1
|
Berneck BS, Rockstroh A, Barzon L, Sinigaglia A, Vocale C, Landini MP, Rabenau HF, Schmidt-Chanasit J, Ulbert S. Serological differentiation of West Nile virus and Usutu virus induced antibodies by envelope proteins with modified cross-reactive epitopes. Transbound Emerg Dis 2021; 69:2779-2787. [PMID: 34919790 DOI: 10.1111/tbed.14429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses belonging to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections in general and between WNV and USUV in particular are challenging due the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV and WNV induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Beatrice Sarah Berneck
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| | - Alexandra Rockstroh
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova, 35121, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova, 35121, Italy
| | - Caterina Vocale
- CRREM. Unità Operativa di Microbiologia, IRCCS Policlinico di S. Orsola, Via Massarenti 9, Bologna, 40138, Italy
| | - Maria Paola Landini
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies-CRREM, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Holger F Rabenau
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, Frankfurt, 60596, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg, 20359, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Targovnik AM, Simonin JA, Mc Callum GJ, Smith I, Cuccovia Warlet FU, Nugnes MV, Miranda MV, Belaich MN. Solutions against emerging infectious and noninfectious human diseases through the application of baculovirus technologies. Appl Microbiol Biotechnol 2021; 105:8195-8226. [PMID: 34618205 PMCID: PMC8495437 DOI: 10.1007/s00253-021-11615-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Abstract
Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technologies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems—BEVS) and as viral vectors for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals—BacMam). Accordingly, BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biological products such as diagnostic kits, vaccines, protein therapies, and—though still in the conceptual stage involving animal models—gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of products for infectious and noninfectious human diseases. Key points • Baculoviruses can assist as biotechnological tools in human health problems. • Vaccines and diagnosis reagents produced in the baculovirus platform are described. • The use of recombinant baculovirus for gene therapy–based treatment is reviewed.
Collapse
Affiliation(s)
- Alexandra Marisa Targovnik
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina.
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Gregorio Juan Mc Callum
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Ignacio Smith
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Nugnes
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Miranda
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
3
|
Abstract
Domestic arthropod-borne viruses (arboviruses) are single-stranded RNA viruses, the most common of which include the mosquito-borne West Nile virus, St. Louis encephalitis virus, La Crosse virus, Jamestown Canyon virus, and eastern equine encephalitis virus, as well as the tick-borne Powassan virus. Previously considered rare infections, they have been detected with increasing frequency over the past 2 decades. Here, we present an overview of the domestic arboviruses listed above and describe the modalities employed to diagnose infection. Global arboviruses, including dengue virus, Zika virus, and chikungunya virus, have also been increasingly detected in the United States within the last 5 years but are not a focus of this minireview. Typical manifestations of arbovirus infection range from no symptoms, to meningitis or encephalitis, to death. Serologies are the standard means of diagnosis in the laboratory, since most viruses have a short period of replication, limiting the utility of molecular tests. The interpretation of serologies is confounded by antibody cross-reactivity with viruses belonging to the same serogroup and by long-lasting antibodies from prior infections. Next-generation assays have improved performance by increasing antigen purity, selecting optimal epitopes, and improving interpretive algorithms, but challenges remain. Due to cross-reactivity, a positive first-line serology test requires confirmation by either a plaque reduction neutralization test or detection of seroconversion or a 4-fold rise in virus-specific IgM or IgG antibody titers from acute- and convalescent-phase sera. The use of molecular diagnostics, such as reverse transcription PCR or unbiased metagenomic sequencing, is limited to the minority of patients who present with ongoing viremia or central nervous system replication. With the continued expansion of vector range, the diagnosis of domestic arboviruses will become an increasingly important task for generalists and specialists alike.
