1
|
Petrillo N, Dinh K, Vogt KA, Ma S. Catalytic Mechanism of Human T-Cell Leukemia Virus Type 1 Protease Investigated by Combined QM/MM Molecular Dynamics Simulations. J Chem Inf Model 2023. [PMID: 37289654 DOI: 10.1021/acs.jcim.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the catalytic mechanism of human T-cell leukemia virus type 1 (HTLV-1) protease, a retroviral aspartic protease that is a potential therapeutic target for curing HTLV-1-associated diseases. To elucidate the proteolytic cleavage mechanism, we determined the two-dimensional free energy surfaces of the HTLV-1 protease-catalyzed reactions through various possible pathways. The free energy simulations suggest that the catalytic reactions of the HTLV-1 protease occur in the following sequential steps: (1) a proton is transferred from the lytic water to Asp32', followed by the nucleophilic addition of the resulting hydroxyl to the carbonyl carbon of the scissile bond, forming a tetrahedral oxyanion intermediate, and (2) a proton is transferred from Asp32 to the peptide nitrogen of the scissile bond, leading to the spontaneous breakage of the scissile bond. The rate-limiting step of this catalytic process is the proton transfer from Asp32 to the peptide nitrogen of the scissile bond, with a free energy of activation of 21.1 kcal/mol. This free energy barrier is close to the experimentally determined free energy of activation (16.3 kcal/mol) calculated from the measured catalytic rate constant (kcat). This mechanistic study provides detailed dynamic and structural information that will facilitate the design of mechanism-based inhibitors for the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Natalie Petrillo
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kim Dinh
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kimberly A Vogt
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| |
Collapse
|
2
|
Mótyán JA, Kassay N, Matúz K, Tőzsér J. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors. Viruses 2022; 14:v14091888. [PMID: 36146695 PMCID: PMC9505669 DOI: 10.3390/v14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
3
|
Abstract
Viral proteases are diverse in structure, oligomeric state, catalytic mechanism, and substrate specificity. This chapter focuses on proteases from viruses that are relevant to human health: human immunodeficiency virus subtype 1 (HIV-1), hepatitis C (HCV), human T-cell leukemia virus type 1 (HTLV-1), flaviviruses, enteroviruses, and coronaviruses. The proteases of HIV-1 and HCV have been successfully targeted for therapeutics, with picomolar FDA-approved drugs currently used in the clinic. The proteases of HTLV-1 and the other virus families remain emerging therapeutic targets at different stages of the drug development process. This chapter provides an overview of the current knowledge on viral protease structure, mechanism, substrate recognition, and inhibition. Particular focus is placed on recent advances in understanding the molecular basis of diverse substrate recognition and resistance, which is essential toward designing novel protease inhibitors as antivirals.
Collapse
Affiliation(s)
- Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
4
|
Kassay N, Mótyán JA, Matúz K, Golda M, Tőzsér J. Biochemical Characterization, Specificity and Inhibition Studies of HTLV-1, HTLV-2, and HTLV-3 Proteases. Life (Basel) 2021; 11:life11020127. [PMID: 33562087 PMCID: PMC7915765 DOI: 10.3390/life11020127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.
Collapse
Affiliation(s)
- Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
| | - Mária Golda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
5
|
Shi Y, Li Z, Wang H. Turn-On Assay for HIV-1 Protease Inhibitor Selection. ACS APPLIED BIO MATERIALS 2020; 3:7706-7711. [DOI: 10.1021/acsabm.0c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
6
|
Biochemical Characterization of Human Retroviral-Like Aspartic Protease 1 (ASPRV1). Biomolecules 2020; 10:biom10071004. [PMID: 32640672 PMCID: PMC7408472 DOI: 10.3390/biom10071004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a mammalian retroviral-like enzyme that catalyzes a critical proteolytic step during epidermal differentiation; therefore, it is also referred to as skin-specific aspartic protease (SASPase). Neutrophil granulocytes were also found recently to express ASPRV1 that is involved in the progression of acute chronic inflammation of the central nervous system, especially in autoimmune encephalomyelitis. Thus, investigation of ASPRV1 is important due to its therapeutic or diagnostic potential. We investigated the structural characteristics of ASPRV1 by homology modeling; analysis of the proposed structure was used for interpretation of in vitro specificity studies. For in-vitro characterization, activities of SASP28 and SASP14 enzyme forms were measured using synthetic oligopeptide substrates. We demonstrated that self-processing of SASP28 precursor causes autoactivation of the protease. The highest activity was measured for GST-SASP14 at neutral pH and at high ionic strength, and we proved that pepstatin A and acetyl-pepstatin can also inhibit the protease. In agreement with the structural characteristics, the relatively lower urea dissociation constant implied lower dimer stability of SASP14 compared to that of HIV-1 protease. The obtained structural and biochemical characteristics support better understanding of ASPRV1 function in the skin and central nervous system.
