1
|
Guček T, Jakše J, Radišek S. Optimization and Validation of Singleplex and Multiplex RT-qPCR for Detection of Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), and Hop stunt viroid (HSVd) in Hops ( Humulus lupulus). PLANT DISEASE 2023; 107:3592-3601. [PMID: 37261880 DOI: 10.1094/pdis-11-22-2606-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct crop losses due to plant diseases and the measures used to control them have significant agricultural and economic impacts. The shift from diverse small-scale to large-scale genetically uniform monoculture production, along with agricultural intensification and climate change, has led to several known epidemics in man-made agroecosystems that have been rendered more vulnerable to pathogens. One such example is hop growing, which is threatened by highly aggressive hop viroids. Since 2007, almost one-third (about 500 ha) of Slovenian hop gardens have been affected by severe hop stunt disease caused by Citrus bark cracking viroid (CBCVd), which continues to spread despite strict prevention measures. We have developed and validated a multiplex RT-qPCR (mRT-qPCR) for the sensitive detection of CBCVd, Hop latent viroid (HLVd), and Hop stunt viroid (HSVd). Singleplex RT-qPCR assays were designed individually and subsequently combined in a one-step mRT-qPCR assay. Hop-specific mRNA170 and mRNA1192 internal controls were also developed to detect possible PCR inhibition. Analytical specificity was tested on 35 samples from different hosts, geographic regions, and combinations of viroids. Method validation showed that mRT-qPCR had lower sensitivity than singleplex RT-qPCR, while specificity, selectivity, repeatability, and reproducibility remained unchanged. The newly developed assays were found to be robust, reliable, and suitable for large-scale screening of hop viroids.
Collapse
Affiliation(s)
- Tanja Guček
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| |
Collapse
|
2
|
Li Y, Wang A. Biolistic Inoculation of Fruit Trees with Full-Length Infectious cDNA Clones of RNA Viruses. Methods Mol Biol 2022; 2400:207-216. [PMID: 34905204 DOI: 10.1007/978-1-0716-1835-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long life cycle and lack of efficient and robust virus inoculation technique are the major technical challenges for studying virus infection in perennial woody plants such as fruit trees. Biolistic technology also called particle bombardment is a physical approach that can directly introduce virions or viral full-length cDNA infectious clones into target cells and tissues by high velocity microcarrier particles. The flexibility and high efficiency of the biolistic inoculation method facilitate research on fruit tree virology and the screening and identification of fruit tree germplasms resistant to viruses. Here, we describe a detailed protocol for the biolistic inoculation of peach with of a cDNA infectious clone of Plum pox virus (PPV) using the Helios gene gun, a biolistic particle delivery system.
Collapse
Affiliation(s)
- Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
3
|
Global Transcriptomic Analysis Reveals Insights into the Response of 'Etrog' Citron ( Citrus medica L.) to Citrus Exocortis Viroid Infection. Viruses 2019; 11:v11050453. [PMID: 31109003 PMCID: PMC6563217 DOI: 10.3390/v11050453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Citrus exocortis viroid (CEVd) is the causal agent of citrus exocortis disease. We employed CEVd-infected ‘Etrog’ citron as a system to study the feedback regulation mechanism using transcriptome analysis in this study. Three months after CEVd infection, the transcriptome of fresh leaves was analyzed, and 1530 differentially expressed genes were detected. The replication of CEVd in citron induced upregulation of genes encoding key proteins that were involved in the RNA silencing pathway such as Dicer-like 2, RNA-dependent RNA polymerase 1, argonaute 2, argonaute 7, and silencing defective 3, as well as those genes encoding proteins that are related to basic defense responses. Many genes involved in secondary metabolite biosynthesis and chitinase activity were upregulated, whereas other genes related to cell wall and phytohormone signal transduction were downregulated. Moreover, genes encoding disease resistance proteins, pathogenicity-related proteins, and heat shock cognate 70 kDa proteins were also upregulated in response to CEVd infection. These results suggest that basic defense and RNA silencing mechanisms are activated by CEVd infection, and this information improves our understanding of the pathogenesis of viroids in woody plants.
Collapse
|
4
|
Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop ( Humulus lupulus L.). Viruses 2018; 10:v10100570. [PMID: 30340328 PMCID: PMC6212812 DOI: 10.3390/v10100570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.
