1
|
Song R, Liu B, Xu H. CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm. Urolithiasis 2024; 52:157. [PMID: 39499273 DOI: 10.1007/s00240-024-01656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVES To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm. MATERIALS AND METHODS We enrolled 333 patients who underwent SWL treatment for ureteral stones and randomly divided them into training and test sets. A DL model was built based on CT images of ureteral stones to predict SWL outcomes. The predictive efficacy of the DL model was assessed by comparing it with traditional and radiomics models. RESULTS The DL model demonstrated significantly better predictive performance in both training and test sets compared to radiomics (training set, AUC: 0.993 vs. 0.923, P < 0.001; test set AUC: 0.982 vs. 0.846, P < 0.001) and traditional models (training set AUC: 0.993 vs. 0.75, P = 0.005; test set AUC: 0.982 vs. 0.677, P < 0.001). Decision curve analysis (DCA) also proved that the DL model brought more benefit in predicting the success of SWL treatment than other methods. CONCLUSION The DL model based on CT images showed excellent ability to predict the probability of success of SWL treatment for patients with ureteral stones larger than 1 cm, providing a new auxiliary tool for clinical treatment decision-making.
Collapse
Affiliation(s)
- Rijin Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Bo Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Huixin Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Altunhan A, Soyturk S, Guldibi F, Tozsin A, Aydın A, Aydın A, Sarica K, Guven S, Ahmed K. Artificial intelligence in urolithiasis: a systematic review of utilization and effectiveness. World J Urol 2024; 42:579. [PMID: 39417840 DOI: 10.1007/s00345-024-05268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Mirroring global trends, artificial intelligence advances in medicine, notably urolithiasis. It promises accurate diagnoses, effective treatments, and forecasting epidemiological risks and stone passage. This systematic review aims to identify the types of AI models utilised in urolithiasis studies and evaluate their effectiveness. METHODS The study was registered with PROSPERO. Pubmed, EMBASE, Google Scholar, and Cochrane Library databases were searched for relevant literature, using keywords such as 'urology,' 'artificial intelligence,' and 'machine learning.' Only original AI studies on urolithiasis were included, excluding reviews, unrelated studies, and non-English articles. PRISMA guidelines followed. RESULTS Out of 4851 studies initially identified, 71 were included for comprehensive analysis in the application of AI in urolithiasis. AI showed notable proficiency in stone composition analysis in 12 studies, achieving an average precision of 88.2% (Range 0.65-1). In the domain of stone detection, the average precision remarkably reached 96.9%. AI's accuracy rate in predicting spontaneous ureteral stone passage averaged 87%, while its performance in treatment modalities such as PCNL and SWL achieved average accuracy rates of 82% and 83%, respectively. These AI models were generally superior to traditional diagnostic and treatment methods. CONCLUSION The consolidated data underscores AI's increasing significance in urolithiasis management. Across various dimensions-diagnosis, monitoring, and treatment-AI outperformed conventional methodologies. High precision and accuracy rates indicate that AI is not only effective but also poised for integration into routine clinical practice. Further research is warranted to establish AI's long-term utility and to validate its role as a standard tool in urological care.
Collapse
Affiliation(s)
- Abdullah Altunhan
- Meram School of Medicine, Urology Department, Necmettin Erbakan University, Konya, Türkiye
| | - Selim Soyturk
- Meram School of Medicine, Urology Department, Necmettin Erbakan University, Konya, Türkiye
| | - Furkan Guldibi
- Meram School of Medicine, Urology Department, Necmettin Erbakan University, Konya, Türkiye
| | - Atinc Tozsin
- School of Medicine, Urology Department, Trakya University, Edirne, Türkiye
| | - Abdullatif Aydın
- Department of Urology, King's College Hospital NHS Foundation Trust, London, UK
- MRC Centre for Transplantation, King's College London, London, UK
| | - Arif Aydın
- Meram School of Medicine, Urology Department, Necmettin Erbakan University, Konya, Türkiye
| | - Kemal Sarica
- Department of Urology, Health Sciences University, Prof. Dr. Ilhan Varank Education and Training Hospital, Istanbul, Türkiye
- Department of Urology, Biruni University Medical School, Istanbul, Türkiye
| | - Selcuk Guven
- Meram School of Medicine, Urology Department, Necmettin Erbakan University, Konya, Türkiye.
| | - Kamran Ahmed
- Meram School of Medicine, Urology Department, Necmettin Erbakan University, Konya, Türkiye
- Department of Urology, King's College Hospital NHS Foundation Trust, London, UK
- Sheikh Khalifa Medical City, Abu Dhabi, UAE
- Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
3
|
Xu H, Liu B, Tang L. CT-based radiomics for predicting success of shock wave lithotripsy in ureteral stones larger than 1 cm. World J Urol 2024; 42:397. [PMID: 38985166 DOI: 10.1007/s00345-024-05111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/05/2024] [Indexed: 07/11/2024] Open
Abstract
PURPOSE This study aims to investigate the predictive value of CT-based radiomics in determining the success of extracorporeal shock wave lithotripsy (SWL) treatment for ureteral stones larger than 10mm in adult patients. MATERIALS AND METHODS A total of 301 eligible patients (165/136 successful/unsuccessful) who underwent SWL were retrospectively evaluated and divided into a training cohort (n = 241) and a test cohort (n = 60) following an 8:2 ratio. Univariate analysis was performed to assess clinical characteristics for constructing a nomogram. Radiomics and conventional radiological characteristics of stones were evaluated. Following feature selection, radiomics and radiological models were constructed using logistic regression (LR), support vector machine (SVM), random forest (RF), K nearest neighbor (KNN), and XGBoost. The models' performance was compared using metrics such as the area under the receiver operating characteristic curve (AUC), precision, recall, accuracy, and F1 score. Finally, a nomogram was created incorporating the best image model signature and clinical predictors. RESULTS The SVM-based radiomics model showed superior predictive performance in both training and test cohorts (AUC: 0.956, 0.891, respectively). The nomogram, which combined SVM-based radiomics signature with proximal ureter diameter (PUD), demonstrated further improved predictive performance in the test cohort (AUC: 0.891 vs. 0.939, P = 0.166). CONCLUSIONS Integration of CT-derived radiomics and PUD showed excellent ability to predict SWL treatment success in patients with ureteral stones larger than 10mm, providing a promising approach for clinical decision-making.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Bo Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Vigneswaran G, Teh R, Ripa F, Pietropaolo A, Modi S, Chauhan J, Somani BK. A machine learning approach using stone volume to predict stone-free status at ureteroscopy. World J Urol 2024; 42:344. [PMID: 38775943 DOI: 10.1007/s00345-024-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION To develop a predictive model incorporating stone volume along with other clinical and radiological factors to predict stone-free (SF) status at ureteroscopy (URS). MATERIAL AND METHODS Retrospective analysis of patients undergoing URS for kidney stone disease at our institution from 2012 to 2021. SF status was defined as stone fragments < 2 mm at the end of the procedure confirmed endoscopically and no evidence of stone fragments > 2 mm at XR KUB or US KUB at 3 months follow up. We specifically included all non-SF patients to optimise our algorithm for identifying instances with residual stone burden. SF patients were also randomly sampled over the same time period to ensure a more balanced dataset for ML prediction. Stone volumes were measured using preprocedural CT and combined with 19 other clinical and radiological factors. A bagged trees machine learning model with cross-validation was used for this analysis. RESULTS 330 patients were included (SF: n = 276, not SF: n = 54, mean age 59.5 ± 16.1 years). A fivefold cross validated RUSboosted trees model has an accuracy of 74.5% and AUC of 0.82. The model sensitivity and specificity were 75% and 72.2% respectively. Variable importance analysis identified total stone volume (17.7% of total importance), operation time (14.3%), age (12.9%) and stone composition (10.9%) as important factors in predicting non-SF patients. Single and cumulative stone size which are commonly used in current practice to guide management, only represented 9.4% and 4.7% of total importance, respectively. CONCLUSION Machine learning can be used to predict patients that will be SF at the time of URS. Total stone volume appears to be more important than stone size in predicting SF status. Our findings could be used to optimise patient counselling and highlight an increasing role of stone volume to guide endourological practice and future guidelines.
