1
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
2
|
Nanotechnology for Nanophytopathogens: From Detection to the Management of Plant Viruses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8688584. [PMID: 36225980 PMCID: PMC9550482 DOI: 10.1155/2022/8688584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Plant viruses are the most destructive pathogens which cause devastating losses to crops due to their diversity in the genome, rapid evolution, mutation or recombination in the genome, and lack of management options. It is important to develop a reliable remedy to improve the management of plant viral diseases in economically important crops. Some reports show the efficiency of metal nanoparticles and engineered nanomaterials and their wide range of applications in nanoagriculture. Currently, there are reports for the use of nanoparticles as an antibacterial and antifungal agent in plants and animals too, but few reports as plant antiviral. “Nanophytovirology” has been emerged as a new branch that covers nanobased management approaches to deal with devastating plant viruses. Varied nanoparticles have specific physicochemical properties that help them to interact in various unique and useful ways with viruses and their vectors along with the host plants. To explore the antiviral role of nanoparticles and for the effective management of plant viruses, it is imperative to understand all minute details such as the concentration/dosage of nanoparticles, time of application, application interval, and their mechanism of action. This review focused on different aspects of metal nanoparticles and metal oxides such as their interaction with plant viruses to explore the antiviral role and the multidimensional perspective of nanotechnology in plant viral disease detection, treatment, and management.
Collapse
|
3
|
Latent potential of current plant diagnostics for detection of sugarcane diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
4
|
Chitray M, Opperman PA, Rotherham L, Fehrsen J, van Wyngaardt W, Frischmuth J, Rieder E, Maree FF. Diagnostic and Epitope Mapping Potential of Single-Chain Antibody Fragments Against Foot-and-Mouth Disease Virus Serotypes A, SAT1, and SAT3. Front Vet Sci 2020; 7:475. [PMID: 32851044 PMCID: PMC7432252 DOI: 10.3389/fvets.2020.00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects cloven-hoofed domestic and wildlife animals and an outbreak can cause severe losses in milk production, reduction in meat production and death amongst young animals. Several parts of Asia, most of Africa, and the Middle East remain endemic, thus emphasis on improved FMD vaccines, diagnostic assays, and control measures are key research areas. FMD virus (FMDV) populations are quasispecies, which pose serious implications in vaccine design and efficacy where an effective vaccine should include multiple independent neutralizing epitopes to elicit an adequate immune response. Further investigation of the residues that comprise the antigenic determinants of the virus will allow the identification of mutations in outbreak strains that potentially lessen the efficacy of a vaccine. Additionally, of utmost importance in endemic regions, is the accurate diagnosis of FMDV infection for the control and eradication of the disease. To this end, a phage display library was explored to identify FMDV epitopes for recombinant vaccines and for the generation of reagents for improved diagnostic FMD enzyme-linked immunosorbent assays (ELISAs). A naïve semi-synthetic chicken single chain variable fragment (scFv) phage display library i.e., the Nkuku ® library was used for bio-panning against FMD Southern-African Territories (SAT) 1, SAT3, and serotype A viruses. Biopanning yielded one unique scFv against SAT1, two for SAT3, and nine for A22. SAT1 and SAT3 specific scFvs were exploited as capturing and detecting reagents to develop an improved diagnostic ELISA for FMDV. The SAT1 soluble scFv showed potential as a detecting reagent in the liquid phase blocking ELISA (LPBE) as it reacted specifically with a panel of SAT1 viruses, albeit with different ELISA absorbance signals. The SAT1svFv1 had little or no change on its paratope when coated on polystyrene plates whilst the SAT3scFv's paratope may have changed. SAT1 and SAT3 soluble scFvs did not neutralize the SAT1 and SAT3 viruses; however, three of the nine A22 binders i.e., A22scFv1, A22scFv2, and A22scFv8 were able to neutralize A22 virus. Following the generation of virus escape mutants through successive virus passage under scFv pressure, FMDV epitopes were postulated i.e., RGD+3 and +4 positions respectively, proving the epitope mapping potential of scFvs.
Collapse
Affiliation(s)
- Melanie Chitray
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Pamela Anne Opperman
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Lia Rotherham
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Jeanni Fehrsen
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Wouter van Wyngaardt
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Janine Frischmuth
- Biotechnology Division, National Bioproducts Institute, Pinetown, South Africa
| | - Elizabeth Rieder
- Plum Island Animal Disease Centre, U.S. Department of Agriculture, Agricultural Research Service, Greenport, NY, United States
| | - Francois Frederick Maree
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Das CM, Guo Y, Kang L, Ho H, Yong K. Investigation of Plasmonic Detection of Human Respiratory Virus. ADVANCED THEORY AND SIMULATIONS 2020; 3:2000074. [PMID: 32838127 PMCID: PMC7300606 DOI: 10.1002/adts.202000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Indexed: 01/29/2023]
Abstract
The COVID‐19 virus has been recently identified as a new species of virus that can cause severe infections such as pneumonia. The sudden outbreak of this disease is being considered a pandemic. Given all this, it is essential to develop smart biosensors that can detect pathogens with minimum time delay. Surface plasmon resonance (SPR) biosensors make use of refractive index (RI) changes as the sensing parameter. In this work, based on actual data taken from previous experimental works done on plasmonic detection of viruses, a detailed simulation of the SPR scheme that can be used to detect the COVID‐19 virus is performed and the results are extrapolated from earlier schemes to predict some outcomes of this SPR model. The results indicate that the conventional Kretschmann configuration can have a limit of detection (LOD) of 2E‐05 in terms of RI change and an average sensitivity of 122.4 degRIU−1 at a wavelength of 780 nm.
