1
|
A possible basis for personality in dogs: Individual differences in affective predispositions. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Karl S, Boch M, Zamansky A, van der Linden D, Wagner IC, Völter CJ, Lamm C, Huber L. Exploring the dog-human relationship by combining fMRI, eye-tracking and behavioural measures. Sci Rep 2020; 10:22273. [PMID: 33335230 PMCID: PMC7747637 DOI: 10.1038/s41598-020-79247-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
Behavioural studies revealed that the dog-human relationship resembles the human mother-child bond, but the underlying mechanisms remain unclear. Here, we report the results of a multi-method approach combining fMRI (N = 17), eye-tracking (N = 15), and behavioural preference tests (N = 24) to explore the engagement of an attachment-like system in dogs seeing human faces. We presented morph videos of the caregiver, a familiar person, and a stranger showing either happy or angry facial expressions. Regardless of emotion, viewing the caregiver activated brain regions associated with emotion and attachment processing in humans. In contrast, the stranger elicited activation mainly in brain regions related to visual and motor processing, and the familiar person relatively weak activations overall. While the majority of happy stimuli led to increased activation of the caudate nucleus associated with reward processing, angry stimuli led to activations in limbic regions. Both the eye-tracking and preference test data supported the superior role of the caregiver's face and were in line with the findings from the fMRI experiment. While preliminary, these findings indicate that cutting across different levels, from brain to behaviour, can provide novel and converging insights into the engagement of the putative attachment system when dogs interact with humans.
Collapse
Affiliation(s)
- Sabrina Karl
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, 1210, Vienna, Austria.
| | - Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010, Vienna, Austria
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Anna Zamansky
- Information Systems Department, University of Haifa, 3498838, Haifa, Israel
| | - Dirk van der Linden
- Department of Computer and Information Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Isabella C Wagner
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010, Vienna, Austria
| | - Christoph J Völter
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, 1210, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010, Vienna, Austria
| | - Ludwig Huber
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, 1210, Vienna, Austria
| |
Collapse
|
3
|
Reliability of fNIRS for noninvasive monitoring of brain function and emotion in sheep. Sci Rep 2020; 10:14726. [PMID: 32895449 PMCID: PMC7477174 DOI: 10.1038/s41598-020-71704-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to critically assess if functional near infrared spectroscopy (fNIRS) can be profitably used as a tool for noninvasive recording of brain functions and emotions in sheep. We considered an experimental design including advances in instrumentation (customized wireless multi-distance fNIRS system), more accurate physical modelling (two-layer model for photon diffusion and 3D Monte Carlo simulations), support from neuroanatomical tools (positioning of the fNIRS probe by MRI and DTI data of the very same animals), and rigorous protocols (motor task, startling test) for testing the behavioral response of freely moving sheep. Almost no hemodynamic response was found in the extra-cerebral region in both the motor task and the startling test. In the motor task, as expected we found a canonical hemodynamic response in the cerebral region when sheep were walking. In the startling test, the measured hemodynamic response in the cerebral region was mainly from movement. Overall, these results indicate that with the current setup and probe positioning we are primarily measuring the motor area of the sheep brain, and not probing the too deeply located cortical areas related to processing of emotions.
Collapse
|
4
|
Abstract
In recent years, two well-developed methods of studying mental processes in humans have been successively applied to dogs. First, eye-tracking has been used to study visual cognition without distraction in unrestrained dogs. Second, noninvasive functional magnetic resonance imaging (fMRI) has been used for assessing the brain functions of dogs in vivo. Both methods, however, require dogs to sit, stand, or lie motionless while yet remaining attentive for several minutes, during which time their brain activity and eye movements are measured. Whereas eye-tracking in dogs is performed in a quiet and, apart from the experimental stimuli, nonstimulating and highly controlled environment, MRI scanning can only be performed in a very noisy and spatially restraining MRI scanner, in which dogs need to feel relaxed and stay motionless in order to study their brain and cognition with high precision. Here we describe in detail a training regime that is perfectly suited to train dogs in the required skills, with a high success probability and while keeping to the highest ethical standards of animal welfare-that is, without using aversive training methods or any other compromises to the dog's well-being for both methods. By reporting data from 41 dogs that successfully participated in eye-tracking training and 24 dogs IN fMRI training, we provide robust qualitative and quantitative evidence for the quality and efficiency of our training methods. By documenting and validating our training approach here, we aim to inspire others to use our methods to apply eye-tracking or fMRI for their investigations of canine behavior and cognition.
Collapse
Affiliation(s)
- Sabrina Karl
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria.
| | - Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Zsófia Virányi
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Meeson RL, Todhunter RJ, Blunn G, Nuki G, Pitsillides AA. Spontaneous dog osteoarthritis - a One Medicine vision. Nat Rev Rheumatol 2020; 15:273-287. [PMID: 30953036 PMCID: PMC7097182 DOI: 10.1038/s41584-019-0202-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a global disease that, despite extensive research, has limited treatment options. Pet dogs share both an environment and lifestyle attributes with their owners, and a growing awareness is developing in the public and among researchers that One Medicine, the mutual co-study of animals and humans, could be beneficial for both humans and dogs. To that end, this Review highlights research opportunities afforded by studying dogs with spontaneous OA, with a view to sharing this active area of veterinary research with new audiences. Similarities and differences between dog and human OA are examined, and the proposition is made that suitably aligned studies of spontaneous OA in dogs and humans, in particular hip and knee OA, could highlight new avenues of discovery. Developing cross-species collaborations will provide a wealth of research material and knowledge that is relevant to human OA and that cannot currently be obtained from rodent models or experimentally induced dog models of OA. Ultimately, this Review aims to raise awareness of spontaneous dog OA and to stimulate discussion regarding its exploration under the One Medicine initiative to improve the health and well-being of both species. Osteoarthritis occurs spontaneously in pet dogs, which often share environmental and lifestyle risk-factors with their owners. This Review aims to stimulate cooperation between medical and veterinary research under the One Medicine initiative to improve the welfare of dogs and humans. Dogs have many analogous spontaneous diseases that result in end-stage osteoarthritis (OA). Inbreeding and the predisposition of certain dog breeds for OA enable easier identification of candidate genetic associations than in outbred humans. Dog OA subtypes offer a potential stratification rationale for aetiological differences and alignment to analogous human OA phenotypes. The relatively compressed time course of spontaneous dog OA offers longitudinal research opportunities. Collaboration with veterinary researchers can provide tissue samples from early-stage OA and opportunities to evaluate new therapeutics in a spontaneous disease model. Awareness of the limitations and benefits of using clinical veterinary patients in research is important.
