1
|
Kannan A, Clouston D, Frydenberg M, Ilic D, Karim MN, Evans SM, Toivanen R, Risbridger GP, Taylor RA. Neuroendocrine cells in prostate cancer correlate with poor outcomes: a systematic review and meta-analysis. BJU Int 2021; 130:420-433. [PMID: 34784097 DOI: 10.1111/bju.15647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To perform a systematic review and meta-analysis of the literature to understand the variation in the reporting of neuroendocrine staining and determine the influence of reporting neuroendocrine staining at diagnosis on patient outcomes. METHODS Medical databases were searched to identify studies in which adenocarcinoma specimens were stained with any of the following four neuroendocrine markers: chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin and CD56. The prevalence of neuroendocrine staining and correlation of the prevalence of neuroendocrine staining to patient outcomes were analysed using a random-effects model. All statistical tests were two-sided. RESULTS Sixty-two studies spanning 7616 patients were analysed. The pooled prevalence for the most common marker, CgA (41%), was similar to that of NSE (39%) and higher than that of synaptophysin (31%). The prevalence of CgA staining was significantly influenced by reporting criteria, where objective thresholds reduced the variation in prevalence to 26%. No correlation was found between CgA prevalence and tumour grade. Patients positive for CgA staining using objective criteria had more rapid biochemical progression (hazard ratio [HR] 1.98, 95% confidence interval [CI] 1.49 to 2.65) and poorer prostate cancer-specific survival (HR 7.03, 95% CI 2.55 to 19.39) compared to negative patients, even among those with low-risk cancers. CONCLUSION Discrepancies in the reported prevalence of neuroendocrine cells in adenocarcinoma are driven by the inconsistent scoring criteria. This study unequivocally demonstrates that when neuroendocrine cell staining is assessed with objective criteria it identifies patients with poor clinical outcomes. Future studies are needed to determine the exact quantifiable thresholds for use in reporting neuroendocrine cell staining to identify patients at higher risk of progression.
Collapse
Affiliation(s)
- Ashwini Kannan
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | | | - Mark Frydenberg
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Department of Surgery, Monash University, Melbourne, Vic., Australia.,Department of Urology, Cabrini Institute, Cabrini Health, Melbourne, Vic., Australia
| | - Dragan Ilic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Md Nazmul Karim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Sue M Evans
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,Victorian Cancer Registry, Cancer Council Victorian, Melbourne, Vic., Australia
| | - Roxanne Toivanen
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Renea A Taylor
- Department of Anatomy and Developmental Biology and Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, Vic., Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
2
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
3
|
Jiang H, Chen H, Chen N. Construction and validation of a seven-gene signature for predicting overall survival in patients with kidney renal clear cell carcinoma via an integrated bioinformatics analysis. Anim Cells Syst (Seoul) 2020; 24:160-170. [PMID: 33209196 PMCID: PMC7651852 DOI: 10.1080/19768354.2020.1760932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) remains a significant challenge worldwide because of its poor prognosis and high mortality rate, and accurate prognostic gene signatures are urgently required for individual therapy. This study aimed to construct and validate a seven-gene signature for predicting overall survival (OS) in patients with KIRC. The mRNA expression profile and clinical data of patients with KIRC were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Prognosis-associated genes were identified, and a prognostic gene signature was constructed. Then, the prognostic efficiency of the gene signature was assessed. The results obtained using data from the TCGA were validated using those from the ICGC and other online databases. Gene set enrichment analyses (GSEA) were performed to explore potential molecular mechanisms. A seven-gene signature (PODXL, SLC16A12, ZIC2, ATP2B3, KRT75, C20orf141, and CHGA) was constructed, and it was found to be effective in classifying KIRC patients into high- and low-risk groups, with significantly different survival based on the TCGA and ICGC validation data set. Cox regression analysis revealed that the seven-gene signature had an independent prognostic value. Then, we established a nomogram, including the seven-gene signature, which had a significant clinical net benefit. Interestingly, the seven-gene signature had a good performance in distinguishing KIRC from normal tissues. GSEA revealed that several oncological signatures and GO terms were enriched. This study developed a novel seven-gene signature and nomogram for predicting the OS of patients with KIRC, which may be helpful for clinicians in establishing individualized treatments.