Collapse
Affiliation(s)
- Chandreyee Manas Das
- CINTRA CNRS/NTU/THALES, UMI 3288Research Techno Plaza 50 Nanyang Drive, Border X Block Singapore 637553 Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yan Guo
- School of AutomationHangzhou Dianzi University Hangzhou Zhejiang 310018 China
| | - Lixing Kang
- CINTRA CNRS/NTU/THALES, UMI 3288Research Techno Plaza 50 Nanyang Drive, Border X Block Singapore 637553 Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Ho‐pui Ho
- Department of Biomedical EngineeringThe Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China
| | - Ken‐Tye Yong
- CINTRA CNRS/NTU/THALES, UMI 3288Research Techno Plaza 50 Nanyang Drive, Border X Block Singapore 637553 Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
6
|
Surface-Immobilized Biomolecules. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Bilkiss M, Shiddiky MJA, Ford R. Advanced Diagnostic Approaches for Necrotrophic Fungal Pathogens of Temperate Legumes With a Focus on Botrytis spp. Front Microbiol 2019; 10:1889. [PMID: 31474966 PMCID: PMC6702891 DOI: 10.3389/fmicb.2019.01889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
Plant pathogens reduce global crop productivity by up to 40% per annum, causing enormous economic loss and potential environmental effects from chemical management practices. Thus, early diagnosis and quantitation of the causal pathogen species for accurate and timely disease control is crucial. Botrytis Gray Mold (BGM), caused by Botrytis cinerea and B. fabae, can seriously impact production of temperate grain legumes separately or within a complex. Accordingly, several immunogenic and molecular probe-type protocols have been developed for their diagnosis, but these have varying levels of species-specificity, sensitivity and consequent usefulness within the paddock. To substantially improve speed, accuracy and sensitivity, advanced nanoparticle-based biosensor approaches have been developed. These novel methods have made enormous impact toward disease diagnosis in the medical sciences and offer potential for transformational change within the field of plant pathology and disease management, with early and accurate diagnosis at the point-of-care in the field. Here we review several recently developed diagnostic tools that build on traditional approaches and are available for pathogen diagnosis, specifically for Botrytis spp. diagnostic applications. We then identify the specific gaps in knowledge and current limitations to these existing tools.
Collapse
Affiliation(s)
- Marzia Bilkiss
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia.,Queensland Micro- and Nanotechnology Centre (QMNC), Nathan, QLD, Australia
| | - Rebecca Ford
- School of Environment and Science, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
8
|
Surface Orientation and Binding Strength Modulate Shape of FtsZ on Lipid Surfaces. Int J Mol Sci 2019; 20:ijms20102545. [PMID: 31137602 PMCID: PMC6566678 DOI: 10.3390/ijms20102545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023] Open
Abstract
We have used a simple model system to test the prediction that surface attachment strength of filaments presenting a torsion would affect their shape and properties. FtsZ from E. coli containing one cysteine in position 2 was covalently attached to a lipid bilayer containing maleimide lipids either in their head group (to simulate tight attachment) or at the end of a polyethylene glycol molecule attached to the head group (to simulate loose binding). We found that filaments tightly attached grew straight, growing from both ends, until they formed a two-dimensional lattice. Further monomer additions to their sides generated a dense layer of oriented filaments that fully covered the lipid membrane. After this point the surface became unstable and the bilayer detached from the surface. Filaments with a loose binding were initially curved and later evolved into straight thicker bundles that destabilized the membrane after reaching a certain surface density. Previously described theoretical models of FtsZ filament assembly on surfaces that include lateral interactions, spontaneous curvature, torsion, anchoring to the membrane, relative geometry of the surface and the filament ‘living-polymer’ condition in the presence of guanosine triphosphate (GTP) can offer some clues about the driving forces inducing these filament rearrangements.
