1
|
Geng H, Zhou Q, Guo W, Lu L, Bi L, Wang Y, Min J, Yu D, Liang Z. Exosomes in bladder cancer: novel biomarkers and targets. J Zhejiang Univ Sci B 2021; 22:341-347. [PMID: 33973417 DOI: 10.1631/jzus.b2000711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exosomes are nanometer-sized vesicles that contain various types of biologically active components, including proteins, nucleic acids, carbohydrates, and lipids, which vary with the type and physiological state of the cell. In recent years, several studies have showed that exosomes can provide new non-invasive diagnostic and prognostic biomarkers in patients affected by cancers, including bladder cancer (BC), and the lipid bilayer membrane structure makes exosomes as promising delivery vehicles for therapeutic applications. Exosomes have the characteristics of high abundance, high stability, tissue specificity, and wide distribution in body fluids, and are secreted as various types by cells in different states, thereby possessing great potential as biomarkers for BC. Herein, we briefly summarize the functions and roles of exosomes in the occurrence and development of BC and the current progress of research on exosomes in BC, while focusing on potential clinical applications of the diagnosis, treatment, and prognosis of BC.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qingchen Zhou
- Department of Urology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenhao Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ling Lu
- Department of Child Healthcare, Women and Children Health Hospital of Zhenjiang, Zhenjiang 212001, China
| | - Liangkuan Bi
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yi Wang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jie Min
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Dexin Yu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, Moradizarmehri S, Hajighadimi S, Savardashtaki A, Mirzaei H. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2019; 72:724-748. [PMID: 31618516 DOI: 10.1002/iub.2182] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Exosomes belong to extracellular vehicles that were produced and secreted from most eukaryotic cells and are involved in cell-to-cell communications. They are an effective delivery system for biological compounds such as mRNAs, microRNAs (miRNAs), proteins, lipids, saccharides, and other physiological compounds to target cells. In this way, they could influence on cellular pathways and mediate their physiological behaviors including cell proliferation, tumorigenesis, differentiation, and so on. Many research studies focused on their role in cancers and also on potentially therapeutic and biomarker applications. In the current study, we reviewed the exosomes' effects on cancer progression based on their cargoes including miRNAs, long noncoding RNAs, circular RNAs, DNAs, mRNAs, proteins, and lipids. Moreover, their therapeutic roles in cancer were considered. In this regard, we have given a brief overview of challenges and obstacles in using exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin Tehran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Cao Z, Peng L, He K, Wang X, Lu Y, Zhang Y, Bi L. Value of quantitative and qualitative analyses of serum and urine cell-free DNA as diagnostic tools for bladder cancer: a meta-analysis. Expert Rev Anticancer Ther 2019; 19:645-653. [PMID: 31177855 DOI: 10.1080/14737140.2019.1626723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ke He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Youlu Lu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat 2018; 17:1533033818763450. [PMID: 29681222 PMCID: PMC5949932 DOI: 10.1177/1533033818763450] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a kind of nanometric lipidic vesicles, exosomes have been presumed to play a leading role in the regulation of tumor microenvironment through exosomes-mediated transfer of proteins and genetic materials. Tumor-derived exosomes are recognized as a critical determinant of the tumor progression. Intriguingly, some current observations have identified that exosomes are essential for several intercellular exchanges of proteins, messenger RNAs, noncoding RNAs (including long noncoding RNAs and microRNAs) as well as to the process of cancer metastasis and drug resistance. Herein, we review the role of exosomes and their molecular cargos in cancer invasion and metastasis, summarize how they interact with antitumor agents, and highlight their translational implications.
