1
|
Yeni O, Şen M, Hasançebi S, Turgut Kara N. Optimization of loop-mediated isothermal amplification assay for sunflower mildew disease detection. Sci Rep 2024; 14:23224. [PMID: 39369029 PMCID: PMC11455944 DOI: 10.1038/s41598-024-72228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024] Open
Abstract
Loop-Mediated Isothermal Amplification (LAMP) represents a valuable technique for DNA/RNA detection, known for its exceptional sensitivity, specificity, speed, accuracy, and affordability. This study focused on optimizing a LAMP-based method to detect early signs of Plasmopara halstedii, the casual pathogen of sunflower downy mildew, a severe threat to sunflower crops. Specifically, a set of six LAMP primers (two outer, two inner, and two loop) were designed from P. halstedii genomic DNA, targeting the ribosomal Large Subunit (LSU). These primers were verified by in silico analysis and experimental validation using both target and non-target species' DNAs. Optimizations encompassing reaction conditions (temperature, time) and component concentrations (magnesium, Bst DNA polymerase, primers, and dNTP) were determined. Validation of these optimizations was performed by agarose gel electrophoresis. Furthermore, various colorimetric chemicals (Neutral Red, Hydroxynaphthol Blue, SYBR Safe, Thiazole Green) were evaluated to facilitate method analysis, and the real-time analysis has been optimized, presenting multiple approaches for detecting sunflower downy mildew using the LAMP technique. The analytical sensitivity of the method was confirmed by detecting P. halstedii DNA concentrations as low as 0.5 pg/μl. This pioneering study, establishing P. halstedii detection through the LAMP method, stands as unique in its field. The precision, robustness, and practicality of the LAMP protocol make it an ideal choice for studies focusing on sunflower mildew, emphasizing its recommended use due to its operational ease and reliability.
Collapse
Affiliation(s)
- Oğuzhan Yeni
- Institute of Science, Program of Molecular Biotechnology and Genetics, Istanbul University, Istanbul, Turkey
| | - Mutlu Şen
- Institute of Science, Program of Biotechnology and Genetics, Trakya University, Edirne, Turkey
| | - Semra Hasançebi
- Faculty of Engineering, Department of Genetics and Bioengineering, Trakya University, Ahmet Karadeniz Yerleskesi, Edirne, Turkey
| | - Neslihan Turgut Kara
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
2
|
Kim NK, Lee HJ, Kim SM, Jeong RD. Rapid and Visual Detection of Barley Yellow Dwarf Virus by Reverse Transcription Recombinase Polymerase Amplification with Lateral Flow Strips. THE PLANT PATHOLOGY JOURNAL 2022; 38:159-166. [PMID: 35385920 PMCID: PMC9343894 DOI: 10.5423/ppj.nt.01.2022.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Barley yellow dwarf virus (BYDV) has been a major viral pathogen causing significant losses of cereal crops including oats worldwide. It spreads naturally through aphids, and a rapid, specific, and reliable diagnostic method is imperative for disease monitoring and management. Here, we established a rapid and reliable method for isothermal reverse transcription recombinase polymerase amplification (RT-RPA) combined with a lateral flow strips (LFS) assay for the detection of BYDV-infected oat samples based on the conserved sequences of the BYDV coat protein gene. Specific primers and a probe for RT-RPA reacted and optimally incubated at 42 o C for 10 min, and the end-labeled amplification products were visualized on LFS within 10 min. The RT-RPA-LFS assay showed no cross-reactivity with other major cereal viruses, including barley mild mosaic virus, barley yellow mosaic virus, and rice black streaked dwarf virus, indicating high specificity of the assay. The sensitivity of the RT-RPA-LFS assay was similar to that of reverse transcription polymerase chain reaction, and it was successfully validated to detect BYDV in oat samples from six different regions and in individual aphids. These results confirm the out-standing potential of the RT-RPA-LFS assay for rapid detection of BYDV.