Collapse
|
9
|
Early Detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. SENSORS 2019; 19:s19030465. [PMID: 30678119 PMCID: PMC6387398 DOI: 10.3390/s19030465] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 01/17/2023]
Abstract
Black Sigatoka is a disease that occurs in banana plantations worldwide. This disease is caused by the hemibiotrophic fungus Pseudocercospora fijiensis, whose infection results in a significant reduction in both product quality and yield. Therefore, detection and identification in the early stages of this pathogen in plants could help minimize losses, as well as prevent the spread of the disease to neighboring cultures. To achieve this, a highly sensitive SPR immunosensor was developed to detect P. fijiensis in real samples of leaf extracts in early stages of the disease. A polyclonal antibody (anti-HF1), produced against HF1 (cell wall protein of P. fijiensis) was covalently immobilized on a gold-coated chip via a mixed self-assembled monolayer (SAM) of alkanethiols using the EDC/NHS method. The analytical parameters of the biosensor were established, obtaining a limit of detection of 11.7 µg mL−1, a sensitivity of 0.0021 units of reflectance per ng mL−1 and a linear response range for the antigen from 39.1 to 122 µg mL−1. No matrix effects were observed during the measurements of real leaf banana extracts by the immunosensor. To the best of our knowledge, this is the first research into the development of an SPR biosensor for the detection of P. fijiensis, which demonstrates its potential as an alternative analytical tool for in-field monitoring of black Sigatoka disease.
Collapse
|
10
|
Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X. Molecular imprinting technology for microorganism analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Matsushita T, Arai H, Koyama T, Hatano K, Nemoto N, Matsuoka K. Iodoacetyl-functionalized pullulan: A supplemental enhancer for single-domain antibody-polyclonal antibody sandwich enzyme-linked immunosorbent assay for detection of survivin. Bioorg Med Chem Lett 2017; 27:4844-4848. [PMID: 28974337 DOI: 10.1016/j.bmcl.2017.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022]
Abstract
Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Hidenao Arai
- Epsilon Molecular Engineering (EME) Inc., Saitama University Comprehensive Open Innovation Center #303, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Naoto Nemoto
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan; Epsilon Molecular Engineering (EME) Inc., Saitama University Comprehensive Open Innovation Center #303, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
12
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
13
|
Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron 2016; 93:72-86. [PMID: 27818053 DOI: 10.1016/j.bios.2016.09.091] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review.
Collapse
Affiliation(s)
- Mohga Khater
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; On leave from Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
14
|
Ikonomova SP, He Z, Karlsson AJ. A simple and robust approach to immobilization of antibody fragments. J Immunol Methods 2016; 435:7-16. [PMID: 27142477 DOI: 10.1016/j.jim.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 11/18/2022]
Abstract
Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA
| | - Ziming He
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA.
| |
Collapse
|
15
|
Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 2016; 85:32-45. [PMID: 27155114 DOI: 10.1016/j.bios.2016.04.091] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/14/2023]
Abstract
The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).
Collapse
Affiliation(s)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
16
|
Affiliation(s)
- Xianting Ding
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Med-X Research Institute, Shanghai, China
| |
Collapse
|
17
|
Foerster A, Hołowacz I, Sunil Kumar GB, Anandakumar S, Wall JG, Wawrzyńska M, Paprocka M, Kantor A, Kraskiewicz H, Olsztyńska-Janus S, Hinder SJ, Bialy D, Podbielska H, Kopaczyńska M. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications. J Biomed Mater Res A 2015; 104:821-32. [PMID: 26566715 DOI: 10.1002/jbm.a.35616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023]
Abstract
Stainless steel 316 L material is commonly used for the production of coronary and peripheral vessel stents. Effective biofunctionalization is a key to improving the performance and safety of the stents after implantation. This paper reports the method for the immobilization of recombinant antibody fragments (scFv) on stainless steel 316 L to facilitate human endothelial progenitor cell (EPC) growth and thus improve cell viability of the implanted stents for cardiovascular applications. The modification of stent surface was conducted in three steps. First the stent surface was coated with titania based coating to increase the density of hydroxyl groups for successful silanization. Then silanization with 3 aminopropyltriethoxysilane (APTS) was performed to provide the surface with amine groups which presence was verified using FTIR, XPS, and fluorescence microscopy. The maximum density of amine groups (4.8*10(-5) mol/cm(2)) on the surface was reached after reaction taking place in ethanol for 1 h at 60 °C and 0.04M APTS. On such prepared surface the glycosylated scFv were subsequently successfully immobilized. The influence of oxidation of scFv glycan moieties and the temperature on scFv coating were investigated. The fluorescence and confocal microscopy study indicated that the densest and most uniformly coated surface with scFv was obtained at 37 °C after oxidation of glycan chain. The results demonstrate that the scFv cannot be efficiently immobilized without prior aminosilanization of the surface. The effect of the chemical modification on the cell viability of EPC line 55.1 (HucPEC-55.1) was performed indicating that the modifications to the 316 L stainless steel are non-toxic to EPCs.