Collapse
|
5
|
Kushawaha AK, Dasgupta I. Infectivity of cloned begomoviral DNAs: an appraisal. Virusdisease 2018; 30:13-21. [PMID: 31143828 DOI: 10.1007/s13337-018-0453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 04/18/2018] [Indexed: 11/28/2022] Open
Abstract
Infectivity of cloned begomoviral DNAs is an important criterion to establish the etiology of the disease it causes, to study viral gene functions and host-virus interactions. Three main methods have been employed to study infectivity; mechanical inoculation with cloned viral DNA using abrasives, Agrobacterium-mediated inoculation (agroinoculation) of cloned viral DNA and bombardment using microprojectiles coated with cloned viral DNA (biolistics). Each method has its own advantages and disadvantages and the adoption of one over the other for demonstrating infectivity depends on various factors. This review compares the various features associated with the above three methods.
Collapse
Affiliation(s)
- Akhilesh Kumar Kushawaha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
6
|
Matoušek J, Siglová K, Jakše J, Radišek S, Brass JRJ, Tsushima T, Guček T, Duraisamy GS, Sano T, Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). JOURNAL OF PLANT PHYSIOLOGY 2017; 213:166-177. [PMID: 28395198 DOI: 10.1016/j.jplph.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
The hop metabolome important for the brewing industry and for medical purposes is endangered worldwide due to multiple viroid infections affecting hop physiology. Combinatorial biolistic hop inoculation with Citrus bark cracking viroid (CBCVd), Apple fruit crinkle viroid (AFCVd), Hop latent viroid, and Hop stunt viroid (HSVd) showed a low CBCVd compatibility with HSVd, while all other viroid combinations were highly compatible. Unlike to other viroids, single CBCVd propagation showed a significant excess of (-) over (+) strands in hop, tomato, and Nicotiana benthamiana, but not in citruses. Inoculation of hop with all viroids led to multiple infections with unstable viroid levels in individual plants in the pre- and post-dormancy periods, and to high plant mortality and morphological disorders. Hop isolates of CBCVd and AFCVd were highly stable, only minor quasispecies were detected. CBCVd caused a strong suppression of some crucial mRNAs related to the hop prenylflavonoid biosynthesis pathway, while AFCVd-caused effects were moderate. According to mRNA degradome analysis, this suppression was not caused by a direct viroid-specific small RNA-mediated degradation. CBCVd infection led to a strong induction of two hop transcription factors from WRKY family and to a disbalance of WRKY/WDR1 complexes important for activation of lupulin genes.
Collapse
Affiliation(s)
- J Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - K Siglová
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J Jakše
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - S Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Joseph R J Brass
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - T Tsushima
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - T Guček
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - G S Duraisamy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - T Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - G Steger
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
7
|
Suzuki T, Fujibayashi M, Hataya T, Taneda A, He YH, Tsushima T, Duraisamy GS, Siglová K, Matoušek J, Sano T. Characterization of host-dependent mutations of apple fruit crinkle viroid replicating in newly identified experimental hosts suggests maintenance of stem-loop structures in the left-hand half of the molecule is important for replication. J Gen Virol 2017; 98:506-516. [PMID: 28005527 DOI: 10.1099/jgv.0.000693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apple fruit crinkle viroid (AFCVd) is a tentative member of the genus Apscaviroid, family Pospiviroidae. AFCVd has a narrow host range and is known to infect apple, hop and persimmon as natural hosts. In this study, tomato, cucumber and wild hop have been identified as new experimental herbaceous hosts. Foliar symptoms were very mild or virtually undetectable, but fruits of infected tomato were small, cracked and distorted. These symptoms resemble those observed on some AFCVd-sensitive apple cultivars. After transfer to tomato, cucumber and wild hop, sequence changes were detected in a natural AFCVd isolate from hop, and major variants in tomato, cucumber and wild hop differed in 10, 8 or 2 nucleotides, respectively, from the predominant one in the inoculum. The major variants in tomato and cucumber were almost identical, and the one in wild hop was very similar to the one in cultivated hop. Detailed analyses of the host-dependent sequence changes that appear in a naturally occurring AFCVd isolate from hop after transfer to tomato using small RNA deep sequence data and infectivity studies with dimeric RNA transcripts followed by progeny analysis indicate that the major AFCVd variant in tomato emerged by selection of a minor variant present in the inoculum (i.e. hop) followed by one to two host-dependent de novo mutations. Comparison of the secondary structures of major variants in hop, tomato and persimmon after transfer to tomato suggested that maintenance of stem-loop structures in the left-hand half of the molecule is critical for infection.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| | - Tatsuji Hataya
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| | - Ying-Hong He
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| | - Taro Tsushima
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| | - Ganesh Selvaraj Duraisamy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Kristyna Siglová
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan
| |
Collapse
|
8
|
Brass JRJ, Owens RA, Matoušek J, Steger G. Viroid quasispecies revealed by deep sequencing. RNA Biol 2017; 14:317-325. [PMID: 28027000 PMCID: PMC5367258 DOI: 10.1080/15476286.2016.1272745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022] Open
Abstract
Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.