Collapse
Affiliation(s)
- Ganesh Vigneswaran
- Department of Interventional Radiology, University Hospital Southampton, Southampton, UK
- Cancer Sciences, University of Southampton, Southampton, UK
| | - Ren Teh
- Department of Interventional Radiology, University Hospital Southampton, Southampton, UK
| | - Francesco Ripa
- Department of Urology, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Amelia Pietropaolo
- Department of Urology, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Sachin Modi
- Department of Interventional Radiology, University Hospital Southampton, Southampton, UK
| | - Jagmohan Chauhan
- Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Bhaskar Kumar Somani
- Department of Urology, University Hospital Southampton, Tremona Road, Southampton, UK.
| |
Collapse
|
5
|
Nakamae Y, Deguchi R, Nemoto M, Kimura Y, Yamashita S, Kohjimoto Y, Hara I. AI prediction of extracorporeal shock wave lithotripsy outcomes for ureteral stones by machine learning-based analysis with a variety of stone and patient characteristics. Urolithiasis 2023; 52:9. [PMID: 38041695 DOI: 10.1007/s00240-023-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
We propose an artificial intelligence prediction method for extracorporeal shock wave lithotripsy treatment outcomes by analysis of a wide variety of variables. We retrospectively reviewed the records of 171 patients from between January 2009 and November 2019 that underwent shock wave lithotripsy at Wakayama Medical University, Japan, for ureteral stones shown on preoperative non-contrast computed tomography. This prediction method consisted of stone area extraction, stone analyzing factor extraction from non-contrast computed tomography images, and shock wave lithotripsy treatment result prediction by a non-linear support vector machine for analysis of 15 input and automatic measurement factors. Input factors included patient age, skin-to-stone distance, and maximum ureteral wall thickness, and the automatic measurement factors included 11 non-contrast computed tomography image texture factors in the stone area and stone volume. Permutation feature importance was also applied to the artificial intelligence prediction results to analyze the importance of each factor relating to estimate decision grounds. The prediction performance was evaluated by five-fold cross-validation, it obtained 0.742 of the mean area under the receiver operating characteristic curve. The proposed method is shown by these results to have robust data diversity and effective clinical application. As a result of permutation feature importance, some factors that showed high p-values in the significant difference tests were thought to have a high contribution to the proposed prediction method. Future issues include validation using a larger volume of high-resolution clinical non-contrast computed tomography image data and the application of deep learning.
Collapse
Affiliation(s)
- Yukako Nakamae
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa City, Japan
| | - Ryusuke Deguchi
- Department of Urology, Wakayama Medical University, Wakayama City, Japan
| | - Mitsutaka Nemoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa City, Japan.
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa City, Wakayama, 649-6493, Japan.
| | - Yuichi Kimura
- Faculty of Informatics, Kindai University, Higashiosaka, Japan
| | - Shimpei Yamashita
- Department of Urology, Wakayama Medical University, Wakayama City, Japan
| | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, Wakayama City, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama City, Japan
| |
Collapse
|
6
|
Anastasiadis A, Koudonas A, Langas G, Tsiakaras S, Memmos D, Mykoniatis I, Symeonidis EN, Tsiptsios D, Savvides E, Vakalopoulos I, Dimitriadis G, de la Rosette J. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review. Asian J Urol 2023; 10:258-274. [PMID: 37538159 PMCID: PMC10394286 DOI: 10.1016/j.ajur.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective To provide a comprehensive review on the existing research and evidence regarding artificial intelligence (AI) applications in the assessment and management of urinary stone disease. Methods A comprehensive literature review was performed using PubMed, Scopus, and Google Scholar databases to identify publications about innovative concepts or supporting applications of AI in the improvement of every medical procedure relating to stone disease. The terms ''endourology'', ''artificial intelligence'', ''machine learning'', and ''urolithiasis'' were used for searching eligible reports, while review articles, articles referring to automated procedures without AI application, and editorial comments were excluded from the final set of publications. The search was conducted from January 2000 to September 2023 and included manuscripts in the English language. Results A total of 69 studies were identified. The main subjects were related to the detection of urinary stones, the prediction of the outcome of conservative or operative management, the optimization of operative procedures, and the elucidation of the relation of urinary stone chemistry with various factors. Conclusion AI represents a useful tool that provides urologists with numerous amenities, which explains the fact that it has gained ground in the pursuit of stone disease management perfection. The effectiveness of diagnosis and therapy can be increased by using it as an alternative or adjunct to the already existing data. However, little is known concerning the potential of this vast field. Electronic patient records, containing big data, offer AI the opportunity to develop and analyze more precise and efficient diagnostic and treatment algorithms. Nevertheless, the existing applications are not generalizable in real-life practice, and high-quality studies are needed to establish the integration of AI in the management of urinary stone disease.