Collapse
|
4
|
Escribano JM, Cid M, Reytor E, Alvarado C, Nuñez MC, Martínez-Pulgarín S, Dalton RM. Chrysalises as natural production units for recombinant subunit vaccines. J Biotechnol 2020; 324S:100019. [PMID: 34154729 DOI: 10.1016/j.btecx.2020.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
The baculovirus vector expression system (BEVS) combines cultured insect cells and genetically modified Autographa californica nuclear polyhedrosis virus (AcMNPV)-derived baculovirus vectors. This expression system has been widely used for the expression of hundred of proteins for more than 30 years, existing commercial products manufactured at large scale by this methodology, mainly subunit vaccines. At an industrial scale, insect cells, as any other cultured cells, require artificial media and a strict control of environmental sterile conditions in the complex and expensive bioreactors. Here we describe an efficient alternative to produce recombinant biologics using the versatile and productive baculovirus vectors. It consists in natural biocapsules (pupae from Trichoplusia ni (Hübner) Lepidoptera), containing millions of insect cells in perfect physiological conditions, ready to be programmed by a genetically modified AcMNPV-derived baculovirus vector to produce large quantities of any recombinant protein. This technology, denominated CrisBio, has been tested to produce dozens of proteins, reaching productivities on the range of milligrams per infected pupa, that can be translated into dozens of vaccine doses, for example. The biologics production by CrisBio was industrialized with the design of both insect rearing and pupae storage single-use plastic devices, compatible with machines specifically designed for the automation of pupae manipulation and inoculation. These devices and machines reduce manual operations, increase batches consistency and facilitate the scaled production of any recombinant protein. As a mode of examples, the productivity in CrisBio technology platform of two virus-like particle (VLP) vaccine antigens is described in this work.
Collapse
Affiliation(s)
- José M Escribano
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain.
| | - Miguel Cid
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Edel Reytor
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Carmen Alvarado
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - María C Nuñez
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Romy M Dalton
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| |
Collapse
|
5
|
Jiménez de Oya N, Escribano-Romero E, Blázquez AB, Martín-Acebes MA, Saiz JC. Current Progress of Avian Vaccines Against West Nile Virus. Vaccines (Basel) 2019; 7:vaccines7040126. [PMID: 31547632 PMCID: PMC6963603 DOI: 10.3390/vaccines7040126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023] Open
Abstract
Birds are the main natural host of West Nile virus (WNV), the worldwide most distributed mosquito-borne flavivirus, but humans and equids can also be sporadic hosts. Many avian species have been reported as susceptible to WNV, particularly corvids. In the case that clinical disease develops in birds, this is due to virus invasion of different organs: liver, spleen, kidney, heart, and mainly the central nervous system, which can lead to death 24–48 h later. Nowadays, vaccines have only been licensed for use in equids; thus, the availability of avian vaccines would benefit bird populations, both domestic and wild ones. Such vaccines could be used in endangered species housed in rehabilitation and wildlife reserves, and in animals located at zoos and other recreational installations, but also in farm birds, and in those that are grown for hunting and restocking activities. Even more, controlling WNV infection in birds can also be useful to prevent its spread and limit outbreaks. So far, different commercial and experimental vaccines (inactivated, attenuated, and recombinant viruses, and subunits and DNA-based candidates) have been evaluated, with various regimens, both in domestic and wild avian species. However, there are still disadvantages that must be overcome before avian vaccination can be implemented, such as its cost-effectiveness for domestic birds since in many species the pathogenicity is low or zero, or the viability of being able to achieve collective immunity in wild birds in freedom. Here, a comprehensive review of what has been done until now in the field of avian vaccines against WNV is presented and discussed.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Juan-Carlos Saiz
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| |
Collapse
|
6
|
Rebollo B, Sarraseca J, Rodríguez MJ, Sanz A, Jiménez-Clavero MÁ, Venteo Á. Diagnostic aptitude of West Nile virus-like particles expressed in insect cells. Diagn Microbiol Infect Dis 2018. [PMID: 29530349 DOI: 10.1016/j.diagmicrobio.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
West Nile virus is a globally spread zoonotic arbovirus. The laboratory diagnosis of WNV infection relies on virus identification by RT-PCR or on specific antibody detection by serological tests, such as ELISA or virus-neutralization. These methods usually require a preparation of the whole virus as antigen, entailing biosafety issues and therefore requiring BSL-3 facilities. For this reason, recombinant antigenic structures enabling effective antibody recognition comparable to that of the native virions, would be advantageous as diagnostic reagents. WNV virions are enveloped spherical particles made up of 3 structural proteins (C, capsid; M, membrane and E, envelope) enclosing the viral RNA. This study describes the co-expression of these 3 proteins yielding non-infectious virus-like particles (VLPs) and the results of the initial assessment of these VLPs, used instead of the whole virus, that were shown to perform correctly in two different ELISAs for WNV diagnosis.