Collapse
Affiliation(s)
- Chengcheng Zhang
- 1 Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yang
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongqi Wang
- 1 Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, Xiao KH, Liu ZW, Luo JH, Zhou FJ, Xie D. PRMT5 Circular RNA Promotes Metastasis of Urothelial Carcinoma of the Bladder through Sponging miR-30c to Induce Epithelial-Mesenchymal Transition. Clin Cancer Res 2018; 24:6319-6330. [PMID: 30305293 DOI: 10.1158/1078-0432.ccr-18-1270] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial-mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells' EMT and explored their regulatory mechanisms and clinical significance in UCBs. EXPERIMENTAL DESIGN We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells' EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA). RESULTS We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis. CONCLUSIONS CircPRMT5 exerts critical roles in promoting UCB cells' EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ri-Xin Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Su Wei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Hong Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Hao Feng
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Tan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jie-Wei Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gang-Jun Yuan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si-Liang Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Sheng-Jie Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kang-Hua Xiao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhuo-Wei Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China. .,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-Sen University Cancer Center, Guangzhou, China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Butvilovskaya VI, Tikhonov AA, Savvateeva EN, Ragimov AA, Salimov EL, Voloshin SA, Sidorov DV, Chernichenko MA, Polyakov AP, Filushin MM, Tsybulskaya MV, Rubina AY. Hydrogel microchip as a tool for studying exosomes in human serum. Mol Biol 2017. [DOI: 10.1134/s0026893317050053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Sin MLY, Mach KE, Sinha R, Wu F, Trivedi DR, Altobelli E, Jensen KC, Sahoo D, Lu Y, Liao JC. Deep Sequencing of Urinary RNAs for Bladder Cancer Molecular Diagnostics. Clin Cancer Res 2017; 23:3700-3710. [PMID: 28193625 DOI: 10.1158/1078-0432.ccr-16-2610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 01/06/2023]
Abstract
Purpose: The majority of bladder cancer patients present with localized disease and are managed by transurethral resection. However, the high rate of recurrence necessitates lifetime cystoscopic surveillance. Developing a sensitive and specific urine-based test would significantly improve bladder cancer screening, detection, and surveillance.Experimental Design: RNA-seq was used for biomarker discovery to directly assess the gene expression profile of exfoliated urothelial cells in urine derived from bladder cancer patients (n = 13) and controls (n = 10). Eight bladder cancer specific and 3 reference genes identified by RNA-seq were quantitated by qPCR in a training cohort of 102 urine samples. A diagnostic model based on the training cohort was constructed using multiple logistic regression. The model was further validated in an independent cohort of 101 urines.Results: A total of 418 genes were found to be differentially expressed between bladder cancer and controls. Validation of a subset of these genes was used to construct an equation for computing a probability of bladder cancer score (PBC) based on expression of three markers (ROBO1, WNT5A, and CDC42BPB). Setting PBC = 0.45 as the cutoff for a positive test, urine testing using the three-marker panel had overall 88% sensitivity and 92% specificity in the training cohort. The accuracy of the three-marker panel in the independent validation cohort yielded an AUC of 0.87 and overall 83% sensitivity and 89% specificity.Conclusions: Urine-based molecular diagnostics using this three-marker signature could provide a valuable adjunct to cystoscopy and may lead to a reduction of unnecessary procedures for bladder cancer diagnosis. Clin Cancer Res; 23(14); 3700-10. ©2017 AACR.