Collapse
|
7
|
Bozóki B, Gazda L, Tóth F, Miczi M, Mótyán JA, Tőzsér J. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening. Anal Biochem 2017; 540-541:52-63. [PMID: 29122614 DOI: 10.1016/j.ab.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Biotechnological Analytical Department, Gedeon Richter Plc, 19-21, Gyömrői Rd., Budapest H-1103, Hungary.
| | - Lívia Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ferenc Tóth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Márió Miczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Zhang H, Yu D, Zhao Y, Fan A. Turn-on chemiluminescent sensing platform for label-free protease detection using streptavidin-modified magnetic beads. Biosens Bioelectron 2014; 61:45-50. [DOI: 10.1016/j.bios.2014.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/18/2014] [Accepted: 04/26/2014] [Indexed: 11/24/2022]
|
9
|
Kuhnert M, Steuber H, Diederich WE. Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir. J Med Chem 2014; 57:6266-72. [PMID: 25006983 DOI: 10.1021/jm500402c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
HTLV-1 protease (HTLV-1 PR) is an aspartic protease which represents a promising drug target for the discovery of novel anti-HTLV-1 drugs. The X-ray structure of HTLV-1 PR in complex with the well-known and approved HIV-1 PR inhibitor Indinavir was determined at 2.40 Å resolution. In this contribution, we describe the first crystal structure in complex with a nonpeptidic inhibitor that accounts for rationalizing the rather moderate affinity of Indinavir against HTLV-1 PR and provides the basis for further structure-guided optimization strategies.
Collapse
Affiliation(s)
- Maren Kuhnert
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | | | | |
Collapse
|
10
|
A drug discovery platform: a simplified immunoassay for analyzing HIV protease activity. J Virol Methods 2012; 186:21-9. [PMID: 22846787 DOI: 10.1016/j.jviromet.2012.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 01/09/2023]
Abstract
Although numerous methods for the determination of HIV protease (HIV-PR) activity have been described, new high-throughput assays are required for clinical and pharmaceutical applications due to the occurrence of resistant strains. In this study, a simple enzymatic immunoassay to identify HIV-PR activity was developed based on a Ni(2+)-immobilized His(6)-Matrix-Capsid substrate (H(6)MA-CA) is cleaved by HIV protease-His(6) (HIV-PRH(6)) which removes the CA domain and exposes the free C terminus of MA. Following this cleavage, two monoclonal antibodies specific for either the free C-terminal MA or CA epitope are used to quantify the proteolytic activity using a standard ELISA-based system. Specificity for detection of the HIV-PRH(6) activity was confirmed with addition of protease inhibitor (PI), lopinavir. In addition, the assay was able to detect an HIV-PR variant activity indicating that this assay is capable of assessing viral mutation affect HIV-PR activity. The efficacy of commercially available PIs and their 50% inhibitory concentration (IC(50)) were determined. This assay provides a high-throughput method for both validating the efficiency of new drugs in vitro and facilitating the discovery of new PIs. In addition, it could serve as a method for examining the influence of various mutations in HIV-PRs isolated from drug-resistant strains.