Collapse
Affiliation(s)
- A Foerster
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - I Hołowacz
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - G B Sunil Kumar
- Microbiology and Centre for Research in Medical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - S Anandakumar
- Microbiology and Centre for Research in Medical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - J G Wall
- Microbiology and Centre for Research in Medical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - M Wawrzyńska
- Department of Medical Emergency, Wroclaw Medical University, Wrocław, Poland
| | - M Paprocka
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - A Kantor
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - S Olsztyńska-Janus
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - S J Hinder
- Department of Mechanical Engineering Sciences, University of Surrey, England
| | - D Bialy
- Clinic of Cardiology, Wroclaw Medical University, Wrocław, Poland
| | - H Podbielska
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| | - M Kopaczyńska
- Departament of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Poland
| |
Collapse
|
18
|
Fang Y, Ramasamy RP. Current and Prospective Methods for Plant Disease Detection. BIOSENSORS 2015; 5:537-61. [PMID: 26287253 PMCID: PMC4600171 DOI: 10.3390/bios5030537] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023]
Abstract
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as to maximize productivity and ensure agricultural sustainability, advanced disease detection and prevention in crops are imperative. This paper reviews the direct and indirect disease identification methods currently used in agriculture. Laboratory-based techniques such as polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) and gas chromatography-mass spectrometry (GC-MS) are some of the direct detection methods. Indirect methods include thermography, fluorescence imaging and hyperspectral techniques. Finally, the review also provides a comprehensive overview of biosensors based on highly selective bio-recognition elements such as enzyme, antibody, DNA/RNA and bacteriophage as a new tool for the early identification of crop diseases.
Collapse
Affiliation(s)
- Yi Fang
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Raphael MP, Christodoulides JA, Byers JM, Anderson GP, Liu JL, Turner KB, Goldman ER, Delehanty JB. Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. PLASMONICS (NORWELL, MASS.) 2015; 10:1649-1655. [PMID: 26594135 PMCID: PMC4644190 DOI: 10.1007/s11468-015-9969-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/08/2015] [Indexed: 06/05/2023]
Abstract
Localized surface plasmon resonance (LSPR) spectroscopy and imaging are emerging biosensor technologies which tout label-free biomolecule detection at the nanoscale and ease of integration with standard microscopy setups. The applicability of these techniques can be limited by the restrictions that surface-conjugated ligands must be both sufficiently small and orientated to meet analyte sensitivity requirements. We demonstrate that orientated single domain antibodies (sdAb) can optimize nanoplasmonic sensitivity by comparing three anti-ricin sdAb constructs to biotin-neutravidin, a model system for small and highly orientated ligand studies. LSPR imaging of electrostatically orientated sdAb exhibited a ricin sensitivity equivalent to that of the biotinylated LSPR biosensors for neutravidin. These results, combined with the facts that sdAb are highly stable and readily produced in bacteria and yeast, build a compelling case for the increased utilization of sdAbs in nanoplasmonic applications.
Collapse
Affiliation(s)
- Marc P. Raphael
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Joseph A. Christodoulides
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Jeff M. Byers
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - George P. Anderson
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Jinny L. Liu
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Kendrick B. Turner
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Ellen R. Goldman
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - James B. Delehanty
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| |
Collapse
|
20
|
Kausar ASMZ, Reza AW, Latef TA, Ullah MH, Karim ME. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. SENSORS (BASEL, SWITZERLAND) 2015; 15:8787-831. [PMID: 25884787 PMCID: PMC4431286 DOI: 10.3390/s150408787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
Collapse
Affiliation(s)
| | - Ahmed Wasif Reza
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tarik Abdul Latef
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohammad Habib Ullah
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
21
|
Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T. Current aspects in immunosensors. Biosens Bioelectron 2014; 57:292-302. [DOI: 10.1016/j.bios.2014.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
|
22
|
Grewal YS, Shiddiky MJ, Spadafora LJ, Cangelosi GA, Trau M. Nano-yeast–scFv probes on screen-printed gold electrodes for detection of Entamoeba histolytica antigens in a biological matrix. Biosens Bioelectron 2014; 55:417-22. [DOI: 10.1016/j.bios.2013.12.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022]
|
23
|
Surface plasmon resonance for monitoring the interaction of Potato virus Y with monoclonal antibodies. Anal Biochem 2013; 447:74-81. [PMID: 24220292 DOI: 10.1016/j.ab.2013.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/22/2022]
Abstract
Surface plasmon resonance (SPR)-based biosensors have been widely utilized for measuring interactions of a variety of molecules. Fewer examples include higher biological entities such as bacteria and viruses, and even fewer deal with plant viruses. Here, we describe the optimization of an SPR sensor chip for evaluation of the interaction of the economically relevant filamentous Potato virus Y (PVY) with monoclonal antibodies. Different virus isolates were efficiently and stably bound to a previously immobilized polyclonal antibody surface, which remained stable over subsequent injection regeneration steps. The ability of the biosensor to detect and quantify PVY particles was compared with ELISA and RT-qPCR. Stably captured virus surfaces were successfully used to explore kinetic parameters of the interaction of a panel of monoclonal antibodies with two PVY isolates representing the main viral serotypes N and O. In addition, the optimized biosensor proved to be suitable for evaluating whether two given monoclonal antibodies compete for the same epitope within the viral particle surface. The strategy proposed in this work can help to improve existing serologic diagnostic tools that target PVY and will allow investigation of the inherent serological variability of the virus and exploration for new interactions of PVY particles with other proteins.