Collapse
Affiliation(s)
- Mandy L Y Sin
- Department of Urology, Stanford University School of Medicine, Stanford, California.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, California.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Fan Wu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Dharati R Trivedi
- Department of Urology, Stanford University School of Medicine, Stanford, California.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Emanuela Altobelli
- Department of Urology, Stanford University School of Medicine, Stanford, California.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Kristin C Jensen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Debashis Sahoo
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, California
| | - Ying Lu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California.,Department of Biomedical Data Science and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, California. .,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
8
|
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol Res 2016; 111:487-500. [PMID: 27394168 DOI: 10.1016/j.phrs.2016.07.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
Abstract
Exosomes are naturally secreted nanovesicles that have recently aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. These 30-100nm sized vesicles are released from the cells into the extracellular space and ultimately into biofluids in a tightly regulated way. Their molecular composition reflects their cells of origin, may confer specific cell or tissue tropism and underlines their biological activity. Exosomes and other extracellular vesicles (EVs) carry specific sets of proteins, nucleic acids (DNA, mRNA and regulatory RNAs), lipids and metabolites that represent an appealing source of novel noninvasive markers through biofluid biopsies. Exosome-shuttled molecules maintain their biological activity and are capable of modulating and reprogramming recipient cells. This multi-faceted nature of exosomes hold great promise for improving cancer treatment featuring them as novel diagnostic sensors as well as therapeutic effectors and drug delivery vectors. Natural biological activity including the therapeutic payload and targeting behavior of EVs can be tuned via genetic and chemical engineering. In this review we describe the properties that EVs share with conventional synthetic nanoparticles, including size, liposome-like membrane bilayer with customizable surface, and multifunctional capacity. We also highlight unique characteristics of EVs, which possibly allow them to circumvent some limitations of synthetic nanoparticle systems and facilitate clinical translation. The latter are in particular correlated with their innate stability, ability to cross biological barriers, efficiently deliver bioactive cargos or evade immune recognition. Furthermore, we discuss the potential roles for EVs in diagnostics and theranostics, and highlight the challenges that still need to be overcome before EVs can be applied to routine clinical practice.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Dept. Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natasa Zarovni
- HansaBioMed OU Tallinn, Estonia and Exosomics Siena S.p.A, Siena, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
9
|
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One 2016; 11:e0147236. [PMID: 26800519 PMCID: PMC4723257 DOI: 10.1371/journal.pone.0147236] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Exosomes are 30-150nM membrane-bound secreted vesicles that are readily isolated from biological fluids such as urine (UEs). Exosomes contain proteins, micro RNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) from their cells of origin. Although miRNA, protein and lncRNA have been isolated from serum as potential biomarkers for benign and malignant disease, it is unknown if lncRNAs in UEs from urothelial bladder cancer (UBC) patients can serve as biomarkers. lncRNAs are > 200 nucleotide long transcripts that do not encode protein and play critical roles in tumor biology. As the number of recognized tumor-associated lncRNAs continues to increase, there is a parallel need to include lncRNAs into biomarker discovery and therapeutic target algorithms. The lncRNA HOX transcript antisense RNA (HOTAIR) has been shown to facilitate tumor initiation and progression and is associated with poor prognosis in several cancers. The importance of HOTAIR in cancer biology has sparked interest in using HOTAIR as a biomarker and potential therapeutic target. Here we show HOTAIR and several tumor-associated lncRNAs are enriched in UEs from UBC patients with high-grade muscle-invasive disease (HGMI pT2-pT4). Knockdown of HOTAIR in UBC cell lines reduces in vitro migration and invasion. Importantly, loss of HOTAIR expression in UBC cell lines alters expression of epithelial-to-mesenchyme transition (EMT) genes including SNAI1, TWIST1, ZEB1, ZO1, MMP1 LAMB3, and LAMC2. Finally, we used RNA-sequencing to identify four additional lncRNAs enriched in UBC patient UEs. These data, suggest that UE-derived lncRNA may potentially serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Claudia Berrondo
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Jonathan Flax
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Victor Kucherov
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Aisha Siebert
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas Osinski
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Alex Rosenberg
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Christopher Fucile
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Samuel Richheimer
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Carla J. Beckham
