell groups. Fluourescence microscopy revealed better engraftment for hypoxic stem cells. Light and electron microscopy examinations were consistent with predominant degenerative findings in the control group, whereas normoxic group had more similar findings with normal cochlea compared with hypoxic group. CONCLUSION Olfactory stem cells were demonstrated to have the potential to have beneficial effects on noise trauma.
Collapse
Affiliation(s)
| | - Ozgur Yigit
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital
| | - Deniz T Edizer
- Department of Otorhinolaryngology, School of Medicine, Acibadem University, Istanbul
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya
| | - Ercument Ovali
- Acibadem Labcell Stem Cell Laboratory and Cord Blood Bank, Istanbul, Türkiye
| |
Collapse
|
2
|
Pontiggia L, Michalak-Micka K, Hürlimann N, Yosef HK, Böni R, Klar AS, Ehrbar M, Ochsenbein-Kölble N, Biedermann T, Moehrlen U. Raman spectroscopy analysis of human amniotic fluid cells from fetuses with myelomeningocele. Exp Cell Res 2024; 439:114048. [PMID: 38697275 DOI: 10.1016/j.yexcr.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Prenatal surgery for the treatment of spina bifida (myelomeningocele, MMC) significantly enhances the neurological prognosis of the patient. To ensure better protection of the spinal cord by large defects, the application of skin grafts produced with cells gained from the amniotic fluid is presently studied. In order to determine the most appropriate cells for this purpose, we tried to shed light on the extremely complex amniotic fluid cellular composition in healthy and MMC pregnancies. We exploited the potential of micro-Raman spectroscopy to analyse and characterize human amniotic fluid cells in total and putative (cKit/CD117-positive) stem cells of fetuses with MMC in comparison with amniotic fluid cells from healthy individuals, human fetal dermal fibroblasts and adult adipose derived stem cells. We found that (i) the differences between healthy and MMC amniocytes can be attributed to specific spectral regions involving collagen, lipids, sugars, tryptophan, aspartate, glutamate, and carotenoids, (ii) MMC amniotic fluid contains two particular cell populations which are absent or reduced in normal pregnancies, (iii) the cKit-negative healthy amniocyte subpopulation shares molecular features with human fetal fibroblasts. On the one hand we demonstrate a different amniotic fluid cellular composition in healthy and MMC pregnancies, on the other our work confirms micro-Raman spectroscopy to be a valuable tool for discriminating cell populations in unknown mixtures of cells.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Nadine Hürlimann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | | | - Roland Böni
- White House Center for Liposuction, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland
| | - Martin Ehrbar
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland; Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland; Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
3
|
Liu N, Cheng Y, Wang D, Guan H, Chen D, Zeng J, Lu D, Li Y, Yang Y, Luo Q, Zhu L, Jiang B, Sun X, Song B. Tissue-specific populations from amniotic fluid-derived mesenchymal stem cells manifest variant in vitro and in vivo properties. Hum Cell 2024; 37:408-419. [PMID: 38085460 PMCID: PMC10891244 DOI: 10.1007/s13577-023-01008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/03/2023] [Indexed: 02/24/2024]
Abstract
Amniotic fluid derived mesenchymal stem cells (AFMSCs), shed along the fetal development, exhibit superior multipotency and immunomodulatory properties compared to MSCs derived from other somatic tissues (e.g., bone marrow and fat). However, AFMSCs display heterogeneity due to source ambiguity, making them an underutilized stem cells source for translational clinical trials. Consequently, there is an urgent need to identify a method to purify the AFMSCs for clinical use. We found that the AFMSCs can be categorized into three distinct groups: kidney-specific AFMSCs (AFMSCs-K), lung-specific AFMSCs (AFMSCs-L), and AFMSCs with an undefined tissue source (AFMSCs-X). This classification was based on tissue-specific gene expression pattern of single cell colony. Additionally, we observed that AFMSCs-X, a minority population within the AFMSCs, exhibited the highest multipotency, proliferation, resistance to senescence and immuno-modulation. Our results showed that AFMSCs-X significantly improved survival rates and reduced bacterial colony forming units (CFU) in cecal ligation and puncture (CLP)-induced septic mice. Therefore, our study introduces a novel classification method to enhance the consistency and efficacy of AFMSCs. These subpopulations, originating from different tissue source, may offer a valuable and innovative resource of cells for regenerative medicine purposes.
Collapse
Affiliation(s)
- Nengqing Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yi Cheng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Hongmei Guan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Diyu Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Dian Lu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yuanshuai Li
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yinghong Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Qian Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Lifen Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Bing Song
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macco Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| |
Collapse
|
4
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Rosner M, Hengstschläger M. Amniotic Fluid Stem Cells: What They Are and What They Can Become. Curr Stem Cell Res Ther 2023; 18:7-16. [PMID: 34895127 DOI: 10.2174/1574888x16666211210143640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns. However, it is important to note that among the various fetal amniotic fluid cells, only c-Kit+ amniotic fluid stem cells represent a distinct entity showing the full spectrum of these features. Since amniotic fluid additionally contains numerous terminally differentiated cells and progenitor cells with more limited differentiation potentials, it is of highest relevance to always precisely describe the isolation procedure and characteristics of the used amniotic fluid-derived cell type. It is of obvious interest for scientists, clinicians, and patients alike to be able to rely on up-todate and concisely separated pictures of the utilities as well as the limitations of terminally differentiated amniotic fluid cells, amniotic fluid-derived progenitor cells, and c-Kit+ amniotic fluid stem cells, to drive these distinct cellular models towards as many individual clinical applications as possible.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
He Y, Guo L, Zheng L, Ren C, Wang T, Lu J. Clinical and molecular cytogenetic findings and pregnancy outcomes of fetuses with isochromosome Y. Mol Cytogenet 2022; 15:32. [PMID: 35927742 PMCID: PMC9351221 DOI: 10.1186/s13039-022-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mosaic forms and clinical phenotypes of fetuses with isochromosome Y are difficult to predict. Therefore, we summarized the cases of nine fetuses with isochromosome Y identified in prenatal diagnosis with a combination of molecular cytogenetic techniques, providing clinical evidence for prenatal genetic counseling. METHODS The prenatal diagnosis and pregnancy outcomes of nine fetuses with isochromosome Y were obtained by a retrospective analysis. Isochromosome Y was identified prenatally by different approaches, such as conventional karyotyping, chromosomal microarray analysis (CMA), quantitative fluorescent polymerase chain reaction (QF-PCR) and fluorescence in situ hybridization (FISH). RESULTS Seven idic(Y) fetuses and two i(Y) fetuses were identified. One fetus was complete for i(Y)(p10), and the rest with 45,X had mosaic forms. A break and fusion locus was identified in Yp11.3 in one fetus, in Yq11.22 in six fetuses and in Yp10 in two fetuses. The CMA results suggested that different deletions and duplications were found on the Y chromosome. The deletion fragments ranged from 4.7 Mb to the entire Y chromosome, and the duplication fragments ranged from 10.4 to 18.0 Mb. QF-PCR analysis suggested that the AZF region was intact in one fetus, four fetuses had AZFb+c+d deletion, one fetus had AZFa+b+c+d deletion, and one fetus had AZFc+d deletion. Finally, four healthy male neonates were delivered successfully, but the parents of the remaining five fetuses, including three healthy and two unhealthy fetuses, chose to terminate their pregnancies. CONCLUSION The fetus and neonate phenotype of prenatally detected isochromosome Y usually is that of a normally developed male, ascertained in the absence of other indicators of a fetal structural anomaly. Our study provides clinical reference materials for risk assessment and permits better prenatally counseling and preparation of parents facing the birth of isochromosome Y fetuses.