Collapse
Affiliation(s)
- Anastasios Anastasiadis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Antonios Koudonas
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Georgios Langas
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Stavros Tsiakaras
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Dimitrios Memmos
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Ioannis Mykoniatis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Evangelos N. Symeonidis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Ioannis Vakalopoulos
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Georgios Dimitriadis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Jean de la Rosette
- Department of Urology, Istanbul Medipol Mega University Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Non-contrast computed tomography-based factors in predicting ESWL success: A systematic review and meta-analysis. Prog Urol 2023; 33:27-47. [PMID: 36202729 DOI: 10.1016/j.purol.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE We assessed the efficacy of some predictive factors that can be measured with non-contrast computed tomography and may affect ESWL success with a systematic review and meta-analysis. MATERIALS AND METHODS All data sources were broadly investigated up to April 2022. Data were extracted from the relevant studies and analyzed with RevMan software. In a random effects model, standard mean difference (SMD) and risk ratio (RR) values were given with 95% confidence intervals. RESULTS In total, pooled analysis included 7148 patients in 43 studies. The combined effect estimate showed significant differences between the ESWL success and ESWL failure groups in terms of Hounsfield unit (HU), Hounsfield density (HD), skin to stone distance (SSD), ureteral wall thickness (UWT), stone volume, stone area, abdominal fat parameters, diameter of proximal ureter, and hydronephrosis. However, perinephric stranding and renal cortical thickness were not found to be statistically significant between the study groups. CONCLUSIONS HU, HD, SSD, UWT, stone volume, stone area, abdominal fat parameters, diameter of proximal ureter and hydronephrosis are effective factors for prediction of ESWL success. It is important to decide on treatment before the procedure for stones with appropriate diameter for ESWL.
Collapse
|
8
|
Sassanarakkit S, Hadpech S, Thongboonkerd V. Theranostic roles of machine learning in clinical management of kidney stone disease. Comput Struct Biotechnol J 2022; 21:260-266. [PMID: 36544469 PMCID: PMC9755239 DOI: 10.1016/j.csbj.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney stone disease (KSD) is a common illness caused by deposition of solid minerals formed inside the kidney. The disease prevalence varies, based on sociodemographic, lifestyle, dietary, genetic, gender, age, environmental and climatic factors, but has been continuously increasing worldwide. KSD is a highly recurrent disease, and the recurrence rate is about 11% within two years after the stone removal. Recently, machine learning has been widely used for KSD detection, stone type prediction, determination of appropriate treatment modality and prediction of therapeutic outcome. This review provides a brief overview of KSD and discusses how machine learning can be applied to diagnostics, therapeutics and prognostics in clinical management of KSD for better therapeutic outcome.
Collapse
|
9
|
Bouhadana D, Lu XH, Luo JW, Assad A, Deyirmendjian C, Guennoun A, Nguyen DD, Kwong JCC, Chughtai B, Elterman D, Zorn KC, Trinh QD, Bhojani N. Clinical Applications of Machine Learning for Urolithiasis and Benign Prostatic Hyperplasia: A Systematic Review. J Endourol 2022; 37:474-494. [PMID: 36266993 DOI: 10.1089/end.2022.0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Previous systematic reviews related to machine learning (ML) in urology often overlooked the literature related to endourology. Therefore, we aim to conduct a more focused systematic review examining the use of ML algorithms for benign prostatic hyperplasia (BPH) or urolithiasis. In addition, we are the first group to evaluate these articles using the STREAM-URO framework. METHODS Searches of MEDLINE, Embase, and the Cochrane CENTRAL databases were conducted from inception through July 12, 2021. Keywords included those related to ML, endourology, urolithiasis, and BPH. Two reviewers screened the citations that were eligible for title, abstract and full-text screening, with conflicts resolved by a third reviewer. Two reviewers extracted information from the studies, with discrepancies resolved by a third reviewer. The data collected was then qualitatively synthesized by consensus. Two reviewers evaluated each article according to the STREAM-URO checklist with discrepancies resolved by a third reviewer. RESULTS After identifying 459 unique citations, 63 articles were retained for data extraction. Most articles consisted of tabular (n=32) and computer vision (n=23) tasks. The two most common problem types were classification (n=40) and regression (n=12). In general, most studies utilized neural networks as their ML algorithm (n=36). Among the 63 studies retrieved, 58 were related to urolithiasis and five focused on BPH. The urolithiasis studies were designed for outcome prediction (n=20), stone classification (n=18), diagnostics (n=17), and therapeutics (n=3). The BPH studies were designed for outcome prediction (n=2), diagnostics (n=2), and therapeutics (n=1). On average, the urolithiasis and BPH articles met 13.8 (SD 2.6), and 13.4 (4.1) of the 26 STREAM-URO framework criteria, respectively. CONCLUSIONS The majority of the retrieved studies successfully helped with outcome prediction, diagnostics, and therapeutics for both urolithiasis and BPH. While ML shows great promise in improving patient care, it is important to adhere to the recently developed STREAM-URO framework to ensure the development of high-quality ML studies.
Collapse
Affiliation(s)
- David Bouhadana
- McGill University Faculty of Medicine and Health Sciences, 12367, 3605 de la Montagne, Montreal, Quebec, Canada, H3G 2M1;
| | - Xing Han Lu
- McGill University School of Computer Science, 348406, Montreal, Quebec, Canada;
| | - Jack W Luo
- McGill University Faculty of Medicine and Health Sciences, 12367, Montreal, Quebec, Canada;
| | - Anis Assad
- University of Montreal Hospital Centre, 25443, Urology, Montreal, Quebec, Canada;
| | | | - Abbas Guennoun
- University of Montreal Hospital Centre, 25443, Urology, Montreal, Quebec, Canada;
| | | | | | - Bilal Chughtai
- Weill Cornell Medical Center, Urology, New York, New York, United States;
| | - Dean Elterman
- University of Toronto, 7938, Urology, Toronto, Ontario, Canada;
| | | | - Quoc-Dien Trinh
- Brigham and Women's Hospital, Urology, Boston, Massachusetts, United States;
| | - Naeem Bhojani
- University of Montreal Hospital Centre, 25443, Urology, Montreal, Quebec, Canada;
| |
Collapse
|
10
|