Collapse
Affiliation(s)
- Huiming Jiang
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People’s Republic of China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Nanhui Chen
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, People’s Republic of China
- Nanhui Chen Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, No. 63, Huang Tang Road, Meizhou, Guangdong Province514031, P.R. China
| |
Collapse
|
4
|
Chromogranin-A Expression as a Novel Biomarker for Early Diagnosis of Colon Cancer Patients. Int J Mol Sci 2019; 20:ijms20122919. [PMID: 31207989 PMCID: PMC6628020 DOI: 10.3390/ijms20122919] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is one of the major causes of cancer death worldwide. The five-year survival rate for the early-stage patients is more than 90%, and only around 10% for the later stages. Moreover, half of the colon cancer patients have been clinically diagnosed at the later stages. It is; therefore, of importance to enhance the ability for the early diagnosis of colon cancer. Taking advantages from our previous studies, there are several potential biomarkers which have been associated with the early diagnosis of the colon cancer. In order to investigate these early diagnostic biomarkers for colon cancer, human chromogranin-A (CHGA) was further analyzed among the most powerful diagnostic biomarkers. In this study, we used a logistic regression-based meta-analysis to clarify associations of CHGA expression with colon cancer diagnosis. Both healthy populations and the normal mucosa from the colon cancer patients were selected as the double normal controls. The results showed decreased expression of CHGA in the early stages of colon cancer as compared to the normal controls. The decline of CHGA expression in the early stages of colon cancer is probably a new diagnostic biomarker for colon cancer diagnosis with high predicting possibility and verification performance. We have also compared the diagnostic powers of CHGA expression with the typical oncogene KRAS, classic tumor suppressor TP53, and well-known cellular proliferation index MKI67, and the CHGA showed stronger ability to predict early diagnosis for colon cancer than these other cancer biomarkers. In the protein-protein interaction (PPI) network, CHGA was revealed to share some common pathways with KRAS and TP53. CHGA might be considered as a novel, promising, and powerful biomarker for early diagnosis of colon cancer.
Collapse
|
5
|
Kardoust Parizi M, Iwata T, Kimura S, Janisch F, Abufaraj M, Karakiewicz PI, Enikeev D, Rapoport LM, Hutterer G, Shariat SF. Focal Neuroendocrine Differentiation of Conventional Prostate Adenocarcinoma as a Prognostic Factor after Radical Prostatectomy: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20061374. [PMID: 30893781 PMCID: PMC6471399 DOI: 10.3390/ijms20061374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
The biologic and prognostic value of focal neuroendocrine differentiation (NED) in conventional prostate adenocarcinoma (PC) patients who undergo radical prostatectomy (RP) remains controversial. In this systematic review and meta-analysis, we assessed the association of focal NED in conventional PC with oncological outcomes after RP. A literature search using PubMed, Scopus, Web of Science, and Cochrane Library was conducted on December 2018 to find relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We used a fixed-effect model to analyze the impact of focal NED in RP specimen on progression-free survival defined by biochemical recurrence (BCR). A total of 16 studies with the outcomes of disease progression and survival were eligible. No patient in these studies received androgen deprivation therapy prior to RP. Eleven studies found no significant correlation between focal NED and outcomes of interest, while five studies reported a significant association of focal NED assessed by immunohistochemical chromogranin A or serotonin staining with BCR or survival. Focal NED was associated with higher BCR rates after RP with a pooled HR of 1.39 (95% CI 1.07‒1.81) in five studies. No heterogeneity was reported in this analysis (I2 = 21.7%, p = 0.276). In conclusion, focal NED in conventional PC is associated with worse prognosis after RP. Its presence should be reported in pathologic reports and its true clinical impact should be assessed in well-designed prospective controlled studies.
Collapse
Affiliation(s)
- Mehdi Kardoust Parizi
- Department of Urology, Medical University of Vienna, A-1090 Vienna, Austria.
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Teheran 1411713135, Iran.
| | - Takehiro Iwata
- Department of Urology, Medical University of Vienna, A-1090 Vienna, Austria.