Collapse
|
11
|
Xu LJ, Peng ZG, Chen HS, Wang J, Xiao PG. Bioactive triterpenoids from Kadsura heteroclita. Chem Biodivers 2011; 7:2289-95. [PMID: 20860030 DOI: 10.1002/cbdv.200900173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A phytochemical study of Kadsura heteroclita led to the isolation of eight triterpenoids, including two new compounds, named kadheterilactone A (1) and kadheterilactone B (2), as well as six known compounds, longipedlactone H (3), longipedlactone A (4), longipedlactone F (5), kadsuranic acid A (6), nigranoic acid (7), and schisandronic acid (8). Their structures were elucidated on the basis of spectroscopic methods, including 2D NMR techniques. The cytotoxic activities of 1-8 were tested against several tumor cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium hydrobromide (MTT) assay in vitro. As a result, 4 and 5 turned out to be significantly cytotoxic against Hep-G2 and Bel-7402 tumor cell lines. All compounds were also tested for inhibition on HIV-1 protease (PR) and reverse transcriptase (RT). Compounds 6 and 7 showed strong inhibition on HIV-1 PR, while 8 exhibited moderate activity, others were only weakly active. No compounds were active against HIV-1 RT.
Collapse
Affiliation(s)
- Li-Jia Xu
- Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 151 Malianwa North Road, Haidian District, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
12
|
A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network. J Mol Model 2011; 17:2693-705. [PMID: 21279524 DOI: 10.1007/s00894-011-0971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/11/2011] [Indexed: 12/14/2022]
Abstract
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.
Collapse
|
13
|
Nguyen JT, Kato K, Kumada HO, Hidaka K, Kimura T, Kiso Y. Maintaining potent HTLV-I protease inhibition without the P3-cap moiety in small tetrapeptidic inhibitors. Bioorg Med Chem Lett 2011; 21:1832-7. [PMID: 21316958 DOI: 10.1016/j.bmcl.2011.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
The human T cell lymphotropic/leukemia virus type 1 (HTLV-I) causes adult T cell lymphoma/leukemia. The virus is also responsible for chronic progressive myelopathy and several inflammatory diseases. To stop the manufacturing of new viral components, in our previous reports, we derived small tetrapeptidic HTLV-I protease inhibitors with an important amide-capping moiety at the P(3) residue. In the current study, we removed the P(3)-cap moiety and, with great difficulty, optimized the P(3) residue for HTLV-I protease inhibition potency. We discovered a very potent and small tetrapeptidic HTLV-I protease inhibitor (KNI-10774a, IC(50)=13 nM).
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Satoh T, Li M, Nguyen JT, Kiso Y, Gustchina A, Wlodawer A. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease. J Mol Biol 2010; 401:626-41. [PMID: 20600105 PMCID: PMC2918672 DOI: 10.1016/j.jmb.2010.06.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.
Collapse
Affiliation(s)
- Tadashi Satoh
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
- Basic Research Program, SAIC-Frederick, Frederick, MD, USA
| | - Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yoshiaki Kiso
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Mak LH, Vilar R, Woscholski R. Characterisation of the PTEN inhibitor VO-OHpic. J Chem Biol 2010; 3:157-63. [PMID: 21643420 DOI: 10.1007/s12154-010-0041-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022] Open
Abstract
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a phosphatidylinositol triphosphate 3-phosphatase that counteracts phosphoinositide 3-kinases and has subsequently been implied as a valuable drug target for diabetes and cancer. Recently, we demonstrated that VO-OHpic is an extremely potent inhibitor of PTEN with nanomolar affinity in vitro and in vivo. Given the importance of this inhibitor for future drug design and development, its mode of action needed to be elucidated. It was discovered that inhibition of recombinant PTEN by VO-OHpic is fully reversible. Both K(m) and V(max) are affected by VO-OHpic, demonstrating a noncompetitive inhibition of PTEN. The inhibition constants K(ic) and K(iu) were determined to be 27 ± 6 and 45 ± 11 nM, respectively. Using the artificial phosphatase substrate 3-O-methylfluorescein phosphate (OMFP) or the physiological substrate phosphatidylinositol 3,4,5-triphosphate (PIP(3)) comparable parameters were obtained suggesting that OMFP is a suitable substrate for PTEN inhibition studies and PTEN drug screening.
