1
|
Bagayoko I, Celli MG, Romay G, Poulicard N, Pinel-Galzi A, Julian C, Filloux D, Roumagnac P, Sérémé D, Bragard C, Hébrard E. Genetic Diversity of Rice stripe necrosis virus and New Insights into Evolution of the Genus Benyvirus. Viruses 2021; 13:v13050737. [PMID: 33922593 PMCID: PMC8145960 DOI: 10.3390/v13050737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.
Collapse
Affiliation(s)
- Issiaka Bagayoko
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Marcos Giovanni Celli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina;
- Instituto de Patología Vegetal (IPAVE, CIAP, INTA), Camino 60 cuadras Km 5, Cordoba 5119, Argentina
| | - Gustavo Romay
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Nils Poulicard
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
| | - Agnès Pinel-Galzi
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
| | - Charlotte Julian
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Denis Filloux
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Philippe Roumagnac
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Drissa Sérémé
- Laboratoire de Laboratoire de Virologie et de Biotechnologies Végétales, INERA—Institut de l’Environnement et de Recherches Agricoles, LMI Patho-Bios, Ouagadougou 01 BP 476, Burkina Faso;
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Eugénie Hébrard
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- Correspondence:
| |
Collapse
|
2
|
Moradi Z, Maghdoori H, Nazifi E, Mehrvar M. Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences. THE PLANT PATHOLOGY JOURNAL 2021; 37:152-161. [PMID: 33866757 PMCID: PMC8053846 DOI: 10.5423/ppj.oa.12.2020.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Plant Pathology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari,
Iran
| | - Hossein Maghdoori
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91779-1163, Mashhad,
Iran
| | - Ehsan Nazifi
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-95447, Babolsar,
Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91779-1163, Mashhad,
Iran
| |
Collapse
|
3
|
Yüksel Özmen C, Khabbazi SD, Khabbazi AD, Gürel S, Kaya R, Oğuz MÇ, Turan F, Rezaei F, Kibar U, Gürel E, Ergül A. Genome composition analysis of multipartite BNYVV reveals the occurrence of genetic re-assortment in the isolates of Asia Minor and Thrace. Sci Rep 2020; 10:4129. [PMID: 32139777 PMCID: PMC7058063 DOI: 10.1038/s41598-020-61091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) is the cause of rhizomania, an important disease of sugar beet around the world. The multipartite genome of the BNYVV contains four or five single-stranded RNA that has been used to characterize the virus. Understanding genome composition of the virus not only determines the degree of pathogenicity but also is required to development of resistant varieties of sugar beet. Resistance to rhizomania has been conferred to sugar beet varieties by conventional breeding methods or modern genome engineering tools. However, over time, viruses undergo genetic alterations and develop new variants to break crop resistance. Here, we report the occurrence of genetic reassortment and emergence of new variants of BNYVV among the isolates of Thrace and Asia Minor (modern-day Turkey). Our findings indicate that the isolates harbor European A-type RNA-2 and RNA-3, nevertheless, RNA-5 is closely related to East Asian J-type. Furthermore, RNA-1 and RNA-4 are either derived from A, B, and P-types or a mixture of them. The RNA-5 factor which enhance the pathogenicity, is rarely found in the isolates studied (20%). The creation of new variants of the virus emphasizes the necessity to develop new generation of resistant crops. We anticipate that these findings will be useful for future genetic characterization and evolutionary studies of BNYVV, as well as for developing sustainable strategies for the control of this destructive disease.
Collapse
Affiliation(s)
| | | | | | - Songül Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Rıza Kaya
- Sugar Institute, Department of Phytopathology, Etimesgut, 06930, Ankara, Turkey
| | | | - Ferzat Turan
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
| | - Fereshteh Rezaei
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
- Başkent University, Institute of Transplantation and Gene Sciences, 06980, Kahramankazan, Ankara, Turkey
| | - Umut Kibar
- Republic of Turkey Ministry of Agriculture and Forestry, Agriculture and Rural Development Support Institution, 06550, Ankara, Turkey
| | - Ekrem Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Ali Ergül
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey.