Ureteral calculi lithotripsy for single ureteral calculi: can DNN-assisted model help preoperatively predict risk factors for sepsis? Eur Radiol 2022; 32:8540-8549. [PMID: 35731290 DOI: 10.1007/s00330-022-08882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore the utility of radiomics and deep learning model in assessing the risk factors for sepsis after flexible ureteroscopy lithotripsy (FURL) or percutaneous nephrolithotomy (PCNL) in patients with ureteral calculi. METHODS This retrospective analysis included 847 patients with treatment-naive proximal ureteral calculi who received FURL or PCNL. All participants were preoperatively conducted non-contrast computed tomography scans, and relevant clinical information was meanwhile collected. After propensity score matching, the radiomics model was established to predict the onset of sepsis. A deep learning model was also adapted to further improve the prediction accuracy. Performance of these trained models was verified in another independent external validation set including 40 cases of ureteral calculi patients. RESULTS The overall incidence of sepsis after FURL or PCNL was 5.9%. The least absolute shrinkage and selection operator (LASSO) regression analysis revealed 26 predictive variables, with an overall AUC of 0.881 (95% CI, 0.813-0.931) and an AUC of 0.783 (95% CI, 0.766-0.801) in external validation cohort. Judicious adaption of a deep neural network (DNN) model to our dataset improved the AUC to 0.920 (95% CI, 0.906-0.933) in the internal validation. To eliminate the overfitting, external validation was carried out for DNN model (AUC = 0.874 (95% CI, 0.858-0.891)). CONCLUSIONS The DNN was more effective than the LASSO model in revealing risk factors for sepsis after FURL or PCNL in single ureteral calculi patients, and females are more susceptible to sepsis than males. Deep learning models have the potential to act as gatekeepers to facilitate patient stratification. KEY POINTS • Both the least absolute shrinkage and selection operator (LASSO) and deep neural network (DNN) models were shown to be effective in sepsis prediction. • The DNN model achieved superior prediction capability, with an AUC of 0.920 (95% CI, 0.906-0.933). • DNN-assisted model has potential to serve as a gatekeeper to facilitate patient stratification.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Artificial intelligence in medicine has allowed for efficient processing of large datasets to perform cognitive tasks that facilitate clinical decision-making, and it is an emerging area of research. This review aims to highlight the most pertinent and recent research in artificial intelligence in endourology, where it has been used to optimize stone diagnosis, support decision-making regarding management, predict stone recurrence, and provide new tools for bioinformatics research within endourology. RECENT FINDINGS Artificial neural networks (ANN) and machine learning approaches have demonstrated high accuracy in predicting stone diagnoses, stone composition, and outcomes of spontaneous stone passage, shockwave lithotripsy (SWL), or percutaneous nephrolithotomy (PCNL); some of these models outperform more traditional predictive models and existing nomograms. In addition, these approaches have been used to predict stone recurrence, quality of life scores, and provide novel methods of mining the electronic medical record for research. SUMMARY Artificial intelligence can be used to enhance existing approaches to stone diagnosis, management, and prevention to provide a more individualized approach to endourologic care. Moreover, it may support an emerging area of bioinformatics research within endourology. However, despite high accuracy, many of the published algorithms lack external validity and require further study before they are more widely adopted.
Collapse
|
12
|
Artificial Intelligence in Urology. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Erkoc M, Bozkurt M, Besiroglu H, Canat L, Atalay HA. Success of extracorporeal shock wave lithotripsy based on CT texture analysis. Int J Clin Pract 2021; 75:e14823. [PMID: 34491588 DOI: 10.1111/ijcp.14823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The aims of the study were to evaluate whether computerised tomography texture analysis (CTTA) based on non-contrast computed tomography (NCCT) has predictive value for the success of extracorporeal-shockwave lithotripsy (ESWL) in upper urinary tract stones (UUTS). METHODS This study included 156 of 356 patients undergoing ESWL for UUTS sized 0.5-2 cm from 2015 to 2019. Patients with congenital kidney anomalies, radiolucent stones, multiple stones, treated for upper urinary tract stones previously and lower pole stones were excluded from study. The number of ESWL sessions of the patients was as follows: 78 (50%) patients had 1 session, 30 (19.2%) patients had 2 sessions and 48 (30.8%) patients had >2 sessions. First- and second-order CTTA properties of patients' UUTS were evaluated using texture analysis software (LIFEx Software). Other clinical features such as Hounsfield Unit (HU), initial stone size, body-mass index (BMI) and skin to stone distance (SSD) was recorded. The patients were divided into two groups according to ESWL success. Cases with residual stones larger than 4 mm were considered failed cases. RESULTS BMI, the standard deviation of HU, SSD, skewness, kurtosis, entropy and all second-order statistics were found to be statistically different between the two groups except for correlation (P < .05). Multivariate analysis showed longer SSD and four new parameters of CTTA (kurtosis, entropy, dissimilarity and energy by the distribution of pixel grey levels in the UUTS) to be significant predictors for unsuccessful ESWL outcomes. SSD and second-order CTTA properties (dissimilarity and energy) had an area under ROC curve of 0.802, 0.850 and 0.824 at a 95% confidence interval. ESWL success rate in all patients was 76.9%. CONCLUSION CTTA can help select patients who will undergo ESWL for upper urinary tract stones. Thus, we can reduce treatment costs and ESWL complications by preventing unnecessary ESWL applications.
Collapse
Affiliation(s)
- Mustafa Erkoc
- Department of Urology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Muammer Bozkurt
- Department of Urology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Huseyin Besiroglu
- Department of Urology, Faculty of Medical School, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Lutfi Canat
- Department of Urology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Hasan A Atalay
- Department of Urology, Beylikduzu State Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Hameed BMZ, Shah M, Naik N, Rai BP, Karimi H, Rice P, Kronenberg P, Somani B. The Ascent of Artificial Intelligence in Endourology: a Systematic Review Over the Last 2 Decades. Curr Urol Rep 2021; 22:53. [PMID: 34626246 PMCID: PMC8502128 DOI: 10.1007/s11934-021-01069-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review To highlight and review the application of artificial intelligence (AI) in kidney stone disease (KSD) for diagnostics, predicting procedural outcomes, stone passage, and recurrence rates. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist. Recent Findings This review discusses the newer advancements in AI-driven management strategies, which holds great promise to provide an essential step for personalized patient care and improved decision making. AI has been used in all areas of KSD including diagnosis, for predicting treatment suitability and success, basic science, quality of life (QOL), and recurrence of stone disease. However, it is still a research-based tool and is not used universally in clinical practice. This could be due to a lack of data infrastructure needed to train the algorithms, wider applicability in all groups of patients, complexity of its use and cost involved with it. Summary The constantly evolving literature and future research should focus more on QOL and the cost of KSD treatment and develop evidence-based AI algorithms that can be used universally, to guide urologists in the management of stone disease.