Collapse
|
24
|
Encinar M, Kralicek AV, Martos A, Krupka M, Cid S, Alonso A, Rico AI, Jiménez M, Vélez M. Polymorphism of FtsZ filaments on lipid surfaces: role of monomer orientation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9436-9446. [PMID: 23837832 DOI: 10.1021/la401673z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
FtsZ is a bacterial cytoskeletal protein involved in cell division. It forms a ringlike structure that attaches to the membrane to complete bacterial division. It binds and hydrolyzes GTP, assembling into polymers in a GTP-dependent manner. To test how the orientation of the monomers affects the curvature of the filaments on a surface, we performed site-directed mutagenesis on the E. coli FtsZ protein to insert cysteine residues at lateral locations to orient FtsZ on planar lipid bilayers. The E93C and S255C mutants were overproduced, purified, and found to be functionally active in solution, as well as being capable of sustaining cell division in vivo in complementation assays. Atomic force microscopy was used to observe the shape of the filament fibers formed on the surface. The FtsZ mutants were covalently linked to the lipids and could be polymerized on the bilayer surface in the presence of GTP. Unexpectedly, both mutants assembled into straight structures. E93C formed a well-defined lattice with monomers interacting at 60° and 120° angles, whereas S255C formed a more open array of straight thicker filament aggregates. These results indicate that filament curvature and bending are not fixed and that they can be modulated by the orientation of the monomers with respect to the membrane surface. As filament curvature has been associated with the force generation mechanism, these results point to a possible role of filament membrane attachment in lateral association and curvature, elements currently identified as relevant for force generation.
Collapse
Affiliation(s)
- Mario Encinar
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie, 2, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 2013; 50:460-71. [PMID: 23911661 DOI: 10.1016/j.bios.2013.06.060] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023]
Abstract
Immunosensor sensitivity, regenerability, and stability directly depend on the type of antibodies used for the immunosensor design, quantity of immobilized molecules, remaining activity upon immobilization, and proper orientation on the sensing interface. Although sensor surfaces prepared with antibodies immobilized in a random manner yield satisfactory results, site-directed immobilization of the sensing molecules significantly improves the immunosensor sensitivity, especially when planar supports are employed. This review focuses on the three most conventional site-directed antibody immobilization techniques used in immunosensor design. One strategy of immobilizing antibodies on the sensor surface is via affinity interactions with a pre-formed layer of the Fc binding proteins, e.g., protein A, protein G, Fc region specific antibodies or various recombinant proteins. Another immobilization strategy is based on the use of chemically or genetically engineered antibody fragments that can be attached to the sensor surface covered in gold or self-assembled monolayer via the sulfhydryl groups present in the hinge region. The third most common strategy is antibody immobilization via an oxidized oligosaccharide moiety present in the Fc region of the antibody. The principles, advantages, applications, and arising problems of these most often applied immobilization techniques are reviewed.
Collapse
|
26
|
Ierardi V, Ferrera F, Millo E, Damonte G, Filaci G, Valbusa U. Bioactive surfaces for antibody-antigen complex detection by Atomic Force Microscopy. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/439/1/012001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Montenegro JM, Grazu V, Sukhanova A, Agarwal S, de la Fuente JM, Nabiev I, Greiner A, Parak WJ. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev 2013; 65:677-88. [PMID: 23280372 DOI: 10.1016/j.addr.2012.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/05/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Arguably targeting is one of the biggest problems for controlled drug delivery. In the case that drugs can be directed with high efficiency to the target tissue, side effects of medication are drastically reduced. Colloidal inorganic nanoparticles (NPs) have been proposed and described in the last 10years as new platforms for in vivo delivery. However, though NPs can introduce plentiful functional properties (such as controlled destruction of tissue by local heating or local generation of free radicals), targeting remains an issue of intense research efforts. While passive targeting of NPs has been reported (the so-called enhanced permeation and retention, EPR effect), still improved active targeting would be highly desirable. One classical approach for active targeting is mediated by molecular recognition via capture molecules, i.e. antibodies (Abs) specific for the target. In order to apply this strategy for NPs, they need to be conjugated with Abs against specific biomarkers. Though many approaches have been reported in this direction, the controlled bioconjugation of NPs is still a challenge. In this article the strategies of controlled bioconjugation of NPs will be reviewed giving particular emphasis to the following questions: 1) how can the number of capture molecules per NP be precisely adjusted, and 2) how can the Abs be attached to NP surfaces in an oriented way. Solution of both questions is a cornerstone in controlled targeting of the inorganic NPs bioconjugates.
Collapse
|
28
|
Grewal YS, Shiddiky MJA, Gray SA, Weigel KM, Cangelosi GA, Trau M. Label-free electrochemical detection of an Entamoeba histolytica antigen using cell-free yeast-scFv probes. Chem Commun (Camb) 2013; 49:1551-3. [PMID: 23329132 PMCID: PMC3564640 DOI: 10.1039/c2cc38882k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inexpensive, simple and quick detection of pathogen antigens in human samples is a key global health objective. Limiting factors include the cost and complexity of diagnostic tests that utilize antibody probes. Herein, we present a method for label-free electrochemical detection of a protein from the enteric pathogen Entamoeba histolytica using cell-free yeast-embedded antibody-like fragments (yeast-scFv) as novel affinity reagents.
