1
|
Kieser Q, Noyce RS, Shenouda M, Lin YCJ, Evans DH. Cytoplasmic factories, virus assembly, and DNA replication kinetics collectively constrain the formation of poxvirus recombinants. PLoS One 2020; 15:e0228028. [PMID: 31945138 PMCID: PMC6964908 DOI: 10.1371/journal.pone.0228028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Poxviruses replicate in cytoplasmic structures called factories and each factory begins as a single infecting particle. Sixty-years ago Cairns predicted that this might have effects on vaccinia virus (VACV) recombination because the factories would have to collide and mix their contents to permit recombination. We've since shown that factories collide irregularly and that even then the viroplasm mixes poorly. We’ve also observed that while intragenic recombination occurs frequently early in infection, intergenic recombination is less efficient and happens late in infection. Something inhibits factory fusion and viroplasm mixing but what is unclear. To study this, we’ve used optical and electron microscopy to track factory movement in co-infected cells and correlate these observations with virus development and recombinant formation. While the technical complexity of the experiments limited the number of cells that are amenable to extensive statistical analysis, these studies do show that intergenic recombination coincides with virion assembly and when VACV replication has declined to ≤10% of earlier levels. Along the boundaries between colliding factories, one sees ER membrane remnants and other cell constituents like mitochondria. These collisions don't always cause factory fusion, but when factories do fuse, they still entrain cell constituents like mitochondria and ER-wrapped microtubules. However, these materials wouldn’t seem to pose much of a further barrier to DNA mixing and so it’s likely that the viroplasm also presents an omnipresent impediment to DNA mixing. Late packaging reactions might help to disrupt the viroplasm, but packaging would sequester the DNA just as the replication and recombination machinery goes into decline and further reduce recombinant yields. Many factors thus appear to conspire to limit recombination between co-infecting poxviruses.
Collapse
Affiliation(s)
- Quinten Kieser
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Mira Shenouda
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Y.-C. James Lin
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
2
|
Postigo A, Ramsden AE, Howell M, Way M. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication. Cell Rep 2017; 19:1022-1032. [PMID: 28467896 PMCID: PMC5437729 DOI: 10.1016/j.celrep.2017.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 02/13/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.
Collapse
Affiliation(s)
- Antonio Postigo
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Amy E Ramsden
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Michael Howell
- High Throughput Screening Facility, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
3
|
Harrison ML, Desaulniers MA, Noyce RS, Evans DH. The acidic C-terminus of vaccinia virus I3 single-strand binding protein promotes proper assembly of DNA-protein complexes. Virology 2016; 489:212-22. [PMID: 26773382 DOI: 10.1016/j.virol.2015.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/24/2015] [Accepted: 12/28/2015] [Indexed: 11/25/2022]
Abstract
The vaccinia virus I3L gene encodes a single-stranded DNA binding protein (SSB) that is essential for virus DNA replication and is conserved in all Chordopoxviruses. The I3 protein contains a negatively charged C-terminal tail that is a common feature of SSBs. Such acidic tails are critical for SSB-dependent replication, recombination and repair. We cloned and purified variants of the I3 protein, along with a homolog from molluscum contagiosum virus, and tested how the acidic tail affected DNA-protein interactions. Deleting the C terminus of I3 enhanced the affinity for single-stranded DNA cellulose and gel shift analyses showed that it also altered the migration of I3-DNA complexes in agarose gels. Microinjecting an antibody against I3 into vaccinia-infected cells also selectively inhibited virus replication. We suggest that this domain promotes cooperative binding of I3 to DNA in a way that would maintain an open DNA configuration around a replication site.
Collapse
Affiliation(s)
- Melissa L Harrison
- Department of Medical Microbiology & Immunology, Li Ka-Shing Institute for Virology, 6020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Megan A Desaulniers
- Department of Medical Microbiology & Immunology, Li Ka-Shing Institute for Virology, 6020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Ryan S Noyce
- Department of Medical Microbiology & Immunology, Li Ka-Shing Institute for Virology, 6020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - David H Evans
- Department of Medical Microbiology & Immunology, Li Ka-Shing Institute for Virology, 6020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada T6G 2E1.
| |
Collapse
|
4
|
Bengali Z, Satheshkumar PS, Yang Z, Weisberg AS, Paran N, Moss B. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription. PLoS One 2011; 6:e17248. [PMID: 21347205 PMCID: PMC3039670 DOI: 10.1371/journal.pone.0017248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/23/2011] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus (VACV), a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis.
Collapse
Affiliation(s)
- Zain Bengali
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - P. S. Satheshkumar
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhilong Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea S. Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nir Paran
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|