Collapse
Affiliation(s)
- Joseph R. J. Brass
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert A. Owens
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Jaroslav Matoušek
- Biology Centre, CAS, v. v. i., Institute of Plant Molecular Biology, Branišovská, České Budějovice, Czech Republic
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Adkar-Purushothama CR, Zhang Z, Li S, Sano T. Analysis and application of viroid-specific small RNAs generated by viroid-inducing RNA silencing. Methods Mol Biol 2015; 1236:135-170. [PMID: 25287502 DOI: 10.1007/978-1-4939-1743-3_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viroids are noncoding RNA pathogens inducing severe to mild disease symptoms on agriculturally important crop plants. Viroid replication is entirely dependent on host transcription machinery, and their replication/accumulation in the infected cells can activate RNA silencing-a host defense mechanism that targets the viroid itself. RNA silencing produces in the cell large amounts of viroid-specific small RNAs of 21-24-nucleotides by cleaving (or "dicing") entire molecules of viroid RNA. However, viroid replication is resistant to the effects of RNA silencing and disrupts the normal regulation of host gene expression, finally resulting in the development of disease symptoms on infected plant. The molecular mechanisms of biological processes involving RNA silencing and underlying various aspects of viroid-host interaction, such as symptom expression, are of special interests to both basic and applied areas of viroid research. Here we present a method to create infectious viroid cDNA clones and RNA transcripts, the starting material for such analyses, using Hop stunt viroid as an example. Next we describe methods for the preparation and analysis of viroid-specific small RNAs by deep sequencing using tomato plants infected with Potato spindle tuber viroid as an example. Finally we introduce bioinformatics tools and methods necessary to process, analyze, and characterize these viroid-specific small RNAs. These bioinformatic methods provide a powerful new tool for the detection and discovery of both known and new viroid species.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA group, Département de Biochimie, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | | | | | | |
Collapse
|
10
|
Füssy Z, Patzak J, Stehlík J, Matoušek J. Imbalance in expression of hop (Humulus lupulus) chalcone synthase H1 and its regulators during hop stunt viroid pathogenesis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:688-695. [PMID: 23395540 DOI: 10.1016/j.jplph.2012.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/08/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Viroid-derived small RNAs generated during hop stunt viroid (HSVd) pathogenesis may induce the symptoms found in the hop cultivar "Admiral", including observed shifts in phenylpropanoid metabolites and changes in petiole coloration. Using quantitative RT-PCR, we examined hop lupulin gland-specific genes that have been shown to be involved in phenylpropanoid metabolism, for altered expression in response to infection with two HSVd isolates, HSVd-g and CPFVd. Most notably, the expression of a gene encoding a key enzyme for phenylpropanoid synthesis, naringenin-chalcone synthase H1 (chs_H1), decreased up to 40-fold in infected samples. In addition, a marked decrease in the expression of HlbHLH2 and an increase in the expression of HlMyb3 were observed. These two genes encode transcription factors that form a ternary complex with HlWDR1 for chs_H1 promoter activation. In a transient expression assay, a decrease in the ternary complex potential to activate the chs_H1 promoter was observed upon the decrease of HlbHLH2 expression. In addition, targeting of the chs_H1 transcript by vd-sRNAs may contribute to these expression changes. Our data show that HSVd infection causes a significant imbalance in the expression of phenylpropanoid metabolite-affecting genes via a complex mechanism, possibly involving regulatory disorders and direct targeting by vd-sRNA.
Collapse
Affiliation(s)
- Zoltán Füssy
- University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Scientific Opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk management options. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Abstract
Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, "naked" RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3' and the cytoplasmic 5' RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd.