Collapse
Affiliation(s)
- Yadveer S. Grewal
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. Tel: +61-7-33464178. Fax: +61-7-33463973
| | - Muhammad J. A. Shiddiky
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. Tel: +61-7-33464178. Fax: +61-7-33463973
| | - Sean A. Gray
- Seattle Biomedical Research Institute, Seattle, WA 98117, USA
| | - Kris M. Weigel
- Seattle Biomedical Research Institute, Seattle, WA 98117, USA
| | | | - Matt Trau
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. Tel: +61-7-33464178. Fax: +61-7-33463973
| |
Collapse
|
29
|
de Juan-Franco E, Caruz A, Pedrajas JR, Lechuga LM. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing. Analyst 2013; 138:2023-31. [PMID: 23400028 DOI: 10.1039/c3an36498d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.
Collapse
Affiliation(s)
- Elena de Juan-Franco
- Nanobiosensors and Bioanalytical Applications Group, Research Center on Nanoscience and Nanotechnology (CSIC) & CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Jarocka U, Radecka H, Malinowski T, Michalczuk L, Radecki J. Detection of Prunus Necrotic Ringspot Virus in Plant Extracts with Impedimetric Immunosensor based on Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201200470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Hu X, Hortigüela MJ, Robin S, Lin H, Li Y, Moran AP, Wang W, Wall JG. Covalent and oriented immobilization of scFv antibody fragments via an engineered glycan moiety. Biomacromolecules 2012; 14:153-9. [PMID: 23215344 DOI: 10.1021/bm301518p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody-derived fragments have enormous potential application in solid-phase assays such as biomarker detection and protein purification. Controlled orientation of the immobilized antibody molecules is a critical requirement for the sensitivity and efficacy of such assays. We present an approach for covalent, correctly oriented attachment of scFv antibody fragments on solid supports. Glycosylated scFvs were expressed in Escherichia coli and the C-terminal, binding pocket-distal glycan tag was oxidized for covalent attachment to amine-functionalized beads. The glycosylated scFvs could be immobilized at salt concentrations that precluded nonspecific adsorption of unglycosylated molecules and the covalently attached antibody fragments exhibited 4-fold higher functional activity than ionically adsorbed scFvs. The glyco-tethered scFvs were stable in NaCl concentrations that removed greater than 90% of adsorbed scFvs and they exhibited improved stability of antigen binding over both adsorbed scFvs and soluble, nonimmobilized scFvs in accelerated degradation tests. The simple expression and immobilization approach reported is likely to find broad application in in vitro antibody tests.
Collapse
Affiliation(s)
- Xuejun Hu
- Medical College, Dalian University, Xuefu Avenue No.10, Dalian Economical and Technological Development Zone, Liaoning 116622, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Harmsen MM, Fijten HPD. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides. J Immunoassay Immunochem 2012; 33:234-51. [PMID: 22738648 DOI: 10.1080/15321819.2011.634473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to polystyrene, which, however, resulted in inefficient antigen binding. Functional VHH immobilization was improved by VHH fusion to a consecutive myc-His6-tag and was even more improved by fusion to the llama antibody long hinge region containing an additional His6-tag (LHc-His6). The partial dimerization of VHH-LHc-His6 fusion proteins through LHc-mediated disulfide-bond formation was not essential for their improved functional immobilization. VHH fusions to specific polystyrene binding peptides, hydrophobins, or other, unrelated VHH domains were less suitable for increasing functional VHH immobilization because of reduced microbial expression levels. Thus, VHH-LHc-His6 fusion proteins are most suited for functional passive adsorption in ELISA.
Collapse
Affiliation(s)
- Michiel M Harmsen
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | |
Collapse
|
33
|
Affiliation(s)
- Sujit S. Mahajan
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| | - Suri S. Iyer
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| |
Collapse
|
34
|
Casal P, Wen X, Gupta S, Nicholson T, Wang Y, Theiss A, Bhushan B, Brillson L, Lu W, Lee SC. ImmunoFET feasibility in physiological salt environments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2474-2488. [PMID: 22509067 DOI: 10.1098/rsta.2011.0503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Field-effect transistors (FETs) are solid-state electrical devices featuring current sources, current drains and semiconductor channels through which charge carriers migrate. FETs can be inexpensive, detect analyte without label, exhibit exponential responses to surface potential changes mediated by analyte binding, require limited sample preparation and operate in real time. ImmunoFETs for protein sensing deploy bioaffinity elements on their channels (antibodies), analyte binding to which modulates immunoFET electrical properties. Historically, immunoFETs were assessed infeasible owing to ion shielding in physiological environments. We demonstrate reliable immunoFET sensing of chemokines by relatively ion-impermeable III-nitride immunoHFETs (heterojunction FETs) in physiological buffers. Data show that the specificity of detection follows the specificity of the antibodies used as receptors, allowing us to discriminate between individual highly related protein species (human and murine CXCL9) as well as mixed samples of analytes (native and biotinylated CXCL9). These capabilities demonstrate that immunoHFETs can be feasible, contrary to classical FET-sensing assessment. FET protein sensors may lead to point-of-care diagnostics that are faster and cheaper than immunoassay in clinical, biotechnological and environmental applications.