Collapse
Affiliation(s)
- Belén Rebollo
- INGENASA (Inmunología y Genética Aplicada, S.A), c/Hermanos García Noblejas 39, 28037 Madrid, Spain.
| | - Javier Sarraseca
- INGENASA (Inmunología y Genética Aplicada, S.A), c/Hermanos García Noblejas 39, 28037 Madrid, Spain
| | - Mª José Rodríguez
- INGENASA (Inmunología y Genética Aplicada, S.A), c/Hermanos García Noblejas 39, 28037 Madrid, Spain
| | - Antonio Sanz
- INGENASA (Inmunología y Genética Aplicada, S.A), c/Hermanos García Noblejas 39, 28037 Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- INIA-CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación en Sanidad Animal), Carretera de Algete a El Casar s/n., 28130 Valdeolmos, Madrid, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Ángel Venteo
- INGENASA (Inmunología y Genética Aplicada, S.A), c/Hermanos García Noblejas 39, 28037 Madrid, Spain
| |
Collapse
|
7
|
Guijarro-Pardo E, Gómez-Sebastián S, Escribano JM. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors. J Virol Methods 2017; 250:17-24. [PMID: 28943301 DOI: 10.1016/j.jviromet.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/04/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a detailed comparison of production yields reached by injection vs oral infections for different recombinant proteins. In conclusion, these results open the possibility of future industrial scaling-up production of recombinant proteins in insect larvae by reducing manual operations.
Collapse
|
8
|
Ben Hassine T, De Massis F, Calistri P, Savini G, BelHaj Mohamed B, Ranen A, Di Gennaro A, Sghaier S, Hammami S. First detection of co-circulation of West Nile and Usutu viruses in equids in the south-west of Tunisia. Transbound Emerg Dis 2014; 61:385-9. [PMID: 25065813 DOI: 10.1111/tbed.12259] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 11/30/2022]
Abstract
In the last fifteen years, West Nile Virus (WNV) has dramatically expanded its geographic range and is now considered the most widespread arbovirus in the world. In Tunisia, West Nile Fever (WNF) outbreaks were reported in humans in 1997, 2003 and 2012. Usutu Virus (USUV), which is a 'new' emerging Flavivirus antigenically close to WNV, has never been reported in Tunisia. A serological investigation in 284 equids was conducted in 2012 in the southern west region of the country to assess the presence and prevalence of the WNV and USUV infection. Of the 284 samples tested by competitive enzyme-linked immunoassay, 129 were positive. Of these, 120 (42.3%) had WNV-specific neutralizing antibodies. The prevalence was significantly higher in areas closer to the oasis compared with that of the surrounding arid areas. Antibody titres against USUV were also reported in 10 equids. This was the first evidence of USUV circulation in Tunisia. Data recorded by this study indicate that WNV and USUV have circulated/are circulating in the region and that there is an urgent need to adapt the current surveillance programmes to this new scenario.
Collapse
Affiliation(s)
- T Ben Hassine
- Centre National de Veille Zoosanitaire, Tunis, Tunisie
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6049-83. [PMID: 24225644 PMCID: PMC3863887 DOI: 10.3390/ijerph10116049] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses) or occasionally imported (dengue, yellow fever viruses). Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.