Collapse
Affiliation(s)
- Yiqun He
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Li Guo
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Laiping Zheng
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Congmian Ren
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Ting Wang
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Jian Lu
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China.
| |
Collapse
|
8
|
Panero AJ, Hirahara AM, Podesta L, Jamali AA, Andersen W, Smith AA. Allograft Tissues. ATLAS OF INTERVENTIONAL ORTHOPEDICS PROCEDURES 2022:89-101. [DOI: 10.1016/b978-0-323-75514-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Sagiv E, Portman MA. CD24 for Cardiovascular Researchers: A Key Molecule in Cardiac Immunology, Marker of Stem Cells and Target for Drug Development. J Pers Med 2021; 11:jpm11040260. [PMID: 33915986 PMCID: PMC8066264 DOI: 10.3390/jpm11040260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the membrane protein, CD24, and its emerging role in major disease processes, has made a huge leap forward in the past two decades. It appears to have various key roles in oncogenesis, tumor progression and metastasis, stem cell maintenance and immune modulation. First described in the 1980s as the homologous human protein to the mouse HSA (Heat Stable Antigen), it was reported as a surface marker in developing hematopoietic cell lines. The later discovery of its overexpression in a large number of human neoplasms, lead cancer researchers to discover its various active roles in critical checkpoints during cancer development and progression. Targeting CD24 in directed drug development showed promising results in cancer treatment. More recently, the chimeric CD24-Fc protein has shown exciting results in clinical trials as a specific modulator of auto-inflammatory syndromes. This report is aimed to summarize the relevant literature on CD24 and tie it together with recent advancements in cardiovascular research. We hypothesize that CD24 is a promising focus of research in the understanding of cardiovascular disease processes and the development of novel biological therapies.
Collapse
Affiliation(s)
- Eyal Sagiv
- Correspondence: ; Tel.: +1-206-987-6916; Fax: +1-206-987-3839
| | | |
Collapse
|
10
|
Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021; 274:119336. [PMID: 33716061 DOI: 10.1016/j.lfs.2021.119336] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to explore the therapeutic effects of amniotic fluid-derived extracellular vesicles including exosomes (AF-Exos) on the recovery of sperm production capacity in a rat model of azoospermia. MAIN METHODS The non-obstructive azoospermia (NOA) was induced in rats using intratesticular administration of Busulfan. Azoospermia was confirmed by testis histology. AF-Exos samples containing 10 or 40 μg exosomal proteins were injected into testicular tissue of NOA rats. After two months, the recovery of spermatogenesis was monitored via histopathological staining, spermiogram, and hormonal analysis. Immunohistochemistry staining for OCT-3/4 was used to identify of spermatogonial progenitors. The expression of DAZL and VASA, was also measured. KEY FINDINGS AF-Exos exhibited sphere-shaped morphology with the mean diameter and zeta potential of 50 ± 7.521 nm and -7.16 mV. Immunoblots revealed that isolated nanoparticles were CD63, CD9, and CD81 positive. Histopathological evaluation revealed that spermatogenesis was improved significantly in NOA rats after AF-Exos injection. Data showed that the sperm parameters and spermatogenesis index were significantly improved after AF-Exos injection compared to azoospermic groups. OCT-3/4+ cells were increased in NOA rats after AF-Exos injection, showing the restoration of spermatogenesis. In the present study, both doses of exosome (10 and 40 μg) restored the testicular function of NOA rats. DAZL and VASA were increased significantly in animals who received 40 μg exosomal protein compared to azoospermic rats. Except in a high dose of AF-Exos (40 μg) for Testosterone and FSH, no statistically significant differences were found regarding hormones post-exosome injection. SIGNIFICANCE Our study demonstrated that AF-Exos regenerated spermatogenesis and improved sperm quality in NOA rats.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran.
| | - Reza Rahbarghazi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran.
| |
Collapse
|
11
|
The Amniotic Fluid Cell-Free Transcriptome Provides Novel Information about Fetal Development and Placental Cellular Dynamics. Int J Mol Sci 2021; 22:ijms22052612. [PMID: 33807645 PMCID: PMC7961801 DOI: 10.3390/ijms22052612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The amniotic fluid (AF) is a complex biofluid that reflects fetal well-being during development. AF con be divided into two fractions, the supernatant and amniocytes. The supernatant contains cell-free components, including placenta-derived microparticles, protein, cell-free fetal DNA, and cell-free fetal RNA from the fetus. Cell-free mRNA (cfRNA) analysis holds a special position among high-throughput analyses, such as transcriptomics, proteomics, and metabolomics, owing to its ease of profiling. The AF cell-free transcriptome differs from the amniocyte transcriptome and alters with the progression of pregnancy and is often associated with the development of various organ systems including the fetal lung, skin, brain, pancreas, adrenal gland, gastrointestinal system, etc. The AF cell-free transcriptome is affected not only by normal physiologies, such as fetal sex, gestational age, and fetal maturity, but also by pathologic mechanisms such as maternal obesity, and genetic syndromes (Down, Edward, Turner, etc.), as well as pregnancy complications (preeclampsia, intrauterine growth restriction, preterm birth, etc.). cfRNA in the amniotic fluid originates from the placenta and fetal organs directly contacting the amniotic fluid as well as from the fetal plasma across the placenta. The AF transcriptome may reflect the fetal and placental development and therefore aid in the monitoring of normal and abnormal development.
Collapse
|
12
|
Angeletti A, Cantarelli C, Petrosyan A, Andrighetto S, Budge K, D'Agati VD, Hartzell S, Malvi D, Donadei C, Thurman JM, Galešić-Ljubanović D, He JC, Xiao W, Campbell KN, Wong J, Fischman C, Manrique J, Zaza G, Fiaccadori E, La Manna G, Fribourg M, Leventhal J, Da Sacco S, Perin L, Heeger PS, Cravedi P. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J Exp Med 2021; 217:151976. [PMID: 32717081 PMCID: PMC7478737 DOI: 10.1084/jem.20191699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Kidney glomerulosclerosis commonly progresses to end-stage kidney failure, but pathogenic mechanisms are still poorly understood. Here, we show that podocyte expression of decay-accelerating factor (DAF/CD55), a complement C3 convertase regulator, crucially controls disease in murine models of adriamycin (ADR)-induced focal and segmental glomerulosclerosis (FSGS) and streptozotocin (STZ)-induced diabetic glomerulosclerosis. ADR induces enzymatic cleavage of DAF from podocyte surfaces, leading to complement activation. C3 deficiency or prevention of C3a receptor (C3aR) signaling abrogates disease despite DAF deficiency, confirming complement dependence. Mechanistic studies show that C3a/C3aR ligations on podocytes initiate an autocrine IL-1β/IL-1R1 signaling loop that reduces nephrin expression, causing actin cytoskeleton rearrangement. Uncoupling IL-1β/IL-1R1 signaling prevents disease, providing a causal link. Glomeruli of patients with FSGS lack DAF and stain positive for C3d, and urinary C3a positively correlates with the degree of proteinuria. Together, our data indicate that the development and progression of glomerulosclerosis involve loss of podocyte DAF, triggering local, complement-dependent, IL-1β–induced podocyte injury, potentially identifying new therapeutic targets.