Collapse
Affiliation(s)
- B M Zeeshan Hameed
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India
| | - Milap Shah
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India
| | - Nithesh Naik
- iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India. .,Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Bhavan Prasad Rai
- iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India.,Freeman Hospital, Newcastle upon Tyne, UK
| | - Hadis Karimi
- Department of Pharmacy, Manipal College of Pharmaceuticals, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Patrick Rice
- Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| | | | - Bhaskar Somani
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India.,Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| |
Collapse
|
15
|
Correlative investigation between routine clinical parameters of dual-energy computed tomography and the outcomes of extracorporeal shock wave lithotripsy in children with urolithiasis: a retrospective study. Abdom Radiol (NY) 2021; 46:4881-4887. [PMID: 34114086 DOI: 10.1007/s00261-021-03162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the associations of DECT parameters with extracorporeal shock wave lithotripsy (ESWL) outcomes in pediatric patients. METHODS A retrospective study of consecutive patients with calculi who underwent ESWL and DECT in our hospital was performed in 2011-2019. The primary outcome was DECT imaging's correlation with ESWL outcomes. The secondary outcome was to determine DECT parameters independently predicting ESWL outcomes, including stone-free (SF) and residual stone (RS) statuses. RESULTS The study included 207 patients. The mean CT attenuations at 140 kVp, 80 kVp, and 120 kVp and effective atomic number (Zeff) were significantly correlated with stone free (SF) and residual stone (RS) (P < 0.05). Areas under the curves (AUCs) of CT attenuations at 120 kVp, 80 kVp, 140 kVp, and dual-energy index (DEI) were 0.784 (95% CI 0.672-0.897), 0.780 (95% CI 0.677-0.884), 0.766 (95% CI 0.658-0.885), and 0.709 (95% CI 0.578-0.840) (all P < 0.05). With cutoffs of 882.5, 1330.5, 1042.5, and 0.103 for CT attenuations at 140 kVp, 80 kVp, 120 kVp, and DEI, respectively, sensitivities and specificities were 75.0% and 31.1%, 83.3% and 31.8%, 80.3% and 31.1%, and 58.3% and 44.7%, respectively. CONCLUSION Our results demonstrated that the parameters of DECT could be used to predict ESWL outcomes (especially the SF status) in children with urolithiasis. ESWL success can be accurately predicted by DECT, and it is hard to predict ESWL failure.
Collapse
|
16
|
Virtual Monoenergetic Images of Dual-Energy CT-Impact on Repeatability, Reproducibility, and Classification in Radiomics. Cancers (Basel) 2021; 13:cancers13184710. [PMID: 34572937 PMCID: PMC8467875 DOI: 10.3390/cancers13184710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Virtual monoenergetic images from dual-energy CT are incrementally used in routine clinical practice. Thus, radiomic analysis will be more often performed on these images in the future. This study characterized the test–retest repeatability and reproducibility of radiomic features from virtual monoenergetic images and their impact on machine-learning-based lesion classification. The results of this study provide a basis to improve radiomic analyses and identify the role of feature stability in classification tasks when using virtual monoenergetic imaging with different scan or reconstruction parameters in multicenter clinical studies. Abstract The purpose of this study was to (i) evaluate the test–retest repeatability and reproducibility of radiomic features in virtual monoenergetic images (VMI) from dual-energy CT (DECT) depending on VMI energy (40, 50, 75, 120, 190 keV), radiation dose (5 and 15 mGy), and DECT approach (dual-source and split-filter DECT) in a phantom (ex vivo), and (ii) to assess the impact of VMI energy and feature repeatability on machine-learning-based classification in vivo in 72 patients with 72 hypodense liver lesions. Feature repeatability and reproducibility were determined by concordance–correlation–coefficient (CCC) and dynamic range (DR) ≥0.9. Test–retest repeatability was high within the same VMI energies and scan conditions (percentage of repeatable features ranging from 74% for SFDE mode at 40 keV and 15 mGy to 86% for DSDE at 190 keV and 15 mGy), while reproducibility varied substantially across different VMI energies and DECTs (percentage of reproducible features ranging from 32.8% for SFDE at 5 mGy comparing 40 with 190 keV to 99.2% for DSDE at 15 mGy comparing 40 with 50 keV). No major differences were observed between the two radiation doses (<10%) in all pair-wise comparisons. In vivo, machine learning classification using penalized regression and random forests resulted in the best discrimination of hemangiomas and metastases at low-energy VMI (40 keV), and for cysts at high-energy VMI (120 keV). Feature selection based on feature repeatability did not improve classification performance. Our results demonstrate the high repeatability of radiomics features when keeping scan and reconstruction conditions constant. Reproducibility diminished when using different VMI energies or DECT approaches. The choice of optimal VMI energy improved lesion classification in vivo and should hence be adapted to the specific task.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI) is the ability of a machine, or computer, to simulate intelligent behavior. In medicine, the use of large datasets enables a computer to learn how to perform cognitive tasks, thereby facilitating medical decision-making. This review aims to describe advancements in AI in stone disease to improve diagnostic accuracy in determining stone composition, to predict outcomes of surgical procedures or watchful waiting and ultimately to optimize treatment choices for patients. RECENT FINDINGS AI algorithms show high accuracy in different realms including stone detection and in the prediction of surgical outcomes. There are machine learning algorithms for outcomes after percutaneous nephrolithotomy, extracorporeal shockwave lithotripsy, and for ureteral stone passage. Some of these algorithms show better predictive capabilities compared to existing scoring systems and nomograms. SUMMARY The use of AI can facilitate the development of diagnostic and treatment algorithms in patients with stone disease. Although the generalizability and external validity of these algorithms remain uncertain, the development of highly accurate AI-based tools may enable the urologist to provide more customized patient care and superior outcomes.
Collapse
Affiliation(s)
| | - Margaret S Pearle
- Professor of Urology and Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review provides a forecast about ongoing developments in the management of urolithiasis with a potential to challenge the current standard of care. We therefore emphasized innovative technology, which might be considered still experimental in the daily clinic or needs further clinical validation, but harbors the great potential to become a game changer for future stone management. RECENT FINDINGS Especially in the endoscopic stone treatment, we observed a multitude of groundbreaking technical innovations, which changed our treatment algorithms over the last decades. Some of this technology already found its way into daily practice. Others like artificial intelligence, burst wave lithotripsy, smart laser systems or gene therapy may not be standardized yet, but have the potential to further revolutionize current practice. Besides those technical features, we included innovations in prevention and diagnostics, as well as patient expectations and patient satisfaction into the analysis. A proper metaphylaxis and patient communication seems to be essential for a long-lasting treatment success. SUMMARY The combination of technical innovations, improved stone metaphylaxis and proper patient communication presents the cornerstone of future kidney stone management.
Collapse
|
19
|
Homayounieh F, Doda Khera R, Bizzo BC, Ebrahimian S, Primak A, Schmidt B, Saini S, Kalra MK. Prediction of burden and management of renal calculi from whole kidney radiomics: a multicenter study. Abdom Radiol (NY) 2021; 46:2097-2106. [PMID: 33242099 PMCID: PMC7690335 DOI: 10.1007/s00261-020-02865-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Purpose To assess if autosegmentation-assisted radiomics can predict disease burden, hydronephrosis, and treatment strategies in patients with renal calculi. Methods The local ethical committee-approved, retrospective study included 202 adult patients (mean age: 53 ± 17 years; male: 103; female: 99) who underwent clinically indicated, non-contrast abdomen-pelvis CT for suspected or known renal calculi. All CT examinations were reviewed to determine the presence (n = 123 patients) or absence (n = 79) of renal calculi. On CT images with renal calculi, each kidney stone was annotated and measured (maximum dimension, Hounsfield unit (HU), and combined and dominant stone volumes) using a HU threshold-based segmentation. We recorded the presence of hydronephrosis, number of renal calculi, and treatment strategies. Deidentified CT images were processed with the radiomics prototype (Radiomics, Frontier, Siemens Healthineers), which automatically segmented each kidney to obtain 1690 first-, shape-, and higher-order radiomics. Data were analyzed using multiple logistic regression analysis with areas under the curve (AUC) as output. Results Among 202 patients, only 28 patients (18%) needed procedural treatment (lithotripsy or ureteroscopic stone extraction). Gray-level co-occurrence matrix (GLCM) and gray-level run length matrix (GLRLM) differentiated patients with and without procedural treatment (AUC 0.91, 95% CI 0.85–0.92). Higher-order radiomics (gray-level size zone matrix – GLSZM) differentiated kidneys with and without hydronephrosis (AUC: 0.99, p < 0.001) as well those with different stone volumes (AUC up to 0.89, 95% CI 0.89–0.92). Conclusion Automated segmentation and radiomics of entire kidneys can assess hydronephrosis presence, stone burden, and treatment strategies for renal calculi with AUCs > 0.85.