Collapse
|
16
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
17
|
Selective and facile assay of human immunodeficiency virus protease activity by a novel fluorogenic reaction. Anal Biochem 2009; 397:197-201. [PMID: 19852926 PMCID: PMC7094380 DOI: 10.1016/j.ab.2009.10.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 10/07/2009] [Accepted: 10/16/2009] [Indexed: 02/06/2023]
Abstract
A highly selective and facile assay of human immunodeficiency virus protease (HIV-PR) has been required for the screening of medicinal inhibitors and also for classifying the subtypes of HIV in the therapeutic treatment of acquired immune deficiency syndrome (AIDS). This article describes a novel assay method of HIV-PR based on the selective fluorogenic reaction of peptides. A peptide fragment generated from a substrate by the enzymatic digestion with HIV-PR could be selectively quantified by the spectrofluorometric detection after the fluorogenic reaction with catechol in the presence of sodium periodate and sodium borate (pH 7.0). This assay system uses an N-terminal acetyl peptide as the substrate and crude extracts from Escherichia coli expressing recombinant HIV-PR. The activity obtained by the proposed assay correlated with that obtained by a conventional HIV-PR assay based on fluorescence resonance energy transfer detection.
Collapse
|
18
|
Kádas J, Boross P, Weber IT, Bagossi P, Matúz K, Tözsér J. C-terminal residues of mature human T-lymphotropic virus type 1 protease are critical for dimerization and catalytic activity. Biochem J 2008; 416:357-64. [PMID: 18636969 PMCID: PMC2778851 DOI: 10.1042/bj20071132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HTLV-1 [HTLV (human T-cell lymphotrophic virus) type 1] is associated with a number of human diseases. HTLV-1 protease is essential for virus replication, and similarly to HIV-1 protease, it is a potential target for chemotherapy. The primary sequence of HTLV-1 protease is substantially longer compared with that of HIV-1 protease, and the role of the ten C-terminal residues is controversial. We have expressed C-terminally-truncated forms of HTLV-1 protease with and without N-terminal His tags. Removal of five of the C-terminal residues caused a 4-40-fold decrease in specificity constants, whereas the removal of an additional five C-terminal residues rendered the protease completely inactive. The addition of the N-terminal His tag dramatically decreased the activity of HTLV-1 protease forms. Pull-down experiments carried out with His-tagged forms, gel-filtration experiments and dimerization assays provided the first unequivocal experimental results for the role of the C-terminal residues in dimerization of the enzyme. There is a hydrophobic tunnel on the surface of HTLV-1 protease close to the C-terminal ends that is absent in the HIV-1 protease. This hydrophobic tunnel can accommodate the extra C-terminal residues of HTLV-1 protease, which was predicted to stabilize the dimer of the full-length enzyme and provides an alternative target site for protease inhibition.
Collapse
Affiliation(s)
- János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - Péter Boross
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| |
Collapse
|
19
|
Miklóssy G, Tözsér J, Kádas J, Ishima R, Louis JM, Bagossi P. Novel macromolecular inhibitors of human immunodeficiency virus-1 protease. Protein Eng Des Sel 2008; 21:453-61. [PMID: 18480092 DOI: 10.1093/protein/gzn022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An intracellularly expressed defective human immunodeficiency virus type-1 (HIV-1) protease (PR) monomer could function as a dominant-negative inhibitor of the enzyme that requires dimerization for activity. Based on in silico studies, two mutant PRs harboring hydrophilic mutations, capable of forming favorable inter- and intra-subunit interactions, were selected: PR(RE) containing Asp25Arg and Gly49Glu mutations, and PR(RER) containing an additional Ile50Arg mutation. The mutants were expressed and tested by PR assays, nuclear magnetic resonance (NMR) and cell culture experiments. The mutant PRs showed dose-dependent inhibition of the wild-type PR in a fluorescent microtiter plate PR assay. Furthermore, both mutants were retained by hexahistidine-tagged wild-type HIV-1 PR immobilized on nickel-chelate affinity resin. For the first time, heterodimerization between wild-type and dominant-negative mutant PRs were also demonstrated by NMR spectroscopy. (1)H-(15)N Heteronuclear Single Quantum Coherence NMR spectra showed that although PR(RE) has a high tendency to aggregate, PR(RER) exists mainly as a folded monomer at 25-35 microM concentration, but in the presence of wild-type PR in a ratio of 1:1, heterodimerization occurs with both mutants. While the recombinant virus containing the PR(RE) sequence showed only very low level of expression, expression of the viral proteins of the virus with the PR(RER) sequence was comparable with that of the wild-type. In cell culture experiments, infectivity of viral particles containing PR(RER) protein was reduced by 82%, at mutant to wild-type infective DNA ratio of 2:1.