Collapse
|
13
|
Wiesyk A, Candresse T, Zagorski W, Gora-Sochacka A. Use of randomly mutagenized genomic cDNA banks of potato spindle tuber viroid to screen for viable versions of the viroid genome. J Gen Virol 2010; 92:457-66. [DOI: 10.1099/vir.0.026286-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Matousek J, Schubert J, Dedic P. Complementation analysis of triple gene block of Potato virus S (PVS) revealed its capability to support systemic infection and aphid transmissibility of recombinant Potato virus X. Virus Res 2009; 146:81-8. [PMID: 19748533 DOI: 10.1016/j.virusres.2009.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/29/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Triple gene block (TGB) sequences derived from isolates of ordinary Potato virus S (PVS-O) and Chenopodium-systemic (PVS-CS) were analyzed. Although the TGB sequences did not reveal any specific difference within the 7K protein, some specific differences within the 25K and 12K ORFs were found. In order to investigate a possible functional divergence of PVS-O and PVS-CS TGB variants, these genes were propagated in chimeric Potato virus X (PVX). Both PVS TGB variants partly complemented PVX TGB in Nicotiana benthamiana. The recombinant viruses multiplied to lower titer than the wild-type PVX in N. benthamiana showed attenuated symptoms. Whereas the recombinant PVX variants were also propagated systemically in Nicotiana glutinosa, Celosia argentea, Nicotiana occidentalis and chimeric PVX bearing TGB from PVS-O in Solanum lycopersicum, neither were propagated systemically in Chenopodium quinoa nor in Nicotiana tabacum cv. Samsun nn and the PVX-resistant Solanum tuberosum cv. Szignal. The potential for recombinant viruses to be transmitted by the aphid Myzus persicae was investigated. Aphid transmission in the recombinant virus was obtained by replacing PVX TGB by TGB from the PVS-CS isolate. These results show the potential function of Carlavirus TGB in aphid transmissibility and underlines the possible biological risks from certain recombinant virus variants.
Collapse
Affiliation(s)
- Jaroslav Matousek
- Department of Molecular Genetics, Institute of Plant Molecular Biology Czech Academy of Sciences, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic
| | | | | |
Collapse
|
15
|
Matousek J, Orctová L, Skopek J, Pesina K, Steger G. Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol Chem 2008; 389:905-18. [PMID: 18627315 DOI: 10.1515/bc.2008.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hop latent viroid (HLVd) is not transmissible through hop generative tissues and seeds. Here we describe the process of HLVd elimination during development of hop pollen. HLVd propagates in uninucleate hop pollen, but is eliminated at stages following first pollen mitosis during pollen vacuolization and maturation. Only traces of HLVd were detected by RT-PCR in mature pollen after anthesis and no viroid was detectable in in vitro germinating pollen, suggesting complete degradation of circular and linear HLVd forms. The majority of the degraded HLVd RNA in immature pollen included discrete products in the range of 230-100 nucleotides and therefore did not correspond to siRNAs. HLVd eradication from pollen correlated with developmental expression of a pollen nuclease and specific RNAses. Activity of the pollen nuclease HBN1 was maximal during the vacuolization step and decreased in mature pollen. Total RNAse activity increased continuously up to the final steps of pollen maturation. HBN1 mRNA, which is abundant at the uninucleate microspore stage, encodes a protein of 300 amino acids (34.1 kDa, isoeletric point 5.1). Sequence comparisons revealed that HBN1 is a homolog of S1-like bifunctional plant endonucleases. The developmentally activated HBN1 and pollen ribonucleases could participate in the mechanism of HLVd recognition and degradation.
Collapse
Affiliation(s)
- Jaroslav Matousek
- Biological Center AS CR vvi, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
16
|
Matousek J, Orctová L, Ptácek J, Patzak J, Dedic P, Steger G, Riesner D. Experimental transmission of pospiviroid populations to weed species characteristic of potato and hop fields. J Virol 2007; 81:11891-9. [PMID: 17715233 PMCID: PMC2168794 DOI: 10.1128/jvi.01165-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Weed plants characteristic for potato and hop fields have not been considered in the past as potential hosts that could transmit and lead to spreading of potato spindle tuber (PSTVd) and hop stunt (HSVd) viroids, respectively. To gain insight into this problem, we biolistically inoculated these weed plants with viroid populations either as RNA or as cDNA. New potential viroid host species, collected in central Europe, were discovered. From 12 weed species characteristic for potato fields, high viroid levels, detectable by molecular hybridization, were maintained after both RNA and DNA transfers in Chamomilla reculita and Anthemis arvensis. Low viroid levels, detectable by reverse transcription-PCR (RT-PCR) only, were maintained after plant inoculations with cDNA in Veronica argensis and Amaranthus retroflexus. In these two species PSTVd concentrations were 10(5) and 10(3) times, respectively, lower than in tomato as estimated by real-time PCR. From 14 weeds characteristic for hop fields, high HSVd levels were detected in Galinsoga ciliata after both RNA and DNA transfers. HSVd was found, however, not to be transmissible by seeds of this weed species. Traces of HSVd were detectable by RT-PCR in HSVd-cDNA-inoculated Amaranthus retroflexus. Characteristic monomeric (+)-circular and linear viroid RNAs were present in extracts from weed species propagating viroids to high levels, indicating regular replication, processing, and circularization of viroid RNA in these weed species. Sequence analyses of PSTVd progenies propagated in C. reculita and A. arvensis showed a wide spectrum of variants related to various strains, from mild to lethal variants; the sequence variants isolated from A. retroflexus and V. argensis exhibited similarity or identity to the superlethal AS1 viroid variant. All HSVd clones from G. ciliata corresponded to a HSVdg variant, which is strongly pathogenic for European hops.