Collapse
Affiliation(s)
- Andrea Angeletti
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Sofia Andrighetto
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Kelly Budge
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Susan Hartzell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deborah Malvi
- "F. Addarii" Institute of Oncology and Transplantation Pathology, Bologna University, Bologna, Italy
| | - Chiara Donadei
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - John Cijiang He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wenzhen Xiao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kirk N Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jenny Wong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Clara Fischman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Gaetano La Manna
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Miguel Fribourg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Peter S Heeger
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Abedini A, Zhu YO, Chatterjee S, Halasz G, Devalaraja-Narashimha K, Shrestha R, S. Balzer M, Park J, Zhou T, Ma Z, Sullivan KM, Hu H, Sheng X, Liu H, Wei Y, Boustany-Kari CM, Patel U, Almaani S, Palmer M, Townsend R, Blady S, Hogan J, Morton L, Susztak K. Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney. J Am Soc Nephrol 2021; 32:614-627. [PMID: 33531352 PMCID: PMC7920183 DOI: 10.1681/asn.2020050757] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microscopic analysis of urine sediment is probably the most commonly used diagnostic procedure in nephrology. The urinary cells, however, have not yet undergone careful unbiased characterization. METHODS Single-cell transcriptomic analysis was performed on 17 urine samples obtained from five subjects at two different occasions, using both spot and 24-hour urine collection. A pooled urine sample from multiple healthy individuals served as a reference control. In total 23,082 cells were analyzed. Urinary cells were compared with human kidney and human bladder datasets to understand similarities and differences among the observed cell types. RESULTS Almost all kidney cell types can be identified in urine, such as podocyte, proximal tubule, loop of Henle, and collecting duct, in addition to macrophages, lymphocytes, and bladder cells. The urinary cell-type composition was subject specific and reasonably stable using different collection methods and over time. Urinary cells clustered with kidney and bladder cells, such as urinary podocytes with kidney podocytes, and principal cells of the kidney and urine, indicating their similarities in gene expression. CONCLUSIONS A reference dataset for cells in human urine was generated. Single-cell transcriptomics enables detection and quantification of almost all types of cells in the kidney and urinary tract.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yuan O. Zhu
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Shatakshee Chatterjee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gabor Halasz
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael S. Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tong Zhou
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katie Marie Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yi Wei
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Uptal Patel
- Inflammation and Respiratory Therapeutics, Gilead Sciences Inc., Foster City, California
| | - Salem Almaani
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Raymond Townsend
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shira Blady
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Hogan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - The TRIDENT Study Investigators,*
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
- Cardiometabolic Disease Research Department, Boehringer Ingelheim, Ridgefield, Connecticut
- Inflammation and Respiratory Therapeutics, Gilead Sciences Inc., Foster City, California
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lori Morton
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
De Coppi P, Grikscheit TC. Regeneration and tissue engineering: How pediatric surgeons contributed to building a new field to change the future of medicine. Semin Pediatr Surg 2021; 30:151018. [PMID: 33648705 DOI: 10.1016/j.sempedsurg.2021.151018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors highlight the speciality field of regenerative medicine and its application to health care. Academic pediatric surgeons have been the early pioneers here sharing exciting discovery and the opportunities for research enterprise. An overview of current and future therapeutics is provided for the reader.
Collapse
Affiliation(s)
- Paolo De Coppi
- Surgery Unit, Great Ormond Street Institute of Child Health, University College London, Great Ormond St. Hospital for Children, 30 Guilford St., London WC1N 1EH, United Kingdom.
| | - T C Grikscheit
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
Casciaro F, Zia S, Forcato M, Zavatti M, Beretti F, Bertucci E, Zattoni A, Reschiglian P, Alviano F, Bonsi L, Follo MY, Demaria M, Roda B, Maraldi T. Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations. Cells 2021; 10:cells10010158. [PMID: 33467440 PMCID: PMC7830644 DOI: 10.3390/cells10010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector® (Stem Sel ltd.) is a new technology that exploits the Non-Equilibrium Earth Gravity Assisted Field Flow Fractionation principles to characterize and label-free sort stem cells based on their solely physical characteristics without any manipulation. Viable cells are collected and used for further studies or direct applications. In order to understand the intrapopulation heterogeneity, various fractions of hAFSCs were isolated using the Celector® profile and live imaging feature. The gene expression profile of each fraction was analysed using whole-transcriptome sequencing (RNAseq). Gene Set Enrichment Analysis identified significant differential expression in pathways related to Stemness, DNA repair, E2F targets, G2M checkpoint, hypoxia, EM transition, mTORC1 signalling, Unfold Protein Response and p53 signalling. These differences were validated by RT-PCR, immunofluorescence and differentiation assays. Interestingly, the different fractions showed distinct and unique stemness properties. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting certain cellular fractions with the highest potential to use in regenerative medicine.
Collapse
Affiliation(s)
- Francesca Casciaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy;
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, 9713 Groningen, The Netherlands;
| | | | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, 41124 Modena, Italy;
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40125 Bologna, Italy; (A.Z.); (P.R.)
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40125 Bologna, Italy; (A.Z.); (P.R.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40125 Bologna, Italy; (F.A.); (L.B.)
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40125 Bologna, Italy; (F.A.); (L.B.)
| | - Matilde Yung Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy;
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, 9713 Groningen, The Netherlands;
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40125 Bologna, Italy; (A.Z.); (P.R.)
- Correspondence: ; Tel.: +39-051-209-9450
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
| |
Collapse
|
16
|
Gohi BFCA, Liu XY, Zeng HY, Xu S, Ake KMH, Cao XJ, Zou KM, Namulondo S. Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell Biosci 2020; 10:2. [PMID: 31921407 PMCID: PMC6945441 DOI: 10.1186/s13578-019-0367-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
A two-stage method of obtaining viable human amniotic stem cells (hAMSCs) in large-scale is described. First, human amniotic stem cells are isolated via dual enzyme (collagenase II and DNAase I) digestion. Next, relying on a culture of the cells from porous chitosan-based microspheres in vitro, high purity hAMSCs are obtained in large-scale. Dual enzymatic (collagenase II and DNase I) digestion provides a primary cell culture and first subculture with a lower contamination rate, higher purity and a larger number of isolated cells. The obtained hAMSCs were seeded onto chitosan microspheres (CM), gelatin-chitosan microspheres (GCM) and collagen-chitosan microspheres (CCM) to produce large numbers of hAMSCs for clinical trials. Growth activity measurement and differentiation essays of hAMSCs were realized. Within 2 weeks of culturing, GCMs achieved over 1.28 ± 0.06 × 107 hAMSCs whereas CCMs and CMs achieved 7.86 ± 0.11 × 106 and 1.98 ± 0.86 × 106 respectively within this time. In conclusion, hAMSCs showed excellent attachment and viability on GCM-chitosan microspheres, matching the hAMSCs' normal culture medium. Therefore, dual enzyme (collagenase II and DNAase I) digestion may be a more useful isolation process and culture of hAMSCs on porous GCM in vitro as an ideal environment for the large-scale expansion of highly functional hAMSCs for eventual use in stem cell-based therapy.
Collapse
Affiliation(s)
- Bi Foua Claude Alain Gohi
- Biology and Chemical Engineering School, Panzhihua University, Panzhihua, 617000 Sichuan People’s Republic of China
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Xue-Ying Liu
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green, Zhuzhou, China
- Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 Hunan China
| | - Hong-Yan Zeng
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheng Xu
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kouassi Marius Honore Ake
- Faculty of Business Administration, Laval University, Pavillon Palasis-Prince, 2325 Rue de la Terrasse, G1V 0A6 Quebec City, Canada
| | - Xiao-Ju Cao
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kai-Min Zou
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheila Namulondo
- Institute of Comparative Literature and World Literature, College of Literature and Journalism, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| |
Collapse
|
17
|
Molecular characterization of bovine amniotic fluid derived stem cells with an underlying focus on their comparative neuronal potential at different passages. Ann Anat 2019; 228:151452. [PMID: 31778790 DOI: 10.1016/j.aanat.2019.151452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND The excellence in the field of stem cell therapy demands alternative and more convenient stem cells for potential applications. Researchers have opted for least invasive and broadly multipotent cells with minimum ethical concerns. Bovine amniotic fluid derived mesenchymal stem cells (BAF-MSCs) due to their ease of collection and owing similar gestational length to that of human could be presumed as an attractive large animal model for biomedical and biotechnology research. METHODS Bovine amniotic fluid derived stem cells were isolated from abattoir based samples and characterized for epithelial, neuronal, mesenchymal and pluripotent markers by qPCR and immunofluorescence studies at P1, P3, P5 and P7 alongside population doubling time, growth curve and multilineage differentiation studies. RESULTS The cells were explored for unique expression of Sox2, which was observed to be up regulated with increase in passage number and Nestin was found to be downregulated during further passaging of mesenchymal cells in this study. The cells also co-expressed Oct ¾ at initial passages which diminished within further passages. Evidence regarding diversity and heterogeneity in different cell population in amniotic fluid was recorded by positive expression of epithelial cell markers like pan Cytokeratin and p63 during early passages. The study suggested that cells with higher expression of Sox2 generated comparatively larger neurospheres with comparative strong expression of Sox2 and Nestin by immunofluorescence staining and qPCR analysis. Besides BAF-MSCs derived neurospheres were also shown to express pro-neuronal markers like ß-III Tubulin, GAP43 and ASCL-1. CONCLUSIONS This study explores and characterizes BAF-MSCs for their multipotent and neurogenic potentials and their use for clinical applications, though more detailed studies are needed to determine the exact pathways linked with neurogenic capacities of these cells and their morphological assessments at different gestational ages in bovines. The knowledge from the bovine model after detailed studies, proven safety and efficacy could also be used to understand substitutive strategies to investigate MSCs physiology at different trimesters and potential application of these cells for human and veterinary regenerative medicine provided the animal ethics are carefully monitored.