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Shoji Kimura
- Department of Urology, Medical University of Vienna, A-1090 Vienna, Austria.
- Department of Urology, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Florian Janisch
- Department of Urology, Medical University of Vienna, A-1090 Vienna, Austria.
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Mohammad Abufaraj
- Department of Urology, Medical University of Vienna, A-1090 Vienna, Austria.
- Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan.
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Center, Montreal, QC H3h 1s8, Canada.
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Institut du Cancer de Montréal, Montréal, QC H3h 1s8, Canada.
| | - Dmitry Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia.
| | - Leonid M Rapoport
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia.
| | - Georg Hutterer
- Department of Urology, Medical University Graz, A-8036 Graz, Austria.
| | - Shahrokh F Shariat
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia.
- Department of Urology, Weill Cornell Medical College, New York, NY 10011, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Karl Landsteiner Institute of Urology and Andrology, A-1090 Vienna, Austria.
| |
Collapse
|
6
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
7
|
Correlation study on chromogranin A genetic polymorphism and prognosis of critically ill patients. J Crit Care 2017; 39:137-142. [PMID: 28254729 DOI: 10.1016/j.jcrc.2017.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The objective was to investigate the correlation between single nucleotide polymorphism (SNP) of chromogranin A (CHGA) and prognosis of critically ill patients. METHODS We screened 357 critically ill patients consecutively admitted to our intensive care unit. The -89/-415/-462 SNP locus in the promoter region and the +9559/+9578/+9590/+9611 SNP locus in exon 7 coding of CHGA were genotyped by polymerase chain reaction and DNA sequencing technology. Subsequently, the correlation between genotype and prognosis of patients was analyzed. RESULTS (1) Three hundred critically ill Chinese Han patients were enrolled in the study. CHGA-415/-462/+9559/+9611 SNPs were polymorphically distributed. Phenotypes of the 4 SNPs were shown not to be in linkage disequilibrium, and there were no significant differences in the minor allele frequencies (MAFs) of the 4 SNPs between participants of this study and healthy people in Asia. (2) The CHGA-415 T/C MAF of the nonsurvival group was significantly higher than that of the survival group (MAF 0.3813 and 0.2864, respectively; P=.026). Survival analysis showed that there were significant differences between the CHGA-415 T/C mutation group (including TC and CC genotypes) and the wild-type group (TT genotype) (log rank=8.887, P=.003). The mortality in the mutant group was significantly higher than that in the wild-type group (0.3333 and 0.1852, respectively; P=.004). (3) Binary logistic analysis showed that CHGA-415 T/C polymorphism was an independent risk factor for the mortality of critically ill patients (odds ratio, 2.286; 95% confidence interval, 1.165-4.484; P=.016). CONCLUSIONS Critically ill patients with CHGA-415 T/C mutant genotype display higher 30-day mortality than those with the wild-type group. CHGA-415 T/C polymorphism is an independent risk factor of poor prognosis in critically ill Chinese Han patients.
Collapse
|
8
|
Zhang BY, Riska SM, Mahoney DW, Costello BA, Kohli R, Quevedo JF, Cerhan JR, Kohli M. Germline genetic variation in JAK2 as a prognostic marker in castration-resistant prostate cancer. BJU Int 2016; 119:489-495. [PMID: 27410686 DOI: 10.1111/bju.13584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the prognostic significance of germline variation in candidate genes in patients with castration-resistant prostate cancer (CRPC). METHODS Germline DNA was extracted from peripheral blood mononuclear cells of patients with CRPC enrolled in a clinically annotated registry. Fourteen candidate genes implicated in either initiation or progression of prostate cancer were tagged using single nucleotide polymorphisms (SNPs) from HapMap with a minor allele frequency of >5%. The primary endpoint was overall survival (OS), defined as time from development of CRPC to death. Principal component analysis was used for gene levels tests of significance. For SNP-level results the per allele hazard ratios (HRs) and 95% confidence intervals (CIs) under the additive allele model were estimated using Cox regression, adjusted for age at CRPC and Gleason score (GS). RESULTS A total of 240 patients with CRPC were genotyped (14 genes; 84 SNPs). The median (range) age of the cohort was 69 (43-93) years. The GS distribution was 55% with GS ≥8, 32% with GS = 7 and 13% with GS <7 or unknown. The median (interquartile range) time from castration resistance to death for the cohort was 2.67 (1.6-4.07) years (144 deaths). At the gene level, a single gene, JAK2 was associated with OS (P < 0.01), and 11 of 18 JAK2 SNPs were individually associated with OS after adjustment for age and GS. A multivariate model consisting of age, GS, rs2149556 (HR 0.67; 95% CI 0.38-1.18) and rs4372063 (HR 2.17; 95% CI 1.25-3.76) was constructed to predict survival in patients with CRPC (concordance of 0.69, P < 3.2 × 10-9 ). CONCLUSIONS Germline variation in the JAK2 gene was associated with survival in patients with CRPC and warrants further validation as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Ben Y Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Shaun M Riska