Collapse
|
20
|
Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. J Clin Med 2021; 10:jcm10091864. [PMID: 33925767 PMCID: PMC8123407 DOI: 10.3390/jcm10091864] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Recent advances in artificial intelligence (AI) have certainly had a significant impact on the healthcare industry. In urology, AI has been widely adopted to deal with numerous disorders, irrespective of their severity, extending from conditions such as benign prostate hyperplasia to critical illnesses such as urothelial and prostate cancer. In this article, we aim to discuss how algorithms and techniques of artificial intelligence are equipped in the field of urology to detect, treat, and estimate the outcomes of urological diseases. Furthermore, we explain the advantages that come from using AI over any existing traditional methods.
Collapse
|
21
|
Rice P, Pugh M, Geraghty R, Hameed BZ, Shah M, Somani BK. Machine Learning Models for Predicting Stone-Free Status after Shockwave Lithotripsy: A Systematic Review and Meta-Analysis. Urology 2021; 156:16-22. [PMID: 33894229 DOI: 10.1016/j.urology.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
We performed a systematic review and meta-analysis to investigate the use of machine learning techniques for predicting stone-free rates following Shockwave Lithotripsy (SWL). Eight papers (3264 patients) were included. Two studies used decision-tree approaches, five studies utilised Artificial Neural Networks (ANN), and one study combined a variety of approaches. The summary true positive rate was 79%, summary false positive rate was 14%, and Receiver Operator Characteristic (ROC) was 0.90 for machine learning approaches. Machine learning algorithms were at least as good as standard approaches. Further prospective evidence is needed to routinely apply machine learning algorithms in clinical practice.
Collapse
|
22
|
Machine Learning and Deep Neural Networks: Applications in Patient and Scan Preparation, Contrast Medium, and Radiation Dose Optimization. J Thorac Imaging 2021; 35 Suppl 1:S17-S20. [PMID: 32079904 DOI: 10.1097/rti.0000000000000482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Artificial intelligence (AI) algorithms are dependent on a high amount of robust data and the application of appropriate computational power and software. AI offers the potential for major changes in cardiothoracic imaging. Beyond image processing, machine learning and deep learning have the potential to support the image acquisition process. AI applications may improve patient care through superior image quality and have the potential to lower radiation dose with AI-driven reconstruction algorithms and may help avoid overscanning. This review summarizes recent promising applications of AI in patient and scan preparation as well as contrast medium and radiation dose optimization.
Collapse
|
23
|
|
24
|
Chu KY, Tradewell MB. Artificial Intelligence in Urology. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Wang R, Su Y, Mao C, Li S, You M, Xiang S. Laser lithotripsy for proximal ureteral calculi in adults: can 3D CT texture analysis help predict treatment success? Eur Radiol 2020; 31:3734-3744. [PMID: 33210203 DOI: 10.1007/s00330-020-07498-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore whether multiple 3D computed tomography texture analysis (3D-CTTA) parameters can predict the therapeutic effects of holmium: YAG laser lithotripsy (LL) on ureteral calculi. METHODS The files from 94 patients (102 stones) with proximal ureteral calculi treated only by LL at a single institution were retrospectively retrieved from January 2016 to March 2019. According to intra-operative observations and postoperative reexamination, samples were divided into a completely crushed and a non-crushed group. Preoperative non-contrast-enhanced computed tomography (NCCT) images obtained by multiple CT scanners were imported to MaZda software for 3D texture analysis (TA). The CT-derived value of each target stone was measured, and 15 TA parameters were extracted by delineating volumes of interest (VOIs). Receiver operating characteristic (ROC) curves were drawn to determine the optimal critical value of each parameter based on the Youden index, and univariable and multivariable logistic regression analyses determined the significant factors for LL success. RESULTS In univariable analysis, significant differences (p < 0.05) were observed among 7 parameters. In multivariable analysis, Perc.01 3D > 2062 (p = 0.03) and Z-fraction of image in runs (Z-Fraction) > 0.45570 (p = 0.009) were significant independent predictors, with odds ratios (ORs) of 24.204 and 60.329, respectively. In subgroup analysis based on the cutoff value of the CT-derived value (HU = 960), Perc.01 3D (OR = 44.154, 95% CI (2.379, 819.618), p = 0.011) and Z-Fraction (OR = 14.519, 95% CI (2.088, 100.953), p = 0.007) remained statistically significant. CONCLUSIONS The combination of 3D-CTTA parameters and the CT-derived value can be used as a quantitative reference to predict whether a target stone could be completely crushed by LL. KEY POINTS • Computed tomography texture analysis (CTTA) may be helpful in selecting suitable laser lithotripsy (LL) patients. • 3D-CTTA better predicts stone fragility than commonly used methods (such as the CT-derived value). • The combination of CTTA and the CT-derived value can be used as a preoperative quantitative reference.