Collapse
Affiliation(s)
- Gabriella Miklóssy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, PO Box 6, Debrecen H-4012, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Wang YF, Tie Y, Boross PI, Tozser J, Ghosh AK, Harrison RW, Weber IT. Potent new antiviral compound shows similar inhibition and structural interactions with drug resistant mutants and wild type HIV-1 protease. J Med Chem 2007; 50:4509-15. [PMID: 17696515 PMCID: PMC2751596 DOI: 10.1021/jm070482q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potent new antiviral inhibitor GRL-98065 (1) of HIV-1 protease (PR) has been studied with PR variants containing the single mutations D30N, I50V, V82A, and I84V that provide resistance to the major clinical inhibitors. Compound 1 had inhibition constants of 17-fold, 8-fold, 3-fold, and 3-fold, respectively, for PR(D30N), PR(I50V), PR(V82A), and PR(I84V) relative to wild type PR. The chemically related darunavir had similar relative inhibition, except for PR(D30N), where inhibitor 1 was approximately 3-fold less potent. The high resolution (1.11-1.60 Angstrom) crystal structures of PR mutant complexes with inhibitor 1 showed small changes relative to the wild type enzyme. PR(D30N) and PR(V82A) showed compensating interactions with inhibitor 1 relative to those of PR, while reduced hydrophobic contacts were observed with PR(I50V) and PR(I84V). Importantly, inhibitor 1 complexes showed fewer changes relative to wild type enzyme than reported for darunavir complexes. Therefore, inhibitor 1 is a valuable addition to the antiviral inhibitors with high potency against resistant strains of HIV.
Collapse
Affiliation(s)
- Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Yunfeng Tie
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Peter I. Boross
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jozsef Tozser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arun K. Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, Georgia 30303, USA
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, 402 Kell Hall, 24 Peachtree Center Ave., Atlanta GA 30303, Phone: 404-413-5411, Fax: 404-413-5301,
| |
Collapse
|
21
|
Sperka T, Miklóssy G, Tie Y, Bagossi P, Zahuczky G, Boross P, Matúz K, Harrison RW, Weber IT, Tözsér J. Bovine leukemia virus protease: comparison with human T-lymphotropic virus and human immunodeficiency virus proteases. J Gen Virol 2007; 88:2052-2063. [PMID: 17554040 DOI: 10.1099/vir.0.82704-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bovine leukemia virus (BLV) is a valuable model system for understanding human T-lymphotropic virus 1 (HTLV-1); the availability of an infectious BLV clone, together with animal-model systems, will help to explore anti-HTLV-1 strategies. Nevertheless, the specificity and inhibitor sensitivity of the BLV protease (PR) have not been characterized in detail. To facilitate such studies, a molecular model for the enzyme was built. The specificity of the BLV PR was studied with a set of oligopeptides representing naturally occurring cleavage sites in various retroviruses. Unlike HTLV-1 PR, but similar to the human immunodeficiency virus 1 (HIV-1) enzyme, BLV PR was able to hydrolyse the majority of the peptides, mostly at the same position as did their respective host PRs, indicating a broad specificity. When amino acid residues of the BLV PR substrate-binding sites were replaced by equivalent ones of the HIV-1 PR, many substitutions resulted in inactive protein, indicating a great sensitivity to mutations, as observed previously for the HTLV-1 PR. The specificity of the enzyme was studied further by using a series of peptides containing amino acid substitutions in a sequence representing a naturally occurring HTLV-1 PR cleavage site. Also, inhibitors of HIV-1 PR, HTLV-1 PR and other retroviral proteases were tested on the BLV PR. Interestingly, the BLV PR was more susceptible than the HTLV-1 PR to the inhibitors tested. Therefore, despite the specificity differences, in terms of mutation intolerance and inhibitor susceptibility of the PR, BLV and the corresponding animal-model systems may provide good models for testing of PR inhibitors that target HTLV-1.