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Douglas W Mahoney
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A. Clin Oral Investig 2016; 20:2083-2095. [PMID: 26750135 DOI: 10.1007/s00784-015-1705-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/29/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the effect of type 2 diabetes mellitus (T2DM) on salivary function impairments according to glycemic control status and subsequently compare the concentration of chromogranin A (CHGA) with its genetic profile. MATERIALS AND METHODS Thirty-six patients with controlled T2DM, 36 with poorly controlled T2DM, and 38 nondiabetic subjects underwent salivary flow rate measurements by means of unstimulated labial (ULS), unstimulated whole (UWS), and stimulated whole saliva (SWS) collections. CHGA concentrations were determined in saliva and plasma with ELISA, and two CHGA polymorphisms (T-415C and Glu264Asp) were analyzed by polymerase chain reaction-restriction fragment length polymorphism. RESULTS T2DM patients presented significantly lower ULS and UWS flow rates regardless of glycemic control status compared to controls (P = 0.002 and P = 0.027, respectively). The SWS flow rate in the poorly controlled T2DM was the lowest among the groups (P = 0.026). Significantly higher plasma and salivary CHGA levels were found in T2DM groups (P = 0.019 and P < 0.001, respectively). CHGA gene variants (T-415C and Glu264Asp) revealed significant differences between diabetics and control subjects when associated with lower salivary flow and higher salivary CHGA production (P < 0.05). CONCLUSIONS T2DM causes abnormalities in the function of salivary glands. However, poorly controlled T2DM has the most influence on SWS flow rates. Our findings indicate an association between plasma and salivary CHGA levels and T2DM patients. Furthermore, the results suggest that CGHA polymorphisms might be associated with salivary gland hypofunction and higher salivary CHGA production in T2DM patients. Nevertheless, further epidemiological studies are required to elucidate this clinical implication. CLINICAL RELEVANCE Salivary impairments and high levels of CHGA are associated with T2DM patients. In addition, CGHA polymorphisms might be associated with salivary gland hypofunction and higher salivary CHGA production in T2DM patients. This could be a significant insight to establish a role for salivary CHGA as a potential clinical biomarker to T2DM.
Collapse
|
10
|
|
11
|
Zhao Y, Zhou H, Ma K, Sun J, Feng X, Geng J, Gu J, Wang W, Zhang H, He Y, Guo S, Zhou X, Yu J, Lin Q. Abnormal methylation of seven genes and their associations with clinical characteristics in early stage non-small cell lung cancer. Oncol Lett 2013; 5:1211-1218. [PMID: 23599765 PMCID: PMC3629069 DOI: 10.3892/ol.2013.1161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/21/2013] [Indexed: 11/30/2022] Open
Abstract
To identify novel abnormally methylated genes in early stage non-small cell lung cancer (NSCLC), we analyzed the methylation status of 13 genes (ALX1, BCL2, FOXL2, HPP1, MYF6, OC2, PDGFRA, PHOX2A, PITX2, RARB, SIX6, SMPD3 and SOX1) in cancer tissues from 101 cases of stage I NSCLC patients and lung tissues from 30 cases of non-cancerous lung disease controls, using methylation-specific PCR (MSP). The methylation frequencies (29.70–64.36%) of 7 genes (MYF6, SIX6, SOX1, RARB, BCL2, PHOX2A and FOLX2) in stage I NSCLC were significantly higher compared with those in non-cancerous lung disease controls (P<0.05). The co-methylation of SIX6 and SOX1, or the co-methyaltion of SIX6, RARB and SOX1 was associated with adenosquamous carcinoma (ADC), and the co-methylation of BCL2, RARB and SIX6 was associated with smoking. A panel of 4 genes (MYF6, SIX6, BCL2 and RARB) may offer a sensitivity of 93.07% and a specificity of 83.33% in the diagnosis of stage I NSCLC. Furthermore, we also detected the expression of 8 pathological markers (VEGF, HER-2, P53, P21, EGFR, CHGA, SYN and EMA) in cancer tissues of stage I NSCLC by immunohistochemistry, and found that high expression levels of p53 and CHGA were associated with the methylation of BCL2 (P=0.025) and PHOX2A (P=0.023), respectively. In this study, among the 7 genes which demonstrated hypermethylation in stage I NSCLC compared with non-cancerous lung diseases, 5 genes (MYF6, SIX6, PHOX2A, FOLX2 and SOX1) were found for the first time to be abonormally methylated in NSCLC. Further study of these genes shed light on the carcinogenesis of NSCLC.