Collapse
|
18
|
Basler M, Pontiggia L, Biedermann T, Reichmann E, Meuli M, Mazzone L. Bioengineering of Fetal Skin: Differentiation of Amniotic Fluid Stem Cells into Keratinocytes. Fetal Diagn Ther 2019; 47:198-204. [PMID: 31509837 DOI: 10.1159/000502181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Open fetal spina bifida repair has become a novel clinical standard of care. In very large spina bifida lesions, the skin defect cannot be covered primarily, asking for alternative solutions. We hypothesize that amniotic fluid stem cells (AFSC) could be differentiated into keratinocytes that could then be used to bioengineer autologous skin usable for in utero back coverage. METHODS To obtain human AFSC, amniotic fluid samples obtained from fetal surgeries were subjected to immunoselection for c-kit. C-kit-positive samples and controls were cultured with the additives morphogenetic protein 4 and vitamin C to induce differentiation towards keratinocytes. This process was monitored by measuring the expression of K8 and K14 via immunohistochemical staining, flow cytometry, and polymerase chain reaction. RESULTS After immunoselection and expansion, most cells were positive for K8, but none for K14. After completion of the differentiation protocol, cell colonies with keratinocyte-like appearance could be observed, but cells remained positive for K8 and negative for K14, indicating failed differentiation into keratinocytes. CONCLUSIONS Culturing of keratinocyte-like cells from AFSC, harvested intraoperatively, was not feasible in this setting. The reasons for failure must be investigated and eliminated, as bioengineering of fetal skin for clinical use during fetal surgery for spina bifida remains an attractive goal.
Collapse
Affiliation(s)
- Michelle Basler
- Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Luca Pontiggia
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Meuli
- Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland.,Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland.,Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland.,Spina Bifida Academy, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Luca Mazzone
- Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland, .,Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland, .,Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland, .,Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland, .,Spina Bifida Academy, University Children's Hospital Zurich, Zurich, Switzerland, .,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland,
| |
Collapse
|
19
|
Ao Z, Li Z, Wang X, Zhao C, Gan Y, Wu X, Zeng F, Shi J, Gu T, Hong L, Zheng E, Liu D, Xu Z, Wu Z, Cai G. Identification of amniotic fluid metabolomic and placental transcriptomic changes associated with abnormal development of cloned pig fetuses. Mol Reprod Dev 2019; 86:278-291. [PMID: 30618166 DOI: 10.1002/mrd.23102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
Piglets cloned by somatic cell nuclear transfer (SCNT) show a high incidence of malformations and a high death rate during the perinatal period. To investigate the underlying mechanisms for abnormal development of cloned pig fetuses, we compared body weight, amniotic fluid (AF) metabolome, and placental transcriptome between SCNT- and artificial insemination (AI)-derived pig fetuses. Results showed that the body weight of SCNT pig fetuses was significantly lower than that of AI pig fetuses. The identified differential metabolites between the two groups of AF were mainly involved in bile acids and steroid hormones. The levels of all detected bile acids in SCNT AF were significantly higher than those in AI AF. The increase in the AF bile acid levels in SCNT fetuses was linked with the downregulation of placental bile acid transporter expression and the abnormal development of placental folds (PFs), both of which negatively affected the transfer of bile acids from AF across the placenta into the mother's circulation. Alteration in the AF steroid hormone levels in cloned fetuses was associated with decreased expression of enzymes responsible for steroid hormone biosynthesis in the placenta. In conclusion, cloned pig fetuses undergo abnormal intrauterine development associated with alteration of bile acid and steroid hormone levels in AF, which may be due to the poor development of PFs and the erroneous expression of bile acid transporters and enzymes responsible for steroid hormone biosynthesis in the placentas.
Collapse
Affiliation(s)
- Zheng Ao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xingwang Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chengfa Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanmin Gan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fang Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junsong Shi
- Wen's Research Institute, Guangdong Wen's Foodstuff Group Ltd., Yunfu, Guangdong, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Minocha E, Chaturvedi CP, Nityanand S. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. In Vitro Cell Dev Biol Anim 2019; 55:138-147. [PMID: 30645697 DOI: 10.1007/s11626-018-00315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to investigate the renogenic characteristics of amniotic fluid stem cells (AFSCs) and to evaluate their in vitro differentiation potential into renal proximal tubular-like cells and juxtaglomerular-like cells. We culture expanded AFSCs derived from rat amniotic fluid. The AFSCs grew as adherent spindle-shaped cells and expressed mesenchymal markers CD73, CD90, and CD105 as well as renal progenitor markers WT1, PAX2, SIX2, SALL1, and CITED1. AFSCs exhibited an in vitro differentiation potential into renal proximal tubular epithelial-like cells, as shown by the upregulation of expression of proximal tubular cell-specific genes like AQP1, CD13, PEPT1, GLUT5, OAT1, and OCT1. AFSCs could also be differentiated into juxtaglomerular-like cells as demonstrated by the expression of renin and α-SMA. The AFSCs also expressed pluripotency markers OCT4, NANOG, and SOX2 and could be induced into embryoid bodies with differentiation into all the three germ layers, highlighting the pluripotent nature of these cells. Our results show that amniotic fluid contains a population of primitive stem cells that express renal-progenitor markers and also possess the propensity to differentiate into two renal lineage cell types and, thus, may have a therapeutic potential in renal regenerative medicine.
Collapse
Affiliation(s)
- Ekta Minocha
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
21
|
Abbaspanah B, Momeni M, Ebrahimi M, Mousavi SH. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med 2018; 13:595-610. [PMID: 30129876 DOI: 10.2217/rme-2018-0019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Perinatal tissues possess numerous types of stem (stromal) cells, which are considered effective candidates for cell therapy. These tissues possess common characteristics of both embryonic and adult stem cells, and cell therapists have begun to use perinatal stem cells to treat several diseases. Despite their benefits, these cells are considered biological waste and usually discarded after delivery. This review highlights the characteristics and potential clinical applications in regenerative medicine of perinatal stem cell sources - cord blood hematopoietic stem cells, umbilical cord mesenchymal stem cells, amniotic membrane stem cells, amniotic fluid stem cells, amniotic epithelial cells and chorionic mesenchymal stem cells.
Collapse
Affiliation(s)
| | - Maryam Momeni
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Da Sacco S, Perin L, Sedrakyan S. Amniotic fluid cells: current progress and emerging challenges in renal regeneration. Pediatr Nephrol 2018. [PMID: 28620747 DOI: 10.1007/s00467-017-3711-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA.
| |
Collapse
|
23
|
Bajek A, Olkowska J, Walentowicz-Sadłecka M, Sadłecki P, Grabiec M, Porowińska D, Drewa T, Roszkowski K. Human Adipose-Derived and Amniotic Fluid-Derived Stem Cells: A Preliminary In Vitro Study Comparing Myogenic Differentiation Capability. Med Sci Monit 2018; 24:1733-1741. [PMID: 29573382 PMCID: PMC5882157 DOI: 10.12659/msm.905826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Around the world, disabilities due to musculoskeletal disorders have increased and are a major health problem worldwide. In recent years, stem cells have been considered to be powerful tools for musculoskeletal tissue engineering. Human adipose-derived stem cells (hADSCs) and amniotic fluid-derived stem cells (hAFSCs) undergo typical differentiation process into cells of mesodermal origin and can be used to treat muscular system diseases. The aim of the present study was to compare the biological characteristic of stem cells isolated from different human tissues (adipose tissue and amniotic fluid) with respect to myogenic capacity and skeletal and smooth muscle differentiation under the same conditions. Material/Methods hAFSCs and hADSCs were isolated during standard medical procedures and widely characterized by specific markers expression and differentiation potential. Both cell types were induced toward smooth and striated muscles differentiation, which was assessed with the use of molecular techniques. Results For phenotypic characterization, both stem cell types were assessed for the expression of OCT-4, SOX2, CD34, CD44, CD45, and CD90. Muscle-specific markers appeared in both stem cell types, but the proportion of positive cells showed differences depending on the experimental conditions used and the source from which the stem cells were isolated. Conclusions In this study, we demonstrated that hADSCs and hAFSCs have different capability of differentiation toward both muscle types. However, hADSCs seem to be a better source for myogenic protocols and can promote skeletal and smooth muscle regeneration through either direct muscle differentiation or by paracrine mechanism.