Collapse
Affiliation(s)
- Tamás Sperka
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gabriella Miklóssy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Yunfeng Tie
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gábor Zahuczky
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Péter Boross
- Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Robert W Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| |
Collapse
|
22
|
Tie Y, Kovalevsky AY, Boross P, Wang YF, Ghosh AK, Tozser J, Harrison RW, Weber IT. Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Proteins 2007; 67:232-42. [PMID: 17243183 DOI: 10.1002/prot.21304] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Saquinavir (SQV), the first antiviral HIV-1 protease (PR) inhibitor approved for AIDS therapy, has been studied in complexes with PR and the variants PR(I) (84V) and PR(V) (82A) containing the single mutations I84V and V82A that provide resistance to all the clinical inhibitors. Atomic resolution crystal structures (0.97-1.25 A) of the SQV complexes were analyzed in comparison to the protease complexes with darunavir, a new drug that targets resistant HIV, in order to understand the molecular basis of drug resistance. PR(I) (84V) and PR(V) (82A) complexes were obtained in both the space groups P2(1)2(1)2 and P2(1)2(1)2(1), which provided experimental limits for the conformational flexibility. The SQV interactions with PR were very similar in the mutant complexes, consistent with the similar inhibition constants. The mutation from bigger to smaller amino acids allows more space to accommodate the large group at P1' of SQV, unlike the reduced interactions observed in darunavir complexes. The residues 79-82 have adjusted to accommodate the large hydrophobic groups of SQV, suggesting that these residues are intrinsically flexible and their conformation depends more on the nature of the inhibitor than on the mutations in this region. This analysis will assist with development of more effective antiviral inhibitors.
Collapse
Affiliation(s)
- Yunfeng Tie
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fehér A, Boross P, Sperka T, Miklóssy G, Kádas J, Bagossi P, Oroszlan S, Weber IT, Tözsér J. Characterization of the murine leukemia virus protease and its comparison with the human immunodeficiency virus type 1 protease. J Gen Virol 2006; 87:1321-1330. [PMID: 16603535 DOI: 10.1099/vir.0.81382-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protease (PR) of Murine leukemia virus (MLV) was expressed in Escherichia coli, purified to homogeneity and characterized by using various assay methods, including HPLC-based, photometric and fluorometric activity measurements. The specificity of the bacterially expressed PR was similar to that of virion-extracted PR. Compared with human immunodeficiency virus type 1 (HIV-1) PR, the pH optimum of the MLV enzyme was higher. The specificity of the MLV PR was further compared with that of HIV-1 PR by using various oligopeptides representing naturally occurring cleavage sites in MLV and HIV-1, as well as by using bacterially expressed proteins having part of the MLV Gag. Inhibitors designed against HIV-1 PR were also active on MLV PR, although all of the tested ones were substantially less potent on this enzyme than on HIV-1 PR. Nevertheless, amprenavir, the most potent inhibitor against MLV PR, was also able to block Gag processing in MLV-infected cells. These results indicate that, in spite of the similar function in the life cycle of virus infection, the two PRs are only distantly related in their specificity.
Collapse
Affiliation(s)
- Anita Fehér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Péter Boross
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Tamás Sperka
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gabriella Miklóssy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Stephen Oroszlan
- HIV Drug Resistant Program, National Cancer Institute at Frederick, MD, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| |
Collapse
|
24
|
Kovalevsky AY, Tie Y, Liu F, Boross PI, Wang YF, Leshchenko S, Ghosh AK, Harrison RW, Weber IT. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. J Med Chem 2006; 49:1379-87. [PMID: 16480273 PMCID: PMC3015180 DOI: 10.1021/jm050943c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potent new antiviral inhibitor TMC-114 (UIC-94017) of HIV-1 protease (PR) has been studied with three PR variants containing single mutations D30N, I50V, and L90M, which provide resistance to the major clinical inhibitors. The inhibition constants (K(i)) of TMC-114 for mutants PR(D30N), PR(I50V), and PR(L90M) were 30-, 9-, and 0.14-fold, respectively, relative to wild-type PR. The molecular basis for the inhibition was analyzed using high-resolution (1.22-1.45 A) crystal structures of PR mutant complexes with TMC-114. In PR(D30N), the inhibitor has a water-mediated interaction with the side chain of Asn30 rather than the direct interaction observed in PR, which is consistent with the relative inhibition. Similarly, in PR(I50V) the inhibitor loses favorable hydrophobic interactions with the side chain of Val50. TMC-114 has additional van der Waals contacts in PR(L90M) structure compared to the PR structure, leading to a tighter binding of the inhibitor. The observed changes in PR structure and activity are discussed in relation to the potential for development of resistant mutants on exposure to TMC-114.