| |
Collapse
|
4
|
Nouayti F, Tahiri A, Madani I, Blenzar A, Lahlali R. Comparison of RNA extraction methods for the detection of BNYVV rhizomania virus from roots of sugar beet. C R Biol 2018; 341:343-348. [DOI: 10.1016/j.crvi.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
|
5
|
Zhang X, Peng Y, Wang Y, Zhang Z, Li D, Yu J, Han C. Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction. Virol J 2016; 13:189. [PMID: 27876078 PMCID: PMC5120529 DOI: 10.1186/s12985-016-0647-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Brassica yellows virus (BrYV), proposed to be a new polerovirus species, three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) have been described. This study was to develop a simple, rapid, sensitive, cost-effective method for simultaneous detection and differentiation of three genotypes of BrYV. RESULTS In this study, a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection and differentiation of the three genotypes of BrYV. The three genotypes of BrYV and Tunip yellows virus (TuYV) could be differentiated simultaneously using six optimized specific oligonucleotide primers, including one universal primer for detecting BrYV, three BrYV genotype-specific primers, and a pair of primers for specific detection of TuYV. Primers were designed from conserved regions of each virus and their specificity was confirmed by sequencing PCR products. The mRT-PCR products were 278 bp for BrYV-A, 674 bp for BrYV-B, 505 bp for BrYV-C, and 205 bp for TuYV. Amplification of three target genotypes was optimized by increasing the PCR annealing temperatures to 62 °C. One to three fragments specific for the virus genotypes were simultaneously amplified from infected samples and identified by their specific molecular sizes in agarose gel electrophoresis. No specific products could be amplified from cDNAs of other viruses which could infect crucifer crops. Detection limits of the plasmids for multiplex PCR were 100 fg for BrYV-A and BrYV-B, 10 pg for BrYV-C, and 1 pg for TuYV, respectively. The mRT-PCR was applied successfully for detection of three BrYV genotypes from field samples collected in China. CONCLUSIONS The simple, rapid, sensitive, and cost-effective mRT-PCR was developed successfully for detection and differentiation of the three genotypes of BrYV.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Yanmei Peng
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zongying Zhang
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jialin Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenggui Han
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Delbianco A, Lanzoni C, Klein E, Rubies Autonell C, Gilmer D, Ratti C. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission. MOLECULAR PLANT PATHOLOGY 2013; 14:422-8. [PMID: 23384276 PMCID: PMC6638874 DOI: 10.1111/mpp.12018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV.
Collapse
Affiliation(s)
- Alice Delbianco
- DipSA-Plant Pathology, University of Bologna, 40-40127, Bologna, Italy; Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084, Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
D'Alonzo M, Delbianco A, Lanzoni C, Autonell CR, Gilmer D, Ratti C. Beet soil-borne mosaic virus RNA-4 encodes a 32 kDa protein involved in symptom expression and in virus transmission through Polymyxa betae. Virology 2011; 423:187-94. [PMID: 22209119 DOI: 10.1016/j.virol.2011.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/20/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
Beet soil-borne mosaic virus (BSBMV), like Beet necrotic yellow vein virus (BNYVV), is a member of the Benyvirus genus and both are transmitted by Polymyxa betae. Both viruses possess a similar genomic organization: RNA-1 and -2 are essential for infection and replication while RNA-3 and -4 play important roles in disease development and vector-mediated infection in sugar beet roots. We characterized a new species of BSBMV RNA-4 that encodes a 32 kDa protein and a chimeric form of BSBMV RNA-3 and -4. We demonstrated that BSBMV RNA-4 can be amplified by BNYVV RNA-1 and -2 in planta, is involved in symptoms expression on Chenopodium quinoa plants and can also complement BNYVV RNA-4 for virus transmission through its vector P. betae in Beta vulgaris plants. Using replicon-mediated expression, we demonstrate for the first time that a correct expression of RNAs-4 encoded proteins is essential for benyvirus transmission.
Collapse
Affiliation(s)
- Massimiliano D'Alonzo
- DiSTA - Plant Pathology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
8
|
McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. MOLECULAR PLANT PATHOLOGY 2009; 10:129-41. [PMID: 19161359 PMCID: PMC6640442 DOI: 10.1111/j.1364-3703.2008.00514.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae. BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1, has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.
Collapse
Affiliation(s)
- Graham R D McGrann
- Broom's Barn Research Centre, Rothamsted Research, Department of Applied Crop Sciences, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
| | | | | | | |
Collapse
|
9
|
Distribution of various types and P25 subtypes of Beet necrotic yellow vein virus in Germany and other European countries. Arch Virol 2008; 153:2139-44. [DOI: 10.1007/s00705-008-0234-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|
10
|
Li M, Liu T, Wang B, Han C, Li D, Yu J. Phylogenetic analysis of Beet necrotic yellow vein virus isolates from China. Virus Genes 2008; 36:429-32. [DOI: 10.1007/s11262-008-0202-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/11/2008] [Indexed: 11/28/2022]
|
11
|
|