Srimathveeravalli G, Abdel-Atti D, Pérez-Medina C, Takaki H, Solomon SB, Mulder WJM, Reiner T. Reversible Electroporation-Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With
89Zr-Labeled Reporter Nanoparticles.
Mol Imaging 2018;
17:1536012117749726. [PMID:
29480077 PMCID:
PMC5833236 DOI:
10.1177/1536012117749726]
[Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022] Open
Abstract
Reversible electroporation (RE) can facilitate nanoparticle delivery to tumors through direct transfection and from changes in vascular permeability. We investigated a radiolabeled liposomal nanoparticle (89Zr-NRep) for monitoring RE-mediated liposomal doxorubicin (DOX) delivery in mouse tumors. Intravenously delivered 89Zr-NRep allowed positron emission tomography imaging of electroporation-mediated nanoparticle uptake. The relative order of 89Zr-NRep injection and electroporation did not result in significantly different overall tumor uptake, suggesting direct transfection and vascular permeability can independently mediate deposition of 89Zr-NRep in tumors. 89Zr-NRep and DOX uptake correlated well in both electroporated and control tumors at all experimental time points. Electroporation accelerated 89Zr-NRep and DOX deposition into tumors and increased DOX dosing. Reversible electroporation-related vascular effects seem to play an important role in nanoparticle delivery to tumors and drug uptake can be quantified with 89Zr-NRep.
Collapse