Collapse
Affiliation(s)
- Cécile Beck
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | | | - Agnès Leblond
- Département Hippique, VetAgroSup, Marcy l’Etoile 69280, France; E-Mail:
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Benoît Durand
- Epidemiology Unit, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mail:
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; E-Mail:
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | | | - Stéphan Zientara
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | - Elsa Jourdain
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Sylvie Lecollinet
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| |
Collapse
|
10
|
Petrović T, Blazquez AB, Lupulović D, Lazić G, Escribano-Romero E, Fabijan D, Kapetanov M, Lazić S, Saiz J. Monitoring West Nile virus (WNV) infection in wild birds in Serbia during 2012: first isolation and characterisation of WNV strains from Serbia. ACTA ACUST UNITED AC 2013; 18. [PMID: 24176657 DOI: 10.2807/1560-7917.es2013.18.44.20622] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
West Nile virus (WNV), a neurovirulent mosquito-transmissible zoonotic virus, has caused recent outbreaks in Europe, including Serbia from August until October 2012. Although humans can be infected, birds are the main natural WNV reservoir. To assess WNV circulation in northern Serbia, 133 wild birds were investigated. These comprised resident and migratory birds, collected between January and September 2012 in the Vojvodina province. The birds belonged to 45 species within 27 families. Blood sera (n=92) and pooled tissues from respective birds (n=81) were tested by enzyme-linked immunosorbent assay (ELISA), plaque reduction neutralisation test (PRNT) and real-time reverse transcription-polymerase chain reaction (RT-qPCR). WNV antibodies were detected in seven (8%) sera: four from Mute Swans (Cygnus olor), two from White-tailed Eagles (Haliaeetus albicillas), and one from a Common Pheasant (Phasianus colchicus). Five sera neutralised WNV but not Usutu virus. For the first time in Serbia, WNV RNA was detected by RT-qPCR in pooled tissue samples of eight respective birds. WNV RNA was also derived from an additional bird, after a serum sample resulted infective in cell culture. The total nine WNV RNA positive birds included three Northern Goshawks (Accipiter gentilis), two White-tailed Eagles, one Legged Gull (Larus michahelis), one Hooded Crow (Corvus cornix), one Bearded Parrot-bill (Panarus biramicus), and one Common Pheasant. Phylogenetic analysis of partial E region sequences showed the presence of, at least, two lineage 2 Serbian clusters closely related to those responsible for recent human and animal outbreaks in Greece, Hungary and Italy. Full genomic sequence from a goshawk isolate corroborated this data. These results confirm WNV circulation in Serbia and highlight the risk of infection for humans and horses, pointing to the need for implementing WNV surveillance programmes.
Collapse
Affiliation(s)
- T Petrović
- Scientific Veterinary Institute Novi Sad , Novi Sad, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sambri V, Capobianchi MR, Cavrini F, Charrel R, Donoso-Mantke O, Escadafal C, Franco L, Gaibani P, Gould EA, Niedrig M, Papa A, Pierro A, Rossini G, Sanchini A, Tenorio A, Varani S, Vázquez A, Vocale C, Zeller H. Diagnosis of west nile virus human infections: overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses 2013; 5:2329-48. [PMID: 24072061 PMCID: PMC3814591 DOI: 10.3390/v5102329] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 01/14/2023] Open
Abstract
West Nile virus, genus Flavivirus, is transmitted between birds and occasionally other animals by ornithophilic mosquitoes. This virus also infects humans causing asymptomatic infections in about 85% of cases and <1% of clinical cases progress to severe neuroinvasive disease. The virus also presents a threat since most infections remain unapparent. However, the virus contained in blood and organs from asymptomatically infected donors can be transmitted to recipients of these infectious tissues. This paper reviews the presently available methods to achieve the laboratory diagnosis of West Nile virus infections in humans, discussing the most prominent advantages and disadvantages of each in light of the results obtained during four different External Quality Assessment studies carried out by the European Network for ‘Imported’ Viral Diseases (ENIVD).
Collapse
Affiliation(s)
- Vittorio Sambri
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-331-8687352
| | - Maria R. Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome 00149, Italy; E-Mail:
| | - Francesca Cavrini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Rémi Charrel
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
| | - Olivier Donoso-Mantke
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Camille Escadafal
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Leticia Franco
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Paolo Gaibani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ernest A. Gould
- UMR_D 190 “Emergence des Pathologies Virales”, APHM Public Hospitals of Marseille, EHESP French School of Public Health & IHU Mediterranee Infection, IRD French Institute of Research for Development, Aix Marseille University, 13005, Marseille, France; E-Mail: (R.C.)
- NERC Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK; E-Mail: (E.A.G.)