Collapse
Affiliation(s)
- Andrey Yu. Kovalevsky
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Yunfeng Tie
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Fengling Liu
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Peter I. Boross
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
| | - Sofiya Leshchenko
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, Georgia 30303, USA
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, USA
- *Department of Biology, Georgia State University, 402 Kell Hall, 24 Peachtree Center Ave., Atlanta GA 30303, Phone: 404-651-0098, Fax: 404-651-2509, E-mail:
| |
Collapse
|
25
|
Li M, Laco GS, Jaskolski M, Rozycki J, Alexandratos J, Wlodawer A, Gustchina A. Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design. Proc Natl Acad Sci U S A 2005; 102:18332-7. [PMID: 16352712 PMCID: PMC1317974 DOI: 10.1073/pnas.0509335102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The successful development of a number of HIV-1 protease (PR) inhibitors for the treatment of AIDS has validated the utilization of retroviral PRs as drug targets and necessitated their detailed structural study. Here we report the structure of a complex of human T cell leukemia virus type 1 (HTLV-1) PR with a substrate-based inhibitor bound in subsites P5 through P5'. Although HTLV-1 PR exhibits an overall fold similar to other retroviral PRs, significant structural differences are present in several loop areas, which include the functionally important flaps, previously considered to be structurally highly conserved. Potential key residues responsible for the resistance of HTLV-1 PR to anti-HIV drugs are identified. We expect that the knowledge accumulated during the development of anti-HIV drugs, particularly in overcoming drug resistance, will help in designing a novel class of antileukemia drugs targeting HTLV-1 PR and in predicting their drug-resistance profile. The structure presented here can be used as a starting point for the development of such anticancer therapies.
Collapse
Affiliation(s)
- Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Horáková D, Rumlová M, Pichová I, Ruml T. Luminometric method for screening retroviral protease inhibitors. Anal Biochem 2005; 345:96-101. [PMID: 16125122 DOI: 10.1016/j.ab.2005.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/30/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
We have developed a sensitive luminometric assay for determining the activity of retroviral proteases that uses proteolytic cleavage of polypeptide substrate immobilized on Ni-NTA HisSorb Strips microplates. The protease substrate derived from the Gag precursor protein of Mason-Pfizer monkey virus (M-PMV) was conjugated with horseradish peroxidase (HRP), which catalyzes oxidation of luminol in the assay. The cleavage of the substrate was monitored as a decrease in luminescent signal caused by the release of the cleavage product conjugated to HRP. Testing of a set of M-PMV protease inhibitors confirmed that this method is sufficiently sensitive and specific for high-throughput screening of retroviral protease inhibitors.