Collapse
Affiliation(s)
- Patricia Casal
- Department of Biomedical Engineering, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Holford TR, Davis F, Higson SP. Recent trends in antibody based sensors. Biosens Bioelectron 2012; 34:12-24. [DOI: 10.1016/j.bios.2011.10.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
36
|
Protected immobilization of Taq DNA polymerase by active site masking on self-assembled monolayers of ω-functionalized thiols. Anal Biochem 2011; 419:205-10. [DOI: 10.1016/j.ab.2011.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 01/02/2023]
|
37
|
Van Dorst B, Mehta J, Rouah-Martin E, Backeljau J, De Coen W, Eeckhout D, De Jaeger G, Blust R, Robbens J. Selection of scFv phages specific for chloramphenicol acetyl transferase (CAT), as alternatives for antibodies in CAT detection assays. J Appl Toxicol 2011; 32:783-9. [PMID: 21500234 DOI: 10.1002/jat.1685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/13/2011] [Accepted: 03/13/2011] [Indexed: 12/22/2022]
Abstract
Reporter gene assays are commonly used in applied toxicology to measure the transcription of genes involved in toxic responses. In these reporter gene assays, transgenic cells are used, which contain a promoter-operator region of a gene of interest fused to a reporter gene. The transcription of the gene of interest can be measured by the detection of the reporter protein. Chloramphenicol acetyl transferase (CAT) is frequently used as a reporter protein in mammalian reporter gene assays. Although CAT can be measured by different detection systems, like enzymatic and immune assays, most of these tests are expensive, time-consuming and labor-intensive. The excellent characteristics of phages, like their high affinity and specificity, their fast, cheap and animal-friendly manufacturing process with low batch-to-batch variations and their stability, make them appropriate as alternatives for antibodies in detection assays. Therefore, in this study single-chain variable fragment (scFv) phages were selected with affinity for CAT. Several scFv phages were selected that showed affinity towards CAT in a screening ELISA. Surface plasmon resonance analyses showed that the tested scFv phages have an affinity for CAT with a dissociation constant (K(d)) around 1 µM. The selected scFv phages in this study could be used as capture elements in a highly sensitive sandwich ELISA to detect CAT concentration as low as 0.1 ng ml⁻¹ or 4 pM. This low detection limit demonstrates the potential of the scFv phages as an alternative for capturing antibodies in a highly sensitive detection test to measure CAT concentrations in reporter gene assays.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University Antwerp, Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yoon M, Hwang HJ, Kim JH. Immobilization of antibodies on the self-assembled monolayer by antigen-binding site protection and immobilization kinetic control. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbise.2011.44033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Abstract
A biosensor is a sensing device that incorporates a biological sensing element and a transducer to produce electrochemical, optical, mass, or other signals in proportion to quantitative information about the analytes in the given samples. The microfluidic chip is an attractive miniaturized platform with valuable advantages, e.g., low cost analysis requiring low reagent consumption, reduced sample volume, and shortened processing time. Combination of biosensors and microfluidic chips enhances analytical capability so as to widen the scope of possible applications. This review provides an overview of recent research activities in the field of biosensors integrated on microfluidic chips, focusing on the working principles, characteristics, and applicability of the biosensors. Theoretical background and applications in chemical, biological, and clinical analysis are summarized and discussed.
Collapse
|
40
|
Liu Y, Dong Y, Jauw J, Linman MJ, Cheng Q. Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification. Anal Chem 2010; 82:3679-85. [PMID: 20384298 DOI: 10.1021/ac1000114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrasensitive detection of proteins is of great importance to proteomics studies. We report here a method to enhance detection sensitivity in surface plasmon resonance (SPR) spectroscopy by coupling a polymerization initiator to a biospecific interaction and inducing inline atom transfer radical polymerization (ATRP) for amplifying SPR response. Bacterial cholera toxin (CT) is chosen as the model protein that has been covalently immobilized on the surface for demonstrating the principle. The specific recognition is achieved by use of biotinylated anti-CT, which allows initiators with a biotin tag to be fixed at the protein binding site through a neutravidin bridge and triggers the localized growth of polymer brushes of poly(hydroxyl-ethyl methacrylate) (PHEMA) via an ATRP mechanism. To further enhance the signal, a second ATRP reaction is conducted that takes advantage of the hydroxyl groups of PHEMA brushes from the first step to form hyperbranched polymers onto the sensing surface. The two consecutive ATRP steps significantly improve SPR detection, allowing low amounts of CT that yield no direct measurement to be quantified with large signals. The resulting polymer film has been characterized by optical and atomic force microscopy. Ascorbic acid (AA) is employed as deoxygen reagent in the catalyst mixture that effectively suppresses oxygen interference, shortening the reaction time and making it possible for applying this ATRP approach to flow injection based SPR detection. A calibration curve of PHEMA amplification for CT detection based on surface coverage has been obtained that displays a correlation in a range from 8.23 x 10(-15) to 3.61 x 10(-12) mol/cm(2) with a limit of detection of 6.27 x 10(-15) mol/cm(2). The versatile biotin-neutravidin interaction used here should allow adaptation of ATRP enhancement to many other systems that include DNA, RNA, peptides, and carbohydrates, opening new avenues for ultrasensitive analysis of biomolecules with flow-injection assay and SPR spectroscopy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