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the Long Non-Coding RNA HOTAIR Correlates with Disease Progression in Bladder Cancer and Is Contained in Bladder Cancer Patient Urinary Exosomes. PLoS One 2016. [PMID: 26800519 DOI: 10.1371/journal.pone.0147236.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 30-150nM membrane-bound secreted vesicles that are readily isolated from biological fluids such as urine (UEs). Exosomes contain proteins, micro RNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) from their cells of origin. Although miRNA, protein and lncRNA have been isolated from serum as potential biomarkers for benign and malignant disease, it is unknown if lncRNAs in UEs from urothelial bladder cancer (UBC) patients can serve as biomarkers. lncRNAs are > 200 nucleotide long transcripts that do not encode protein and play critical roles in tumor biology. As the number of recognized tumor-associated lncRNAs continues to increase, there is a parallel need to include lncRNAs into biomarker discovery and therapeutic target algorithms. The lncRNA HOX transcript antisense RNA (HOTAIR) has been shown to facilitate tumor initiation and progression and is associated with poor prognosis in several cancers. The importance of HOTAIR in cancer biology has sparked interest in using HOTAIR as a biomarker and potential therapeutic target. Here we show HOTAIR and several tumor-associated lncRNAs are enriched in UEs from UBC patients with high-grade muscle-invasive disease (HGMI pT2-pT4). Knockdown of HOTAIR in UBC cell lines reduces in vitro migration and invasion. Importantly, loss of HOTAIR expression in UBC cell lines alters expression of epithelial-to-mesenchyme transition (EMT) genes including SNAI1, TWIST1, ZEB1, ZO1, MMP1 LAMB3, and LAMC2. Finally, we used RNA-sequencing to identify four additional lncRNAs enriched in UBC patient UEs. These data, suggest that UE-derived lncRNA may potentially serve as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Claudia Berrondo
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Jonathan Flax
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Victor Kucherov
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Aisha Siebert
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas Osinski
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Alex Rosenberg
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Christopher Fucile
- Division of Immunology and Rheumatology, University of Rochester, Strong Memorial Hospital Rochester, New York, United States of America
| | - Samuel Richheimer
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| | - Carla J Beckham
- University of Rochester Department of Urology, Strong Memorial Hospital Rochester, New York, United States of America
| |
Collapse
|
11
|
Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 2015; 87:46-58. [PMID: 26044649 DOI: 10.1016/j.ymeth.2015.05.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Clinical implementation of exosome based diagnostic and therapeutic applications is still limited by the lack of standardized technologies that integrate efficient isolation of exosomes with comprehensive detection of relevant biomarkers. Conventional methods for exosome isolation based on their physical properties such as size and density (filtration, ultracentrifugation or density gradient), or relying on their differential solubility (chemical precipitation) are established primarily for processing of cell supernatants and later adjusted to complex biological samples such as plasma. Though still representing gold standard in the field, these methods are clearly suboptimal for processing of routine clinical samples and have intrinsic limits that impair their use in biomarker discovery and development of novel diagnostics. Immunoisolation (IA) offers unique advantages for the recovery of exosomes from complex and viscous fluids, in terms of increased efficiency and specificity of exosome capture, integrity and selective origin of isolated vesicles. We have evaluated several commercially available solutions for immunoplate- and immunobead-based affinity isolation and have further optimized protocols to decrease non-specific binding due to exosomes complexity and matrix contaminants. In order to identify best molecular targets for total exosome capture from diverse biological sources, as well as for selective enrichment in populations of interest (e.g. tumor derived exosomes) several exosome displayed proteins and respective antibodies have been evaluated for plate and bead functionalisation. Moreover, we have optimized and directly implemented downstream steps allowing on-line quantification and characterization of bound exosome markers, namely proteins and RNAs. Thus assembled assays enabled rapid overall quantification and validation of specific exosome associated targets in/on plasma exosomes, with multifold increased yield and enrichment ratio over benchmarking technologies. Assays directly coupling selective immobilization of exosomes to a solid phase and their immune- and or molecular profiling through conventional ELISA and PCR analysis, resulted in easy-to-elaborate, quantitative readouts, with high low-end sensitivity and dynamic range, low costs and hands-on time, minimal sample handling and downscaling of a working plasma volumes to as few as 100 μl.
Collapse
|
12
|
Verma M, Lam TK, Hebert E, Divi RL. Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 2015; 15:6. [PMID: 25883534 PMCID: PMC4399158 DOI: 10.1186/s12907-015-0005-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. In addition, EVs may offer a non-invasive means to assess cancer initiation, progression, risk, survival, and treatment outcomes. The goal of this review is to highlight the current status of information on the role of EVs in cancer, and to explore the utility of EVs for cancer diagnosis, prognosis, and epidemiology.
Collapse
Affiliation(s)
- Mukesh Verma
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Tram Kim Lam
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Elizabeth Hebert
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Rao L Divi
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|