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-Mail:
| | - Anna Pierro
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Giada Rossini
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Andrea Sanchini
- Centre for Biological Threats and Special Pathogens (ZBS-1), Robert Koch-Institut, Berlin 13353, Germany; E-Mails: (O.D.-M.); (C.E.); (M.N.); (A.S.)
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden
| | - Antonio Tenorio
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Stefania Varani
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Ana Vázquez
- National Microbiology Centre, Instituto de Salud Carlos III, Madrid 28220, Spain; E-Mails: (L.F.); (A.T.); (A.V.)
| | - Caterina Vocale
- Operative Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, S. Orsola-Malpighi University Hospital, Bologna 40138, Italy; E-Mails: (V.S.); (F.C.); (P.G.); (A.P.); (G.R.); (S.V.); (C.V.)
| | - Herve Zeller
- European Centre for Disease Prevention and Control, Stockholm 171 83, Sweden; E-Mail:
| |
Collapse
|
12
|
Escribano-Romero E, Gamino V, Merino-Ramos T, Blázquez A, Martín-Acebes M, de Oya NJ, Gutiérrez-Guzmán A, Escribano JM, Höfle U, Saiz J. Protection of red-legged partridges (Alectoris rufa) against West Nile virus (WNV) infection after immunization with WNV recombinant envelope protein E (rE). Vaccine 2013; 31:4523-7. [DOI: 10.1016/j.vaccine.2013.07.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/25/2013] [Indexed: 01/15/2023]
|
13
|
Rodríguez-Pulido M, Martín-Acebes MA, Escribano-Romero E, Blázquez AB, Sobrino F, Borrego B, Sáiz M, Saiz JC. Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One 2012; 7:e49494. [PMID: 23166685 PMCID: PMC3498145 DOI: 10.1371/journal.pone.0049494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV) is a neurovirulent single stranded RNA mosquito-borne flavivirus, whose main natural hosts are birds, but it also infects humans and horses. Nowadays, no human vaccine is commercially available and clinical treatment is only supportive. Recently, it has been shown that RNA transcripts, mimicking structural domains in the non-coding regions (NCRs) of the foot-and mouth disease virus (FMDV) induce a potent IFN response and antiviral activity in transfected cultured cells, and also reduced mice susceptibility to FMDV. By using different transcripts combinations, administration schedules, and infecting routes and doses, we have demonstrated that these FMDV RNA transcripts protect suckling and adult mice against lethal challenge with WNV. The protective activity induced by the transcripts was systemic and dependent on the infection route and dose. These results confirm the antiviral potential of these synthetic RNAs for fighting viruses of different families relevant for human and animal health.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Martín-Acebes MA, Saiz JC. West Nile virus: A re-emerging pathogen revisited. World J Virol 2012; 1:51-70. [PMID: 24175211 PMCID: PMC3782267 DOI: 10.5501/wjv.v1.i2.51] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
West Nile virus (WNV), a flavivirus of the Flaviviridae family, is maintained in nature in an enzootic transmission cycle between avian hosts and ornithophilic mosquito vectors, although the virus occasionally infects other vertebrates. WNV causes sporadic disease outbreaks in horses and humans, which may result in febrile illness, meningitis, encephalitis and flaccid paralysis. Until recently, its medical and veterinary health concern was relatively low; however, the number, frequency and severity of outbreaks with neurological consequences in humans and horses have lately increased in Europe and the Mediterranean basin. Since its introduction in the Americas, the virus spread across the continent with worrisome consequences in bird mortality and a considerable number of outbreaks among humans and horses, which have resulted in the largest epidemics of neuroinvasive WNV disease ever documented. Surprisingly, its incidence in human and animal health is very different in Central and South America, and the reasons for it are not yet understood. Even though great advances have been obtained lately regarding WNV infection, and although efficient equine vaccines are available, no specific treatments or vaccines for human use are on the market. This review updates the most recent investigations in different aspects of WNV life cycle: molecular virology, transmission dynamics, host range, clinical presentations, epidemiology, ecology, diagnosis, control, and prevention, and highlights some aspects that certainly require further research.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Miguel A Martín-Acebes, Juan-Carlos Saiz, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | | |
Collapse
|
15
|
De Filette M, Ulbert S, Diamond M, Sanders NN. Recent progress in West Nile virus diagnosis and vaccination. Vet Res 2012; 43:16. [PMID: 22380523 PMCID: PMC3311072 DOI: 10.1186/1297-9716-43-16] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/01/2012] [Indexed: 01/22/2023] Open
Abstract
West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections.