Collapse
Affiliation(s)
- Yangxing Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ribeiro da Silva M, Tobias-Machado M, Lima-Pompeo A, Reis L, da Silva Pinhal M. [Prostate cancer: promising biomarkers related to aggressive disease]. Actas Urol Esp 2012; 36:484-90. [PMID: 22520043 DOI: 10.1016/j.acuro.2011.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although a rapidly growing number of candidate biological markers of prognosis and/or response to specific treatments in prostate cancer, none have to date showed ability to completely prognosticate prostate cancer on evidence based urology. OBJECTIVE To review the pertinent literature on the issue. ACQUISITION OF EVIDENCE A comprehensive review of the current literature was done focusing on promising biomarkers related to aggressive prostate cancer. SUMMARY OF EVIDENCE Combined with the heterogeneous nature of the disease, mixed case series are the most common study design, impeding robust results and the development of an effective therapeutic strategy. Improvement in prostate cancer patient survival requires not only the identification of new therapeutic target based on detailed understanding of the biological mechanisms involved in metastatic dissemination and tumor growth but strong clinical studies as well. CONCLUSION Better study design involving potential markers and including well-classified and staged patients with robust methodology and adequate outcomes (mainly survival) are necessary to the field evolution.
Collapse
|
13
|
|
14
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Jiang Y, Liu Y, Shi Z, Wang B, Shang L, Xu X, Zhang S, Wang M. [Expression and clinical relevance of uPA and ET-1 in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:49-53. [PMID: 21219832 PMCID: PMC5999703 DOI: 10.3779/j.issn.1009-3419.2011.01.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
背景与目的 肺癌是世界第一大恶性肿瘤,其发病率及死亡率居高不下,本研究旨在探讨uPA和ET-1蛋白在非小细胞肺癌中的表达状况及其在临床诊断和预后判断方面的应用价值。 方法 采用组织微阵列联合免疫组织化学染色技术,研究155例非小细胞肺癌中uPA和ET-1蛋白的表达情况,分析其与临床病理参数的相关性。 结果 uPA阴性/弱、中度和高表达在鳞癌中的比例分别为12.3%、64.4%、23.3%,在腺癌中分别为12.2%、53.7%、34.1%,在全部病例中分别为12.3%、58.7%、29.0%。ET-1在鳞癌中阴性/弱、中度和高表达分别为2.7%、42.5%、54.8%,在腺癌中分别为11.0%、30.5%、58.5%,在全部病例中分别为7.1%、36.1%、56.8%。uPA和ET-1同时高表达多见于无淋巴结转移的腺癌中(P=0.017)。uPA高表达或与ET-1同时高表达的腺癌患者具有较长的术后生存时间(P=0.007, P=0.016)。 结论 检测uPA和ET-1蛋白表达水平变化可能有助于非小细胞肺癌的预后评估。
Collapse
Affiliation(s)
- Yanyi Jiang
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Science, Anhui Normal University, Wuhu, China
| | | | | | | | | | | | | | | |
Collapse
|