Collapse
Affiliation(s)
- J Matousek
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Webster A, Coupland P, Houghton FD, Leese HJ, Aylott JW. The delivery of PEBBLE nanosensors to measure the intracellular environment. Biochem Soc Trans 2007; 35:538-43. [PMID: 17511647 DOI: 10.1042/bst0350538] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular introduction of PEBBLEs (photonic explorers for bioanalysis with biologically localized embedding) has been investigated by a wide variety of methods in a range of cell types. These methods include surface functionalization with CPPs (cell-penetrating peptides), pinocytosis, commercial lipid transfection agents, cytochalasin D, picoinjection, and Gene gun bombardment. This paper will overview several of the most popular methods used for the introduction of PEBBLE nanosensors to the cellular environment and discuss the efficacy of the techniques.
Collapse
Affiliation(s)
- A Webster
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
18
|
Obregón-Barboza V, Del Rincón-Castro MC, Cabrera-Ponce JL, Ibarra JE. Infection, transfection, and co-transfection of baculoviruses by microprojectile bombardment of larvae. J Virol Methods 2007; 140:124-31. [PMID: 17184851 DOI: 10.1016/j.jviromet.2006.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/31/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
The use of baculoviruses as expression vectors for heterologous proteins has been practically limited to the use of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). In this work, infection, transfection and co-transfection events with the baculoviruses AcMNPV and Trichoplusia ni granulovirus (TnGV) were accomplished by bombardment of T. ni first-instar larvae with microprojectiles coated with virions, viral DNA, and viral DNA and a transfer vector, respectively. A series of shooting conditions were tested until positive results were obtained. The use of 1.6 microm gold particles at 900 psi shooting pressure, 400 Torr vacuum, 7 cm distance to target, on sets of 20 first-instar larvae held in a 16 mm diameter container, proved to be the best shooting conditions. Typical infection symptoms were shown by larvae when shot with viruses or viral DNA from AcMNPV or TnGV. Co-transfected recombinant AcMNPV and TnGV were identified by the formation of occlusion bodies and GFP, respectively, in bombarded larvae. This technique opens a wide range of possibilities, not only to use an extensive number of baculoviruses as expression vectors for heterologous proteins, but also be used to infect, transfect or co-transfect a wide variety of viruses into animal cells.
Collapse
|
19
|
Matousek J, Kozlová P, Orctová L, Schmitz A, Pesina K, Bannach O, Diermann N, Steger G, Riesner D. Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biol Chem 2007; 388:1-13. [PMID: 17214544 DOI: 10.1515/bc.2007.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Strong viroid-caused pathogenesis was achieved in tomato cv. Rutgers by biolistic transfer of severe or lethal potato spindle tuber viroid (PSTVd) strains, while other tomato genotypes (e.g., Moneymaker) were tolerant. With reciprocal hybrids between sensitive and tolerant genotypes, we show that plant depression dominates over tolerance. Biolistic transfer of the most pathogenic PSTVd strain AS1 to Nicotiana benthamiana, which is considered to be a symptomless PSTVd host, led to a strong pathogenesis reaction and stunting, suggesting the presence of specific viroid pathogenesis-promoting target(s) in this plant species. Total levels of small siRNA-like PSTVd-specific RNAs were enhanced in strongly symptomatic tomato and N. benthamiana plants after biolistic infection with AS1 in comparison to the mild QFA strain. This indicates association of elevated levels of viroid-specific small RNA with production of strong symptoms. In symptom-bearing tomato leaves in comparison to controls, an RNase of approximately 18 kDa was induced and the activity of a nuclease of 34 kDa was elevated by a factor of seven in the vascular system. Sequence analysis of the nuclease cDNA designated TBN1 showed high homology with plant apoptotic endonucleases. The vascular-specific pathogenesis action is supported by light microscopic observations demonstrating a certain lack of xylem tissue and an arrest of the establishment of new vascular bundles in collapsed plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biolistics/methods
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Endonucleases/genetics
- Endonucleases/metabolism
- Genotype
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/virology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/virology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Viruses/genetics
- Plant Viruses/pathogenicity
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Viroids/genetics
- Viroids/pathogenicity
Collapse
Affiliation(s)
- Jaroslav Matousek
- Department of Molecular Genetics, Biological Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Branisovská 31, CZ-37005 Ceské Budĕjovice, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|