Collapse
Affiliation(s)
- Rui Wang
- The Clinical School of Medicine, Dali University, 2 Shenghong Road, Gucheng, Dali, 671000, Yunnan Province, China
| | - Yunshan Su
- Department of Radiology, Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan Province, China.
| | - Chongwen Mao
- Department of Radiology, Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan Province, China
| | - Song Li
- Department of Urology, Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan Province, China
| | - Mengjing You
- Department of Radiology, Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan Province, China
| | - Shutian Xiang
- Department of Radiology, Second People's Hospital of Yunnan Province, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan Province, China
| |
Collapse
|
26
|
Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept. Eur Radiol 2020; 31:1987-1998. [PMID: 33025174 PMCID: PMC7979612 DOI: 10.1007/s00330-020-07293-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023]
Abstract
Objective To retrospectively evaluate if texture-based radiomics features are able to detect interstitial lung disease (ILD) and to distinguish between the different disease stages in patients with systemic sclerosis (SSc) in comparison with mere visual analysis of high-resolution computed tomography (HRCT). Methods Sixty patients (46 females, median age 56 years) with SSc who underwent HRCT of the thorax were retrospectively analyzed. Visual analysis was performed by two radiologists for the presence of ILD features. Gender, age, and pulmonary function (GAP) stage was calculated from clinical data (gender, age, pulmonary function test). Data augmentation was performed and the balanced dataset was split into a training (70%) and a testing dataset (30%). For selecting variables that allow classification of the GAP stage, single and multiple logistic regression models were fitted and compared by using the Akaike information criterion (AIC). Diagnostic accuracy was evaluated from the area under the curve (AUC) from receiver operating characteristic (ROC) analyses, and diagnostic sensitivity and specificity were calculated. Results Values for some radiomics features were significantly lower (p < 0.05) and those of other radiomics features were significantly higher (p = 0.001) in patients with GAP2 compared with those in patients with GAP1. The combination of two specific radiomics features in a multivariable model resulted in the lowest AIC of 10.73 with an AUC of 0.96, 84% sensitivity, and 99% specificity. Visual assessment of fibrosis was inferior in predicting individual GAP stages (AUC 0.86; 83% sensitivity; 74% specificity). Conclusion The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics might capture features indicating severity of SSc-ILD on HRCT, which are not recognized by visual analysis. Key Points • Radiomics features can predict GAP stage with a sensitivity of 84% and a specificity of almost 100%. • Extent of fibrosis on HRCT and a combined model of different visual HRCT-ILD features perform worse in predicting GAP stage. • The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics might capture features on HRCT, which are not recognized by visual analysis. Electronic supplementary material The online version of this article (10.1007/s00330-020-07293-8) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW There has a been rapid progress in the use of artificial intelligence in all aspects of healthcare, and in urology, this is particularly astute in the overall management of urolithiasis. This article reviews advances in the use of artificial intelligence for the diagnosis, treatment and prevention of urinary stone disease over the last 2 years. Pertinent studies were identified via a nonsystematic review of the literature performed using MEDLINE and the Cochrane database. RECENT FINDINGS Twelve articles have been published, which met the inclusion criteria. This included three articles in the detection and diagnosis of stones, six in the prediction of postprocedural outcomes including percutaneous nephrolithotomy and shock wave lithotripsy, and three in the use of artificial intelligence in prevention of stone disease by predicting patients at risk of stones, detecting the stone type via digital photographs and detecting risk factors in patients most at risk of not attending outpatient appointments. SUMMARY Our knowledge of artificial intelligence in urology has greatly advanced in the last 2 years. Its role currently is to aid the endourologist as opposed to replacing them. However, the ability of artificial intelligence to efficiently process vast quantities of data, in combination with the shift towards electronic patient records provides increasingly more 'big data' sets. This will allow artificial intelligence to analyse and detect novel diagnostic and treatment patterns in the future.
Collapse
|
28
|
|
29
|
Abstract
PURPOSE OF REVIEW The most relevant recent findings on the use of extracorporeal shock wave lithotripsy (ESWL) in adult population to provide an insight of its role in the current and future of stone treatment. Comparing ESWL with other modalities is not in the scope of this review. RECENT FINDINGS We conducted a PubMed/Embase search and reviewed recent publications that include relevant information on the development of ESWL. Low-rate shock waves improve stone breakage, ramping energy modalities improve stone fragmentation and have lower incidence of hematoma and kidney injury. Transgluteal approach is suggested to improve stone-free rates for distal ureteral stones in a single session. Proper coupling is the most important technical aspect of the treatment and coupling improvement can be achieved by optical monitorization. Triple D score is a promising tool in proper patient selection, but external validation is needed. Predictive information arising from computed tomography scans has been refined by the variant coefficient of stone density and 3D texture analysis that might improve outcomes in the future. SUMMARY Recent evidence suggests that modifying techniques and protocols, and better patient selection are the current trends for improving ESWL outcomes. EWSL will keep its role as the single noninvasive treatment in stone management with room for outcome improvement in the future.
Collapse
|
30
|
Suarez-Ibarrola R, Hein S, Reis G, Gratzke C, Miernik A. Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World J Urol 2019; 38:2329-2347. [PMID: 31691082 DOI: 10.1007/s00345-019-03000-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/25/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSE The purpose of the study was to provide a comprehensive review of recent machine learning (ML) and deep learning (DL) applications in urological practice. Numerous studies have reported their use in the medical care of various urological disorders; however, no critical analysis has been made to date. METHODS A detailed search of original articles was performed using the PubMed MEDLINE database to identify recent English literature relevant to ML and DL applications in the fields of urolithiasis, renal cell carcinoma (RCC), bladder cancer (BCa), and prostate cancer (PCa). RESULTS In total, 43 articles were included addressing these four subfields. The most common ML and DL application in urolithiasis is in the prediction of endourologic surgical outcomes. The main area of research involving ML and DL in RCC concerns the differentiation between benign and malignant small renal masses, Fuhrman nuclear grade prediction, and gene expression-based molecular signatures. BCa studies employ radiomics and texture feature analysis for the distinction between low- and high-grade tumors, address accurate image-based cytology, and use algorithms to predict treatment response, tumor recurrence, and patient survival. PCa studies aim at developing algorithms for Gleason score prediction, MRI computer-aided diagnosis, and surgical outcomes and biochemical recurrence prediction. Studies consistently found the superiority of these methods over traditional statistical methods. CONCLUSIONS The continuous incorporation of clinical data, further ML and DL algorithm retraining, and generalizability of models will augment the prediction accuracy and enhance individualized medicine.
Collapse
Affiliation(s)
- Rodrigo Suarez-Ibarrola
- Department of Urology, Faculty of Medicine, University of Freiburg-Medical Centre, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Simon Hein
- Department of Urology, Faculty of Medicine, University of Freiburg-Medical Centre, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Gerd Reis
- Department Augmented Vision, German Research Center for Artificial Intelligence, Kaiserslautern, Germany
| | - Christian Gratzke
- Department of Urology, Faculty of Medicine, University of Freiburg-Medical Centre, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Arkadiusz Miernik
- Department of Urology, Faculty of Medicine, University of Freiburg-Medical Centre, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
31
|
Cui HW, Silva MD, Mills AW, North BV, Turney BW. Predicting shockwave lithotripsy outcome for urolithiasis using clinical and stone computed tomography texture analysis variables. Sci Rep 2019; 9:14674. [PMID: 31604986 PMCID: PMC6788981 DOI: 10.1038/s41598-019-51026-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022] Open
Abstract
We aimed to develop and evaluate a statistical model, which included known pre-treatment factors and new computed tomography texture analysis (CTTA) variables, for its ability to predict the likelihood of a successful outcome after extracorporeal shockwave lithotripsy (SWL) treatment for renal and ureteric stones. Up to half of patients undergoing SWL may fail treatment. Better prediction of which cases will likely succeed SWL will help patients to make an informed decision on the most effective treatment modality for their stone. 19 pre-treatment factors for SWL success, including 6 CTTA variables, were collected from 459 SWL cases at a single centre. Univariate and multivariable analyses were performed by independent statisticians to predict the probability of a stone free (both with and without residual fragments) outcome after SWL. A multivariable model had an overall accuracy of 66% on Receiver Operator Curve (ROC) analysis to predict for successful SWL outcome. The variables most frequently chosen for the model were those which represented stone size. Although previous studies have suggested SWL can be reliably predicted using pre-treatment factors and that analysis of CT stone images may improve outcome prediction, the results from this study have not produced a useful model for SWL outcome prediction.