Collapse
Affiliation(s)
- Marina De Filette
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
16
|
Lupulovic D, Martín-Acebes MA, Lazic S, Alonso-Padilla J, Blázquez AB, Escribano-Romero E, Petrovic T, Saiz JC. First serological evidence of West Nile virus activity in horses in Serbia. Vector Borne Zoonotic Dis 2011; 11:1303-5. [PMID: 21438694 DOI: 10.1089/vbz.2010.0249] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
West Nile virus (WNV), the most widely distributed flavivirus worldwide, has lately reemerged in Europe, causing worrisome outbreaks in humans and horses. Serological analysis by enzyme-linked immunoassay and plaque reduction neutralization test showed for the first time in Serbia that 12% of 349 horses presented specific neutralizing WNV antibodies, which in one case also cross-neutralized Usutu virus (USUV). This is the first time that anti-USUV high neutralizing antibody titers are reported in horses. All these data indicate that WNV and USUV are circulating in the region and advise on the convenience of implementing surveillance programs.
Collapse
Affiliation(s)
- Diana Lupulovic
- Scientific Veterinary Institute "Novi Sad," Novi Sad, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gomez-Casado E, Gomez-Sebastian S, Núñez MC, Lasa-Covarrubias R, Martínez-Pulgarín S, Escribano JM. Insect larvae biofactories as a platform for influenza vaccine production. Protein Expr Purif 2011; 79:35-43. [PMID: 21421054 DOI: 10.1016/j.pep.2011.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/31/2022]
Abstract
Increased production capacity is one of the most important priorities for seasonal and pandemic influenza vaccines. In the present study, we used a baculovirus-insect larvae system (considered small, living biofactories) to improve the production of recombinant influenza virus H1N1 hemagglutinin (HA). Insect larvae produced four-fold more HA protein than insect cells per biomass unit (1 g of fresh larvae weight). A single infected Trichoplusia ni larva produced up to 113 μg of soluble and easily purified recombinant HA, an amount similar to that produced by 1.2×10(8) Sf21 insect cells infected by the same baculovirus. The use of the KDEL endoplasmic reticulum retention signal fused to the HA protein further increased recombinant protein production. Larvae-derived HA was immunogenically functional in vaccinated mice, inducing the generation of hemagglutination inhibition antibodies and a protective immune response against a lethal challenge with a highly virulent virus. The productivity, scalability and cost efficiency of small, living biofactories based on insect larvae suggest a broad-based strategy for the production of recombinant subunit vaccines against seasonal or pandemic influenza as an alternative to fermentation technologies.
Collapse
MESH Headings
- Animals
- Baculoviridae/genetics
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use
- Humans
- Immunization
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Larva/virology
- Mice
- Moths/virology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- E Gomez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alonso-Padilla J, de Oya NJ, Blázquez AB, Escribano-Romero E, Escribano JM, Saiz JC. Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease. Vaccine 2011; 29:1830-5. [PMID: 21211580 DOI: 10.1016/j.vaccine.2010.12.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 12/26/2022]
Abstract
In this study, West Nile virus (WNV) envelope (rE) protein and its domain III (rDIII) were efficiently expressed in a cost-effective system based on insect larvae as non-fermentative living biofactories. Mice immunized with the partially purified rE or rDIII elicited high antibodies titers that neutralized viral infectivity in cell culture and in suckling mice. All vaccinated animals were fully protected when challenged with neurovirulent WNV NY99. Passive transfer of protective antibodies from immunized mothers to their offspring occurred both by transplacental and lactation routes. These results indicate that the insect-derived antigens tested may constitute potential vaccine candidates to be further evaluated.
Collapse
Affiliation(s)
- Julio Alonso-Padilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. Coruña Km. 7.5, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|