Collapse
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Olkowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Paweł Sadłecki
- Department of Obstetrics and Gynecology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Dorota Porowińska
- Department of Biochemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Drewa
- Department of Tissue Engineering, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Krzysztof Roszkowski
- Department of Oncology, Radiotherapy and Oncological Gynecology, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
24
|
Pei W, Lu T, Wang K, Ji M, Zhang S, Chen F, Li L, Li X, Guan W. Biological characterization and pluripotent identification of ovine amniotic fluid stem cells. Cytotechnology 2018; 70:1009-1021. [PMID: 29502286 DOI: 10.1007/s10616-017-0115-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stem cells derived from amniotic fluid have become one of the most potential stem cell source for cell-based therapy for the reason they can be harvested at low cost and without ethical problems. Here, we obtained amniotic fluid stem cells (AFSCs) from ovine amniotic fluid and studied the expansion capacity, cell markers expression, karyotype, and multilineage differentiation ability. In our work, AFSCs were subcultured to passage 62. The cell markers, CD29, CD44, CD73 and OCT4 which analyzed by RT-PCR were positive; CD44, CD73, CD90, CD105, NANOG, OCT4 analyzed by immunofluorescence and flow cytometry were also positive. The growth curves of different passages were all typically sigmoidal. The different passages cells took on a normal karyotype. In addition, AFSCs were successfully induced to differentiate into adipocytes, osteoblasts and chondrocytes. The results suggested that the AFSCs isolated from ovine maintained normal biological characteristics and their multilineage differentiation potential provides many potential applications in cell-based therapies and tissue engineering.
Collapse
Affiliation(s)
- Wenhua Pei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China
| | - Tengfei Lu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China
| | - Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, China
| | - Meng Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China
| | - Shuang Zhang
- Research Center for Sports Scientific Experiment, Harbin Sport University, Harbin, People's Republic of China
| | - Fenghao Chen
- College of Human Movement Science, Harbin Sport University, Harbin, 150040, China
| | - Lu Li
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, China
| | - Xiangchen Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China.
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West road, haidian district, Beijing, 100193, China.
| |
Collapse
|
25
|
Daga S, Baldassarri M, Lo Rizzo C, Fallerini C, Imperatore V, Longo I, Frullanti E, Landucci E, Massella L, Pecoraro C, Garosi G, Ariani F, Mencarelli MA, Mari F, Renieri A, Pinto AM. Urine-derived podocytes-lineage cells: A promising tool for precision medicine in Alport Syndrome. Hum Mutat 2017; 39:302-314. [PMID: 29098738 DOI: 10.1002/humu.23364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/11/2022]
Abstract
Alport Syndrome (ATS) is a rare genetic disorder caused by collagen IV genes mutations, leading to glomerular basement membrane damage up to end-stage renal disease. Podocytes, the main component of the glomerular structure, are the only cells able to produce all the three collagens IV alpha chains associated with ATS and thus, they are key players in ATS pathogenesis. However, podocytes-targeted therapeutic strategies have been hampered by the difficulty of non-invasively isolating them and transcripts-based diagnostic approaches are complicated by the inaccessibility of other COL4 chains-expressing cells. We firstly isolated podocyte-lineage cells from ATS patients' urine samples, in a non-invasive way. RT-PCR analysis revealed COL4A3, COL4A4, and COL4A5 expression. Transcripts analysis on RNA extracted from patient's urine derived podocyte-lineage cells allowed defining the pathogenic role of intronic variants, namely one mutation in COL4A3 (c.3882+5G>A), three mutations in COL4A4 (c.1623+2T>A, c.3699_3706+1del, c.2545+143T>A), and one mutation in COL4A5 (c.3454+2T>C). Therefore, our cellular model represents a novel tool, essential to unequivocally prove the effect of spliceogenic intronic variants on transcripts expressed exclusively at a glomerular level. This process is a key step for providing the patient with a definite molecular diagnosis and with a proper recurrence risk. The established system also opens up the possibility of testing personalized therapeutic approaches on disease-relevant cells.
Collapse
Affiliation(s)
- Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Lo Rizzo
- Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | - Ilaria Longo
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carmine Pecoraro
- Pediatric Nephrology Unit, Santobono-Pausilipon Hospital, Naples, Italy
| | - Guido Garosi
- Nephrology, Dialysis and Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Medical Genetics, University of Siena, Siena, Italy.,Medical Genetics, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
26
|
Lesage F, Zia S, Jiménez J, Deprest J, Toelen J. The amniotic fluid as a source of mesenchymal stem cells with lung-specific characteristics. Prenat Diagn 2017; 37:1093-1099. [PMID: 28842991 DOI: 10.1002/pd.5147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 11/11/2022]
Abstract
The amniotic fluid is a clinically accessible source of mesenchymal stem cells (AF-MSC) during gestation, which enables autologous cellular therapy for perinatal disorders. The origin of AF-MSC remains elusive: renal and neuronal progenitors have been isolated from the AF-MSC pool, yet no cells with pulmonary characteristics. We analyzed gene expression of pulmonary and renal markers of 212 clonal lines of AF-MSC isolated from amniocentesis samples. AF-MSC were cultured on dishes coated with extracellular matrix (ECM) proteins from decellularized fetal rabbit lungs. In vivo differentiation potential of AF-MSC that expressed markers suggestive of lung fate was tested by renal subcapsular injections in immunodeficient mice. Of all the isolated AF-MSC lines, 26% were positive for lung endodermal markers FOXA2 and NKX2.1 and lacked expression of renal markers (KSP). This AF-MSC subpopulation expressed other lung-specific factors, including IRX1, P63, FOXP2, LGR6, SFTC, and PDPN. Pulmonary marker expression decreased over passages when AF-MSC were cultured under conventional conditions, yet remained more stable when culturing the cells on lung ECM-coated dishes. Renal subcapsular injection of AF-MSC expressing lung-specific markers resulted in engrafted cells that were SPTB positive. These data suggest that FOXA2+/NKX2.1+/KSP- AF-MSC lines have lung characteristics which are supported by culture on lung ECM-coated dishes.
Collapse
Affiliation(s)
- Flore Lesage
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Silvia Zia
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| | - Julio Jiménez
- Department of Obstetrics and Gynaecology, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jan Deprest
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium.,University Hospitals Leuven, Department of Obstetrics and Gynecology, Leuven, Belgium.,Research Department of Maternal Fetal Medicine, UCL Institute for Women's Health, University College London, London, UK
| | - Jaan Toelen
- KU Leuven, Department of Development and Regeneration, Leuven, Belgium.,University Hospitals Leuven, Department of Pediatrics, Leuven, Belgium
| |
Collapse
|
27
|
Kehl D, Generali M, Görtz S, Geering D, Slamecka J, Hoerstrup SP, Bleul U, Weber B. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells. Stem Cells Dev 2017; 26:1424-1437. [DOI: 10.1089/scd.2016.0352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Debora Kehl
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Sabrina Görtz
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Diego Geering
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Jaroslav Slamecka
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department of Farm Animals, Vetsuisse-Faculty University of Zurich, Zurich, Switzerland
| | - Benedikt Weber
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Huang J, Mo J, Zhao G, Lin Q, Wei G, Deng W, Chen D, Yu B. Application of the amniotic fluid metabolome to the study of fetal malformations, using Down syndrome as a specific model. Mol Med Rep 2017; 16:7405-7415. [PMID: 28944830 PMCID: PMC5865872 DOI: 10.3892/mmr.2017.7507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/16/2017] [Indexed: 01/22/2023] Open
Abstract
Although monitoring and diagnosis of fetal diseases in utero remains a challenge, metabolomics may provide an additional tool to study the etiology and pathophysiology of fetal diseases at a functional level. In order to explore specific markers of fetal disease, metabolites were analyzed in two separate sets of experiments using amniotic fluid from fetuses with Down syndrome (DS) as a model. Both sets included 10–15 pairs of controls and cases, and amniotic fluid samples were processed separately; metabolomic fingerprinting was then conducted using UPLC-MS. Significantly altered metabolites involved in respective metabolic pathways were compared in the two experimental sets. In addition, significantly altered metabolic pathways were further compared with the genomic characters of the DS fetuses. The data suggested that metabolic profiles varied across different experiments, however alterations in the 4 metabolic pathways of the porphyrin metabolism, bile acid metabolism, hormone metabolism and amino acid metabolism, were validated for the two experimental sets. Significant changes in metabolites of coproporphyrin III, glycocholic acid, taurochenodeoxycholate, taurocholate, hydrocortisone, pregnenolone sulfate, L-histidine, L-arginine, L-glutamate and L-glutamine were further confirmed. Analysis of these metabolic alterations was linked to aberrant gene expression at chromosome 21 of the DS fetus. The decrease in coproporphyrin III in the DS fetus may portend abnormal erythropoiesis, and unbalanced glutamine-glutamate concentration was observed to be closely associated with abnormal brain development in the DS fetus. Therefore, alterations in amniotic fluid metabolites may provide important clues to understanding the etiology of fetal disease and help to develop diagnostic testing for clinical applications.