41
|
Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 2010; 26:1178-94. [PMID: 20729060 DOI: 10.1016/j.bios.2010.07.033] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 12/12/2022]
Abstract
A sensitive monitoring of contaminants in food and environment, such as chemical compounds, toxins and pathogens, is essential to assess and avoid risks for both, human and environmental health. To accomplish this, there is a high need for sensitive, robust and cost-effective biosensors that make real time and in situ monitoring possible. Due to their high sensitivity, selectivity and versatility, affinity-based biosensors are interesting for monitoring contaminants in food and environment. Antibodies have long been the most popular affinity-based recognition elements, however recently a lot of research effort has been dedicated to the development of novel recognition elements with improved characteristics, like specificity, stability and cost-efficiency. This review discusses three of these innovative affinity-based recognition elements, namely, phages, nucleic acids and molecular imprinted polymers and gives an overview of biosensors for food and environmental applications where these novel affinity-based recognition elements are applied.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University of Antwerp, Department of Biology, Laboratory of Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eteshola E. Isolation of scFv fragments specific for monokine induced by interferon-gamma (MIG) using phage display. J Immunol Methods 2010; 358:104-10. [PMID: 20382151 PMCID: PMC2925400 DOI: 10.1016/j.jim.2010.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/26/2010] [Accepted: 04/01/2010] [Indexed: 01/01/2023]
Abstract
Iterative affinity selection procedures were used to isolate a number of single chain Fv (scFv) antibody fragment clones from naïve Tomlinson I+J phage display libraries that specifically recognize and bind a chemokine, monokine induced by interferon-gamma (MIG/CXCL9). MIG is an important transplant rejection/biology chemokine protein. ELISA-based affinity characterization results indicate that selectants preferentially bind to MIG in the presence of key biopanning component materials and closely related chemokine proteins. These novel antibody fragments may find utility as molecular affinity interface receptors in various electrochemical biosensor platforms to provide specific MIG binding capability with potential applications in transplant rejection monitoring, and other biomedical applications where detection of MIG level is important.
Collapse
Affiliation(s)
- Edward Eteshola
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43230, USA.
| |
Collapse
|
43
|
Walls D, Loughran ST, Cunningham O. Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol Biol 2010; 681:87-101. [PMID: 20978962 PMCID: PMC7120213 DOI: 10.1007/978-1-60761-913-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high specificity, high affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.
Collapse
Affiliation(s)
- Dermot Walls
- National Centre for Sensor Research, School of Biotechnology, Dublin City University, Dublin, 9 Ireland
| | - Sinéad T. Loughran
- National Centre for Sensor Research, School of Biotechnology, Dublin City University, Dublin, 9 Ireland
| | | |
Collapse
|
44
|
Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. Anal Biochem 2010; 398:161-8. [DOI: 10.1016/j.ab.2009.11.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 11/20/2022]
|
45
|
Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.10.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Caruana DJ, Howorka S. Biosensors and biofuel cells with engineered proteins. MOLECULAR BIOSYSTEMS 2010; 6:1548-56. [DOI: 10.1039/c004951d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Trmcic-Cvitas J, Hasan E, Ramstedt M, Li X, Cooper MA, Abell C, Huck WTS, Gautrot JE. Biofunctionalized Protein Resistant Oligo(ethylene glycol)-Derived Polymer Brushes as Selective Immobilization and Sensing Platforms. Biomacromolecules 2009; 10:2885-94. [DOI: 10.1021/bm900706r] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jelena Trmcic-Cvitas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Erol Hasan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Madeleine Ramstedt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Xin Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Matthew A. Cooper
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Wilhelm T. S. Huck
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Julien E. Gautrot
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, Cambridge Medical Innovations, 181 Cambridge Science Park, Cambridge CB4 0GJ, United Kingdom, and Institute for Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
48
|
|
49
|
Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. SENSORS 2009; 9:4407-45. [PMID: 22408533 PMCID: PMC3291918 DOI: 10.3390/s90604407] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 01/30/2023]
Abstract
Antibody-based sensors permit the rapid and sensitive analysis of a range of pathogens and associated toxins. A critical assessment of the implementation of such formats is provided, with reference to their principles, problems and potential for 'on-site' analysis. Particular emphasis is placed on the detection of foodborne bacterial pathogens, such as Escherichia coli and Listeria monocytogenes, and additional examples relating to the monitoring of fungal pathogens, viruses, mycotoxins, marine toxins and parasites are also provided.
Collapse
|
50
|
Oriented Immobilization of Anti-Pneumolysin Tagged Recombinant Antibody Fragments. Curr Microbiol 2009; 59:81-7. [DOI: 10.1007/s00284-009-9402-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
|