Collapse
Affiliation(s)
- Richard L Meeson
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.,Department of Clinical Services and Sciences, Royal Veterinary College, University of London, London, UK.,Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | - Rory J Todhunter
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.,Cornell Veterinary Biobank, Cornell University, Ithaca, NY, USA
| | - Gordon Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK.,School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - George Nuki
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
6
|
Szabó D, Czeibert K, Kettinger Á, Gácsi M, Andics A, Miklósi Á, Kubinyi E. Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks. Sci Rep 2019; 9:15270. [PMID: 31649271 PMCID: PMC6813298 DOI: 10.1038/s41598-019-51752-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/08/2019] [Indexed: 12/26/2022] Open
Abstract
Resting-state networks are spatially distributed, functionally connected brain regions. Studying these networks gives us information about the large-scale functional organization of the brain and alternations in these networks are considered to play a role in a wide range of neurological conditions and aging. To describe resting-state networks in dogs, we measured 22 awake, unrestrained individuals of both sexes and carried out group-level spatial independent component analysis to explore whole-brain connectivity patterns. In this exploratory study, using resting-state functional magnetic resonance imaging (rs-fMRI), we found several such networks: a network involving prefrontal, anterior cingulate, posterior cingulate and hippocampal regions; sensorimotor (SMN), auditory (AUD), frontal (FRO), cerebellar (CER) and striatal networks. The network containing posterior cingulate regions, similarly to Primates, but unlike previous studies in dogs, showed antero-posterior connectedness with involvement of hippocampal and lateral temporal regions. The results give insight into the resting-state networks of awake animals from a taxon beyond rodents through a non-invasive method.
Collapse
Affiliation(s)
- Dóra Szabó
- Eötvös Loránd University, Department of Ethology, Budapest, 1117, Hungary.
| | - Kálmán Czeibert
- Eötvös Loránd University, Department of Ethology, Budapest, 1117, Hungary
| | - Ádám Kettinger
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Budapest University of Technology and Economics, Department of Nuclear Techniques, Budapest, 1111, Hungary
| | - Márta Gácsi
- Eötvös Loránd University, Department of Ethology, Budapest, 1117, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, 1117, Hungary
| | - Attila Andics
- Eötvös Loránd University, Department of Ethology, Budapest, 1117, Hungary
- MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Budapest, 1117, Hungary
| | - Ádám Miklósi
- Eötvös Loránd University, Department of Ethology, Budapest, 1117, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, 1117, Hungary
| | - Enikő Kubinyi
- Eötvös Loránd University, Department of Ethology, Budapest, 1117, Hungary
| |
Collapse
|
7
|
Prichard A, Cook PF, Spivak M, Chhibber R, Berns GS. Awake fMRI Reveals Brain Regions for Novel Word Detection in Dogs. Front Neurosci 2018; 12:737. [PMID: 30374286 PMCID: PMC6196269 DOI: 10.3389/fnins.2018.00737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
How do dogs understand human words? At a basic level, understanding would require the discrimination of words from non-words. To determine the mechanisms of such a discrimination, we trained 12 dogs to retrieve two objects based on object names, then probed the neural basis for these auditory discriminations using awake-fMRI. We compared the neural response to these trained words relative to "oddball" pseudowords the dogs had not heard before. Consistent with novelty detection, we found greater activation for pseudowords relative to trained words bilaterally in the parietotemporal cortex. To probe the neural basis for representations of trained words, searchlight multivoxel pattern analysis (MVPA) revealed that a subset of dogs had clusters of informative voxels that discriminated between the two trained words. These clusters included the left temporal cortex and amygdala, left caudate nucleus, and thalamus. These results demonstrate that dogs' processing of human words utilizes basic processes like novelty detection, and for some dogs, may also include auditory and hedonic representations.
Collapse
Affiliation(s)
- Ashley Prichard
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Peter F. Cook
- Psychology, New College of Florida, Sarasota, FL, United States
| | - Mark Spivak
- Comprehensive Pet Therapy, Atlanta, GA, United States
| | - Raveena Chhibber
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Gregory S. Berns
- Department of Psychology, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Coutts F, Clark L. Editorial. Vet Anaesth Analg 2018; 45:e1-e4. [PMID: 29628390 DOI: 10.1016/j.vaa.2018.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Fergus Coutts
- Pain Management and Rehabilitation Centre, Broadleys Veterinary Hospital, Stirling, UK.
| | - Louise Clark
- Head of Anaesthesia, Davies Veterinary Specialists, Hitchin, UK
| |
Collapse
|
9
|
Canine Behaviour and Genetics: Special issue on the London, 2015 meetings. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Overall KL. Special issue: The “dominance” debate and improved behavioral measures—Articles from the 2014 CSF/FSF. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|