Collapse
Affiliation(s)
- Jun Huang
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jinhua Mo
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Guili Zhao
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Qiyin Lin
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Guanhui Wei
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Weinan Deng
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Dunjin Chen
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Bolan Yu
- Key Laboratory For Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
29
|
Kovac M, Vasicek J, Kulikova B, Bauer M, Curlej J, Balazi A, Chrenek P. Different RNA and protein expression of surface markers in rabbit amniotic fluid-derived mesenchymal stem cells. Biotechnol Prog 2017; 33:1601-1613. [DOI: 10.1002/btpr.2519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michal Kovac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Jaromir Vasicek
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Research Centre AgroBioTech, Slovak University of Agriculture; Nitra Slovak Republic
| | - Barbora Kulikova
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Miroslav Bauer
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
- Faculty of Natural Sciences; Constantine the Philosopher University; Nitra Slovak republic
| | - Jozef Curlej
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
| | - Andrej Balazi
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| | - Peter Chrenek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture; Nitra Slovak Republic
- Research Inst. for Animal Production, National Agricultural and Food Centre; Lužianky Slovak Republic
| |
Collapse
|
30
|
Borlongan CV. Amniotic fluid as a source of engraftable stem cells. Brain Circ 2017; 3:175-179. [PMID: 30276321 PMCID: PMC6057696 DOI: 10.4103/bc.bc_24_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023] Open
Abstract
The ability of stem cells to differentiate into various lineages has made them powerful tools of regenerative medicine and applicable to multiple human diseases. Of particular interest, amniotic fluid-derived stem cells (AFSC) have been characterized to express both adult and embryonic cell markers, indicating them as cells within an intermediate stage between embryonic and adult phenotype. AFSC can differentiate into cells of all three germ layers, including hepatic, myogenic, osteogenic, and neurogenic cell types. Furthermore, AFSC have minimal replicative senescence, retaining the ability to divide effectively for over 250 doublings. These facts indicate that amniotic fluid may exist as a promising donor source of stem cells for the treatment of multiple clinically relevant conditions. Of particular interest is the convenience of harvesting stem cells from the amniotic fluid stem for the treatment of newborns, as well as for banking or cryopreserving purposes to be used at a later date. Importantly, the promise of amniotic fluid as a source of stem cells merits ongoing research into their potential therapeutic applications. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| |
Collapse
|
31
|
Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, Thilakavathy K, Nordin N. Highly potent stem cells from full-term amniotic fluid: A realistic perspective. Reprod Biol 2017; 17:9-18. [PMID: 28262444 DOI: 10.1016/j.repbio.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/31/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.
Collapse
Affiliation(s)
- Adila A Hamid
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Department of Physiology, Faculty of Medicine, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| | - Muhammad Khair Joharry
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Hoo Mun-Fun
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Siti Nurusaadah Hamzah
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Universiti Putra Malaysia, Malaysia.
| | - Mohd Nazri Yazid
- Department of Obstetrics and Gynaecology, Universiti Putra Malaysia, Malaysia.
| | - Karuppiah Thilakavathy
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| | - Norshariza Nordin
- Stem Cell Research Laboratory, Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Malaysia.
| |
Collapse
|
32
|
Effects of Pharmacological Agents on Human Amniotic Fluid-Derived Stem Cells in Culture. Stem Cells Dev 2016; 25:1570-1579. [DOI: 10.1089/scd.2016.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Da Sacco S, Thornton ME, Petrosyan A, Lavarreda‐Pearce M, Sedrakyan S, Grubbs BH, De Filippo RE, Perin L. Direct Isolation and Characterization of Human Nephron Progenitors. Stem Cells Transl Med 2016; 6:419-433. [PMID: 28191781 PMCID: PMC5442819 DOI: 10.5966/sctm.2015-0429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023] Open
Abstract
Mature nephrons originate from a small population of uninduced nephrogenic progenitor cells (NPs) within the cap mesenchyme. These cells are characterized by the coexpression of SIX2 and CITED1. Many studies on mouse models as well as on human pluripotent stem cells have advanced our knowledge of NPs, but very little is known about this population in humans, since it is exhausted before birth and strategies for its direct isolation are still limited. Here we report an efficient protocol for direct isolation of human NPs without genetic manipulation or stepwise induction procedures. With the use of RNA‐labeling probes, we isolated SIX2+CITED1+ cells from human fetal kidney for the first time. We confirmed their nephrogenic state by gene profiling and evaluated their nephrogenic capabilities in giving rise to mature renal cells. We also evaluated the ability to culture these cells without complete loss of SIX2 and CITED1 expression over time. In addition to defining the gene profile of human NPs, this in vitro system facilitates studies of human renal development and provides a novel tool for renal regeneration and bioengineering purposes. Stem Cells Translational Medicine2017;6:419–433
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Maria Lavarreda‐Pearce
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Roger E. De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Gholizadeh-Ghaleh Aziz S, Fathi E, Rahmati-Yamchi M, Akbarzadeh A, Fardyazar Z, Pashaiasl M. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:765-774. [DOI: 10.1080/21691401.2016.1216857] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shiva Gholizadeh-Ghaleh Aziz
- Women?s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fardyazar
- Women?s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Pashaiasl
- Women?s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Bajek A, Olkowska J, Walentowicz-Sadłecka M, Walentowicz P, Sadłecki P, Grabiec M, Bodnar M, Marszałek A, Dębski R, Porowińska D, Czarnecka J, Kaźmierski Ł, Drewa T. High Quality Independent From a Donor: Human Amniotic Fluid Derived Stem Cells-A Practical Analysis Based on 165 Clinical Cases. J Cell Biochem 2016; 118:116-126. [DOI: 10.1002/jcb.25618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
| | - Joanna Olkowska
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
| | | | - Paweł Walentowicz
- Department of Obstetrics and Gynecology; Nicolaus Copernicus University; Bydgoszcz 85-168 Poland
| | - Paweł Sadłecki
- Department of Obstetrics and Gynecology; Nicolaus Copernicus University; Bydgoszcz 85-168 Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology; Nicolaus Copernicus University; Bydgoszcz 85-168 Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; Bydgoszcz 85-094 Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology; Nicolaus Copernicus University; Bydgoszcz 85-094 Poland
| | - Robert Dębski
- Department of Experimental Oncology; Nicolaus Copernicus University; Bydgoszcz 85-094 Poland
| | - Dorota Porowińska
- Department of Biochemistry; Nicolaus Copernicus University; Toruń 87-100 Poland
| | - Joanna Czarnecka
- Department of Biochemistry; Nicolaus Copernicus University; Toruń 87-100 Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
| | - Tomasz Drewa
- Department of Tissue Engineering; Nicolaus Copernicus University; Bydgoszcz 85-092 Poland
- Department of Urology; Nicolaus Copernicus Hospital; Toruń 87-100 Poland
| |
Collapse
|
36
|
Petrosyan A, Zanusso I, Lavarreda-Pearce M, Leslie S, Sedrakyan S, De Filippo RE, Orlando G, Da Sacco S, Perin L. Decellularized Renal Matrix and Regenerative Medicine of the Kidney: A Different Point of View. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:183-92. [PMID: 26653996 DOI: 10.1089/ten.teb.2015.0368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past years, extracellular matrix (ECM) obtained from whole organ decellularization has been investigated as a platform for organ engineering. The ECM is composed of fibrous and nonfibrous molecules providing structural and biochemical support to the surrounding cells. Multiple decellularization techniques, including ours, have been optimized to maintain the composition, microstructure, and biomechanical properties of the native renal ECM that are difficult to obtain during the generation of synthetic substrates. There are evidences suggesting that in vivo implanted renal ECM has the capacity to induce formation of vasculature-like structures, but long-term in vivo transplantation and filtration activity by these tissue-engineered constructs have not been investigated or reported. Therefore, even if the process of renal decellularization is possible, the repopulation of the renal matrix with functional renal cell types is still very challenging. This review aims to summarize the current reports on kidney tissue engineering with the use of decellularized matrices and addresses the challenges in creating functional kidney units. Finally, this review discusses how future studies investigating cell-matrix interaction may aid the generation of a functional renal unit that would be transplantable into patients one day.