Collapse
Affiliation(s)
- Dana Horáková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 3, 166 28 Prague, Czech Republic
| | | | | | | |
Collapse
|
27
|
Hu K, Clément JF, Abrahamyan L, Strebel K, Bouvier M, Kleiman L, Mouland AJ. A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virol Methods 2005; 128:93-103. [PMID: 15951029 PMCID: PMC7112859 DOI: 10.1016/j.jviromet.2005.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 12/03/2022]
Abstract
A sensitive reporter assay to measure human immunodeficiency virus type 1 (HIV-1) protease (PR) activity is described in this manuscript. This assay measures PR activity as a function of the resonance energy transfer (RET) between a donor molecule [humanized sea pansy Renilla reniformis luciferase (hRLuc)] and an energy acceptor molecule, humanized green fluorescent protein (hGFP2) when expressed in mammalian cells. This is a naturally occurring phenomenon and is an emerging and powerful technology that has significant advantages over alternative in vitro PR assays. The HIV-1 Gag-p2/Gag-p7 (p2/p7) PR site was inserted between hGFP2 and hRLuc. The newly created vector, hRLuc-p2/p7-hGFP2 was co-expressed with an HIV-1 codon-optimized PR+ or PR- Gag/Pol expressor. Expression of the hRLuc-p2/p7-hGFP2 alone or with the PR- Gag-Pol expressor generated a BRET2 indicating that the PR cleavage site was not cleaved, whereas the inclusion of the PR+ Gag-Pol produced a significant reduction in the BRET2. The inclusion of PR inhibitors Saquinavir or Amprenavir, or the expression of a p2/p7 PR substrate mutant also blocked the cleavage to result in a stable BRET2 signal. Because the HIV-1 auxiliary protein Vif has been shown to modulate the HIV-1p2/p7 cleavage, this assay was then validated in studies in which Vif was expressed. When Vif was overexpressed along with hRLuc-p2/p7-hGFP2 and PR+ Gag-Pol, the decrease in BRET2 was abrogated in a dose-dependent manner, demonstrating that supraphysiologic levels of Vif block p2/p7 cleavage. An accumulation of a Gag processing intermediate was observed, indicating that p2/p7 cleavage was negatively affected. Overexpression of an RNA-binding-defective Staufen protein or a related dsRNA-binding protein TRBP had no effect on PR cleavage activity as shown by Western and BRET2 analyses. The p2/p7 processing data were confirmed by Western blot analyses. BRET is non-invasive and occurs within live cells, is measured in real time, and is not restricted to cellular compartments making it an especially attractive technology to identify small bioactive inhibitory molecules. This PR BRET2 biosensor assay can be adapted for high throughput screening of new HIV-1 PR inhibitors. It can be employed to screen for antiviral compounds that also target the proteases of other viruses.
Collapse
Affiliation(s)
- Kimberly Hu
- HIV-1 RNA Trafficking Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, 3999 Côte-Ste-Catherine Road, Montréal, Qué., Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
28
|
Sperka T, Pitlik J, Bagossi P, Tözsér J. Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg Med Chem Lett 2005; 15:3086-90. [PMID: 15893929 DOI: 10.1016/j.bmcl.2005.04.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/31/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Compounds of a combinatorial monocyclic beta-lactam library were found to be apparently uncompetitive inhibitors of HIV-1 protease, providing lead compounds for a new class of HIV protease inhibitors.
Collapse
Affiliation(s)
- Tamás Sperka
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, H-4012 Debrecen, Hungary
| | | | | | | |
Collapse
|
29
|
Kádas J, Weber IT, Bagossi P, Miklóssy G, Boross P, Oroszlan S, Tözsér J. Narrow substrate specificity and sensitivity toward ligand-binding site mutations of human T-cell Leukemia virus type 1 protease. J Biol Chem 2004; 279:27148-57. [PMID: 15102858 DOI: 10.1074/jbc.m401868200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a number of human diseases; therefore, its protease is a potential target for chemotherapy. To compare the specificity of HTLV-1 protease with that of human immunodeficiency virus type 1 (HIV-1) protease, oligopeptides representing naturally occurring cleavage sites in various retroviruses were tested. The number of hydrolyzed peptides as well as the specificity constants suggested a substantially broader specificity of the HIV protease. Amino acid residues of HTLV-1 protease substrate-binding sites were replaced by equivalent ones of HIV-1 protease. Most of the single and multiple mutants had altered specificity and a dramatically reduced folding and catalytic capability, suggesting that mutations are not well tolerated in HTLV-1 protease. The catalytically most efficient mutant was that with the flap residues of HIV-1 protease. The inhibition profile of the mutants was also determined for five inhibitors used in clinical practice and inhibitor analogs of HTLV-1 cleavage sites. Except for indinavir, the HIV-1 protease inhibitors did not inhibit wild type and most of the mutant HTLV-1 proteases. The wild type HTLV-1 protease was inhibited by the reduced peptide bond-containing substrate analogs, whereas the mutants showed various degrees of weakened binding capability. Most interesting, the enzyme with HIV-1-like residues in the flap region was the most sensitive to the HIV-1 protease inhibitors and least sensitive to the HTLV-1 protease inhibitors, indicating that the flap plays an important role in defining the specificity differences of retroviral proteases.
Collapse
Affiliation(s)
- János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, P. O. Box 6, Hungary
| | | | | | | | | | | | | |
Collapse
|