Collapse
Affiliation(s)
- Helen W Cui
- Oxford Stone Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.
| | | | | | | | - Benjamin W Turney
- Oxford Stone Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Chen J, Remulla D, Nguyen JH, Dua A, Liu Y, Dasgupta P, Hung AJ. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int 2019; 124:567-577. [PMID: 31219658 DOI: 10.1111/bju.14852] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the applications of artificial intelligence (AI) in diagnosis, treatment and outcome predictionin urologic diseases and evaluate its advantages over traditional models and methods. MATERIALS AND METHODS A literature search was performed after PROSPERO registration (CRD42018103701) and in compliance with Preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA) methods. Articles between 1994 and 2018 using the search terms "urology", "artificial intelligence", "machine learning" were included and categorized by the application of AI in urology. Review articles, editorial comments, articles with no full-text access, and nonurologic studies were excluded. RESULTS Initial search yielded 231 articles, but after excluding duplicates and following full-text review and examination of article references, only 111 articles were included in the final analysis. AI applications in urology include: utilizing radiomic imaging or ultrasonic echo data to improve or automate cancer detection or outcome prediction, utilizing digitized tissue specimen images to automate detection of cancer on pathology slides, and combining patient clinical data, biomarkers, or gene expression to assist disease diagnosis or outcome prediction. Some studies employed AI to plan brachytherapy and radiation treatments while others used video based or robotic automated performance metrics to objectively evaluate surgical skill. Compared to conventional statistical analysis, 71.8% of studies concluded that AI is superior in diagnosis and outcome prediction. CONCLUSION AI has been widely adopted in urology. Compared to conventional statistics AI approaches are more accurate in prediction and more explorative for analyzing large data cohorts. With an increasing library of patient data accessible to clinicians, AI may help facilitate evidence-based and individualized patient care.
Collapse
Affiliation(s)
- Jian Chen
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| | - Daphne Remulla
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| | - Jessica H Nguyen
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| | - Aastha Dua
- Computer Science Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yan Liu
- Computer Science Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Prokar Dasgupta
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Andrew J Hung
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| |
Collapse
|
33
|
Mannil M, von Spiczak J, Muehlematter UJ, Thanabalasingam A, Keller DI, Manka R, Alkadhi H. Texture analysis of myocardial infarction in CT: Comparison with visual analysis and impact of iterative reconstruction. Eur J Radiol 2019; 113:245-250. [PMID: 30927955 DOI: 10.1016/j.ejrad.2019.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To compare texture analysis (TA) with subjective visual diagnosis of myocardial infarction (MI) in cardiac computed tomography (CT) and to evaluate the impact of iterative reconstruction (IR). METHODS Ten patients (4 women, mean age 68 ± 11 years) with confirmed chronic MI and 20 controls (8 women, mean age 52 ± 11 years) with no cardiac abnormality underwent contrast-enhanced cardiac CT with the same protocol. Images were reconstructed with filtered back projection (FBP) and with advanced modeled IR at strength levels 3-5. Subjective diagnosis of MI was made by three independent, blinded readers with different experience levels. Classification of MI was performed using machine learning-based decision tree models for the entire data set and after splitting into training and test data to avoid overfitting. RESULTS Subjective visual analysis for diagnosis of MI showed excellent intrareader (kappa: 0.93) but poor interreader agreement (kappa: 0.3), with variable performance at different image reconstructions. TA showed high performance for all image reconstructions (correct classifications: 94%-97%, areas under the curve: 0.94-0.99). After splitting into training and test data, overall lower performances were observed, with best results for IR at level 5 (correct classifications: 73%, area under the curve: 0.65). CONCLUSIONS As compared with subjective, nonreliable visual analysis of inexperienced readers, TA enables objective and reproducible diagnosis of chronic MI in cardiac CT with higher accuracy. IR has a considerable impact on both subjective and objective image analysis.
Collapse
Affiliation(s)
- Manoj Mannil
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland.
| | - Jochen von Spiczak
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| | - Urs J Muehlematter
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| | - Arjun Thanabalasingam
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| | - Dagmar I Keller
- Institute for Emergency Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Robert Manka
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland; Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Institute for Biomedical Engineering, University and ETH Zurich Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To elucidate the keywords big data and artificial intelligence and corresponding literature in the field of urolithiasis. RECENT FINDINGS Numbers of publications on big data and artificial intelligence in the field of urolithiasis are rising, but still low. Most publications describe the development, testing, and validation of automated computational analyses of clinical data sets and/or images in a preclinical setting. SUMMARY In the field of digital health services, there is a discrepancy between the enormous commitment of large private companies and investments of public funds. This situation means a still small number of medical publications on this topic in the urolithiasis field. Nevertheless, as doctors and scientists, we should try to provide our patients with secure and worthwhile digital services.
Collapse
|
35
|
Noncontrast Computed Tomography Parameters for Predicting Shock Wave Lithotripsy Outcome in Upper Urinary Tract Stone Cases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9253952. [PMID: 30627582 PMCID: PMC6304629 DOI: 10.1155/2018/9253952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
Kidney stones are a major public health concern with continuously increasing worldwide prevalence. Shock wave lithotripsy (SWL) is the first line treatment choice for upper urinary tract calculi with ureteroscopy and has advantages of safety and noninvasiveness, but the treatment success rate of SWL is lower than that of other therapies. It is therefore important to identify predictive factors for SWL outcome and select a suitable treatment choice for patients with upper urinary tract calculi. In recent years, computed tomography (CT) has become the gold standard for diagnosis of upper urinary tract calculi. Several factors based on CT images, including skin-to-stone distance, mean stone density, stone heterogeneity index, and variation coefficient of stone density, have been reported to be useful for predicting SWL outcome. In addition, a new method of analysis, CT texture analysis, is reportedly useful for predicting SWL outcomes. This review aims to summarize CT parameters for predicting the outcome of shock wave lithotripsy in stone cases in the upper urinary tract.
Collapse
|