Collapse
Affiliation(s)
- Astgik Petrosyan
- 1 Department of Development, Stem Cells and Regenerative Medicine, University of Southern California , Los Angeles, California
| | - Ilenia Zanusso
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | | | - Scott Leslie
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Sargis Sedrakyan
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Roger E De Filippo
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Giuseppe Orlando
- 3 Department of General Surgery, Wake Forest School of Medicine , Winston Salem, North Carolina
| | - Stefano Da Sacco
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Laura Perin
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| |
Collapse
|
37
|
Monteiro Carvalho Mori da Cunha MG, Zia S, Oliveira Arcolino F, Carlon MS, Beckmann DV, Pippi NL, Luhers Graça D, Levtchenko E, Deprest J, Toelen J. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS One 2015; 10:e0136145. [PMID: 26295710 PMCID: PMC4546614 DOI: 10.1371/journal.pone.0136145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Objectives Mesenchymal stem cells derived from human amniotic fluid (hAFSCs) are a promising source for cellular therapy, especially for renal disorders, as a subpopulation is derived from the fetal urinary tract. The purpose of this study was to evaluate if hAFSCs with a renal progenitor phenotype demonstrate a nephroprotective effect in acute ischemia reperfusion (I/R) model and prevent late stage fibrosis. Methods A total of 45 male 12-wk-old Wistar rats were divided into three equal groups;: rats subjected to I/R injury and treated with Chang Medium, rats subjected to I/R injury and treated with hAFSCs and sham-operated animals. In the first part of this study, hAFSCs that highly expressed CD24, CD117, SIX2 and PAX2 were isolated and characterized. In the second part, renal I/R injury was induced in male rats and cellular treatment was performed 6 hours later via arterial injection. Functional and histological analyses were performed 24 hours, 48 hours and 2 months after treatment using serum creatinine, urine protein to creatinine ratio, inflammatory and regeneration markers and histomorphometric analysis of the kidney. Statistical analysis was performed by analysis of variance followed by the Tukey’s test for multiple comparisons or by nonparametric Kruskal-Wallis followed by Dunn. Statistical significance level was defined as p <0.05. Results hAFSCs treatment resulted in significantly reduced serum creatinine level at 24 hours, less tubular necrosis, less hyaline cast formation, higher proliferation index, less inflammatory cell infiltration and less myofibroblasts at 48h. The treated group had less fibrosis and proteinuria at 2 months after injury. Conclusion hAFSCs contain a renal progenitor cell subpopulation that has a nephroprotective effect when delivered intra-arterially in rats with renal I/R injury, and reduces interstitial fibrosis on long term follow-up.
Collapse
Affiliation(s)
- Marina Gabriela Monteiro Carvalho Mori da Cunha
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne Sylvia Carlon
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Diego Vilibaldo Beckmann
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ney Luis Pippi
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Dominguita Luhers Graça
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
38
|
Bussolati B, Camussi G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 2015; 11:695-706. [PMID: 26241019 DOI: 10.1038/nrneph.2015.126] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of the human kidney to repair itself is limited. Consequently, repeated injury can trigger a maladaptive response that is characterized by fibrosis and loss of renal function. The transcription patterns that characterize nephrogenesis in fetal renal progenitor cells (RPCs) are only partially activated during renal repair in adults. Nevertheless, evidence suggests that segment-restricted progenitor resident cells support renal healing in adults. In this Review, we discuss the evidence for the existence of functional human RPCs in adults and their role in renal repair, and consider the controversial issue of whether RPCs are a fixed population or arise through phenotypical plasticity of tubular cells that is mediated by the microenvironment. We also discuss the strategies for generating renal progenitor cells from pluripotent stem cells or differentiated cells and their use in therapy. Finally, we examine preclinical data on the therapeutic use of human fetal cells, adult progenitor cells and adult renal cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
39
|
Alrefaei GI, Al-Karim S, Ayuob NN, Ali SS. Does the maternal age affect the mesenchymal stem cell markers and gene expression in the human placenta? What is the evidence? Tissue Cell 2015; 47:406-19. [DOI: 10.1016/j.tice.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/01/2022]
|
40
|
Rat full term amniotic fluid harbors highly potent stem cells. Res Vet Sci 2015; 102:89-99. [PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.
Collapse
|
41
|
Ekblad Å, Qian H, Westgren M, Le Blanc K, Fossum M, Götherström C. Amniotic Fluid—A Source for Clinical Therapeutics in the Newborn? Stem Cells Dev 2015; 24:1405-14. [DOI: 10.1089/scd.2014.0426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Åsa Ekblad
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Westgren
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Magdalena Fossum
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Götherström
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Rossi B, Merlo B, Colleoni S, Iacono E, Tazzari PL, Ricci F, Lazzari G, Galli C. Isolation and in vitro characterization of bovine amniotic fluid derived stem cells at different trimesters of pregnancy. Stem Cell Rev Rep 2015; 10:712-24. [PMID: 24906426 DOI: 10.1007/s12015-014-9525-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amniotic fluid (AF) is a source of multipotent mesenchymal stem cells (MSCs), very promising cells for tissue engineering in clinical application. The aim of this work was to isolate and characterize cells isolated from bovine AF as alternative sources of primitive multipotent stem cells in a species that could be a large-animal model for biomedical and biotechnology researches. Samples were recovered, at slaughterhouse, from 39 pregnant cows at different trimesters of pregnancy and cells were cultured in vitro. At passages (P) 3 and 7 differentiation towards chondrogenic, osteogenic and adipogenic lineages was induced. Flow cytometry analysis for CD90, CD105, CD73, CD44, CD34, CD45 and CD14 was performed, immunocytochemistry (ICC) for Oct4, SSEA4, α-SMA, Vimentin, N- and E- Cadherin and CK and qPCR analysis for OCT4, NANOG and SOX2 were carried out. The cell yield was significantly higher in the first trimester compared to the second and the third one (P < 0.05). Cells were isolated from 25/39 samples and cell population appeared heterogeneous. Two main cell types were identified in samples from all trimesters: round- (RS) and spindle-shaped (SS) cells. 17/25 samples showed both populations (mixed, MX). Both cell types showed MSC-markers and differentiation capability with some variability related to the passages. The SS-population also expressed low levels of stemness markers such as NANOG and SSEA4 but not OCT4. Bovine AF shows a heterogeneous cell population containing also MSCs, multipotent cells that represent an intermediate stage between embryonic stem cells and adult ones.
Collapse
Affiliation(s)
- B Rossi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng SY, Chou CJ, Cheng PJ, Tseng TY, Cheng WTK, Shaw SWS, Wu SC. Intramuscular Transplantation of Pig Amniotic Fluid-Derived Progenitor Cells Has Therapeutic Potential in a Mouse Model of Myocardial Infarction. Cell Transplant 2015; 24:1003-1012. [DOI: 10.3727/096368914x680109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute myocardial infarction (MI) is a fatal event that causes a large number of deaths worldwide. MI results in pathological remodeling and decreased cardiac function, which could lead to heart failure and fatal arrhythmia. Cell therapy is a potential strategy to repair the damage through enhanced angiogenesis or by modulation of the inflammatory process via paracrine signaling. Amniotic fluid-derived progenitor cells (AFPCs) have been reported to differentiate into several lineages and can be used without ethical concerns or risk of teratoma formation. Since pigs are anatomically, physiologically, and genetically similar to humans, and pregnant pigs can be an abundant source of AFPCs, we used porcine AFPCs (pAFPCs) as our target cells. Intramyocardial injection of AFPCs has been shown to cure MI in animal models. However, intramuscular transplantation of cells has not been extensively investigated. In this study, we investigated the therapeutic potential of intramuscular injection of pAFPCs on acute MI. MI mice were divided into 1) PBS control, 2) medium cell dose (1 × 106 cells per leg; cell-M), and 3) high cell dose (4 × 106 cells per leg; cell-H) groups. Cells or PBS were directly injected into the hamstring muscle 20 min after MI surgery. Four weeks after MI surgery, the cell-M and cell-H groups exhibited significantly better ejection fraction, significantly greater wall thickness, smaller infarct scar sizes, and lower LV expansion index compared to the PBS group. Using in vivo imaging, we showed that the hamstring muscles from animals in the cell-M and cell-H groups had RFP-positive signals. In summary, intramuscular injection of porcine AFPCs reduced scar size, reduced pathological remodeling, and preserved heart function after MI.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Tse-Yang Tseng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Winston Teng-Kui Cheng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - S. W. Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Human Urine as a Noninvasive Source of Kidney Cells. Stem Cells Int 2015; 2015:362562. [PMID: 26089913 PMCID: PMC4451513 DOI: 10.1155/2015/362562] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 01/14/2023] Open
Abstract
Urine represents an unlimited source of patient-specific kidney cells that can be harvested noninvasively. Urine derived podocytes and proximal tubule cells have been used to study disease mechanisms and to screen for novel drug therapies in a variety of human kidney disorders. The urinary kidney stem/progenitor cells and extracellular vesicles, instead, might be promising for therapeutic treatments of kidney injury. The greatest advantages of urine as a source of viable cells are the easy collection and less complicated ethical issues. However, extensive characterization and in vivo studies still have to be performed before the clinical use of urine-derived kidney progenitors.
Collapse
|
45
|
|
46
|
Amniotic Fluid-Derived Stem Cells (AFSC) and Their Application in Cell Therapy and Tissue Engineering. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2015. [DOI: 10.5812/rijm.20135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Vadasz S, Jensen T, Moncada C, Girard E, Zhang F, Blanchette A, Finck C. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg 2014; 49:1554-63. [PMID: 25475793 DOI: 10.1016/j.jpedsurg.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND/PURPOSE This study examined the potential of amniotic fluid mesenchymal stem cells (AF-MSCs) to generate lung precursor cells in vitro and on a xenologous three-dimensional de-cellularized lung scaffold. METHODS AF-MSCs were isolated from human amniotic fluid obtained from 17-37 weeks gestation. Lung differentiation was induced on Matrigel or on de-cellularized rat lungs intra-tracheally injected with AF-MSCs by culturing with a modification of small airway growth medium (mSAGM) lacking retinoic acid (RA) and triodothyronine (T3) with addition of fibroblast growth factor-10 (FGF10). Cells and scaffolds were characterized by immunofluorescence and RT-PCR for markers of viability, proliferation, and lung distal airway differentiation (TTF-1(+) and SPC(+)) in the absence of markers of brain (TuJ1(-)) and thyroid (Pax8(-)). RESULTS After culture in mSAGM on either Matrigel or lung scaffolds, there were TTF-1(+)/TuJ1(-)/Pax8(-) cells, indicating a lung precursor phenotype. In addition, SPC(+) cells also evolved suggesting a more mature lung phenotype. CONCLUSIONS We demonstrate that mid- to late-trimester AF-MSCs can be induced to develop into lung precursor cells when cultured on the appropriate extracellular matrix (ECM), making them a viable source for use in cell therapy or development of an ex vivo tissue engineered lung.
Collapse
Affiliation(s)
- Stephanie Vadasz
- Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue MC3501, Farmington, CT 06030
| | - Todd Jensen
- Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue MC3501, Farmington, CT 06030
| | - Camilo Moncada
- Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue MC3501, Farmington, CT 06030
| | - Eric Girard
- Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue MC3501, Farmington, CT 06030; Department of Surgery, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106
| | - Fan Zhang
- Department of Surgery, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106
| | - Alex Blanchette
- Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue MC3501, Farmington, CT 06030
| | - Christine Finck
- Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue MC3501, Farmington, CT 06030; Department of Surgery, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106.
| |
Collapse
|
48
|
Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc 2014; 10:S45-97. [PMID: 23869446 DOI: 10.1513/annalsats.201304-090aw] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.
Collapse
|
49
|
Lin KY, Peng SY, Chou CJ, Wu CC, Wu SC. Engraftment of mouse amniotic fluid-derived progenitor cells after in utero transplantation in mice. J Formos Med Assoc 2014; 114:1105-15. [PMID: 24875587 DOI: 10.1016/j.jfma.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/PURPOSE Amniotic fluid-derived progenitor cells (AFPCs) are oligopotent and shed from the fetus into the amniotic fluid. It was reported that AFPCs express stem cell-like markers and are capable of differentiating into specific cell type in in vitro experiments. However, no study has fully investigated the potentiality and destiny of these cells in in vivo experiments. METHODS Ds-red transgenic mice (on Day 13.5 of pregnancy) were transplanted in utero with enhanced green fluorescent protein-labeled mouse AFPC (EGFP-mAFPCs). After birth, baby mice were euthanized at 3-week intervals beginning 3 weeks postnatally, and the specimens were examined by polymerase chain reaction, histology, and flow cytometry. RESULTS Our results demonstrate the transplantability of mAFPCs into all three germ layers and the potential of mAFPCs in the study of progenitor cell homing, differentiation, and function. Engraftment of EGFP-mAFPCs was detected in the intestine, kidney, muscle, skin, bladder, heart, stomach, etc., at 3 weeks after delivery. CONCLUSION This model using EGFP-mAFPCs injected in utero may provide an ideal method for determining the fate of transplanted cells in recipients and these findings may justify a clinical trial of in utero transplantation during gestation for patients who have inherited genetic disorders.
Collapse
Affiliation(s)
- Kun-Yi Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC; Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Chun Wu
- Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
50
|
Baulier E, Favreau F, Le Corf A, Jayle C, Schneider F, Goujon JM, Feraud O, Bennaceur-Griscelli A, Hauet T, Turhan AG. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med 2014; 3:809-20. [PMID: 24797827 DOI: 10.5966/sctm.2013-0186] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well known that ischemia/reperfusion injuries strongly affect the success of human organ transplantation. Development of interstitial fibrosis and tubular atrophy is the main deleterious phenomenon involved. Stem cells are a promising therapeutic tool already validated in various ischemic diseases. Amniotic fluid-derived mesenchymal stem cells (af-MSCs), a subpopulation of multipotent cells identified in amniotic fluid, are known to secrete growth factors and anti-inflammatory cytokines. In addition, these cells are easy to collect, present higher proliferation and self-renewal rates compared with other adult stem cells (ASCs), and are suitable for banking. Consequently, af-MSCs represent a promising source of stem cells for regenerative therapies in humans. To determine the efficiency and the safety of af-MSC infusion in a preclinical porcine model of renal autotransplantation, we injected autologous af-MSCs in the renal artery 6 days after transplantation. The af-MSC injection improved glomerular and tubular functions, leading to full renal function recovery and abrogated fibrosis development at 3 months. The strong proof of concept generated by this translational porcine model is a first step toward evaluation of af-MSC-based therapies in human kidney transplantation.
Collapse
Affiliation(s)
- Edouard Baulier
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Frederic Favreau
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Amélie Le Corf
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Christophe Jayle
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Fabrice Schneider
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Jean-Michel Goujon
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Olivier Feraud
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Annelise Bennaceur-Griscelli
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Thierry Hauet
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| | - Ali G Turhan
- INSERM U1082, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Poitiers, France; INSERM U935, Poitiers and Villejuif, France; INSERM U935, Esteam Pluripotent Stem Cell Core Facility and Ingestem Infrastructure, Université Paris Sud XI, Villejuif, France; INRA, UE1372 GenESI, Plateforme Ibisa, Surgères, France
| |
Collapse
|