Collapse
Affiliation(s)
- Na-Kyeong Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Korea
| | - Sang-Min Kim
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
3
|
Tahzima R, Foucart Y, Peusens G, Reynard JS, Massart S, Beliën T, De Jonghe K. An Advanced One-Step RT-LAMP for Rapid Detection of Little cherry virus 2 Combined with High-Throughput Sequence-Based Phylogenomics Reveal Divergent Flowering Cherry Isolates. PLANT DISEASE 2022; 106:835-845. [PMID: 34546772 DOI: 10.1094/pdis-03-21-0677-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Little cherry virus 2 (LChV-2, genus Ampelovirus) is considered to be the main causal agent of the economically damaging little cherry disease, which can only be controlled by removal of infected trees. The widespread viral disease of sweet cherry (Prunus avium L.) is affecting the survival of long-standing orchards in North America and Europe, hence the dire need for an early and accurate diagnosis to establish a sound disease control strategy. The endemic presence of LChV-2 is mainly confirmed using laborious time-consuming reverse-transcription (RT-PCR). A rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting a conserved region of the coat protein was developed and compared with conventional RT-PCR for the specific detection of LChV-2. This affordable assay, combined with a simple RNA extraction, deploys desirable characteristics such as higher ability for faster (<15 min), more analytically sensitive (100-fold), and robust broad-range diagnosis of LChV-2 isolates from sweet cherry, ornamental flowering cherry displaying heterogenous viral etiology and, for the first time, newly identified potential insect vectors. Moreover, use of Sanger and total RNA high-throughput sequencing as complementary metaviromics approaches confirmed the LChV-2 RT-LAMP detection of divergent LChV-2 isolates in new hosts and the relationship of their whole-genome was exhaustively inferred using maximum-likelihood phylogenomics. This entails unprecedented critical understanding of a novel evolutionary clade further expanding LChV-2 viral diversity. In conclusion, this highly effective diagnostic platform facilitates strategical support for early in-field testing to reliably prevent dissemination of new LChV-2 outbreaks from propagative plant stocks or newly postulated insect vectors. Validated results and major advantages are herein thoroughly discussed, in light of the knowledge required to increase the potential accuracy of future diagnostics and the essential epidemiological considerations to proactively safeguard cherries and Prunus horticultural crop systems from little cherry disease.
Collapse
Affiliation(s)
- Rachid Tahzima
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
- Department of Integrated and Urban Phytopathology, Gembloux Agro-BioTech, University of Liège, 5030 Gembloux, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Gertie Peusens
- Department of Zoology, Proefcentrum Fruitteelt vzw, 3800 Sint-Truiden, Belgium
| | | | - Sébastien Massart
- Department of Integrated and Urban Phytopathology, Gembloux Agro-BioTech, University of Liège, 5030 Gembloux, Belgium
| | - Tim Beliën
- Department of Zoology, Proefcentrum Fruitteelt vzw, 3800 Sint-Truiden, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Hao X, Wang L, Zhang X, Zhong Q, Hajano JUD, Xu L, Wu Y. A Real-Time Loop-Mediated Isothermal Amplification for Detection of the Wheat Dwarf Virus in Wheat and the Insect Vector Psammotettix alienus. PLANT DISEASE 2021; 105:4113-4120. [PMID: 34003037 DOI: 10.1094/pdis-10-20-2279-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wheat dwarf virus (WDV; genus Mastrevirus, family Geminiviridae) is an economically important and widespread pathogen of cereal crops. It causes huge yield loss in wheat because of the unavailability of resistant varieties and rapid transmission by the vector leafhopper, Psammotettix alienus (Dahlb). To monitor and forecast this viral disease, an early diagnosis method is required for WDV detection in both infected plants and the virus vectors. In this study, we developed a real-time loop-mediated isothermal amplification (LAMP) assay for WDV detection. The positive sample could be detected within 28 to 32 min by following a simple, cost-effective procedure. The real-time LAMP assay showed a sensitivity of 2.7 × 105-6 copies/μl for detection and a high specificity for WDV amplification, with a similar accuracy to quantitative PCR. Furthermore, a closed-tube dye method facilitates the inspection of the LAMP reaction and avoids cross-contamination in the detection of the virus. This valuable detection assay could serve as an important tool for diagnosis and forecasting wheat dwarf disease intensity in the field.
Collapse
Affiliation(s)
- Xingan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Licheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xudong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qinrong Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jamal-U-Ddin Hajano
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Sõmera M, Massart S, Tamisier L, Sooväli P, Sathees K, Kvarnheden A. A Survey Using High-Throughput Sequencing Suggests That the Diversity of Cereal and Barley Yellow Dwarf Viruses Is Underestimated. Front Microbiol 2021; 12:673218. [PMID: 34046025 PMCID: PMC8144474 DOI: 10.3389/fmicb.2021.673218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Worldwide, barley/cereal yellow dwarf viruses (YDVs) are the most widespread and damaging group of cereal viruses. In this study, we applied high-throughput sequencing technologies (HTS) to perform a virus survey on symptomatic plants from 47 cereal fields in Estonia. HTS allowed the assembly of complete genome sequences for 22 isolates of cereal yellow dwarf virus RPS, barley yellow dwarf virus GAV, barley yellow dwarf virus PAS (BYDV-PAS), barley yellow dwarf virus PAV (BYDV-PAV), and barley yellow dwarf virus OYV (BYDV-OYV). We also assembled a near-complete genome of the putative novel species BYDV-OYV from Swedish samples of meadow fescue. Previously, partial sequencing of the central part of the coat protein gene indicated that BYDV-OYV represented a putative new species closely related to BYDV-PAV-CN, which currently is recognized as a subtype of BYDV-PAV. The present study found that whereas the 3'gene block of BYDV-OYV shares the closest relationship with BYDV-PAV-CN, the 5'gene block of BYDV-OYV shows the closest relationships to that of BYDV-PAS. Recombination detection analysis revealed that BYDV-OYV is a parental virus for both. Analysis of complete genome sequence data indicates that both BYDV-OYV and BYDV-PAV-CN meet the species criteria of genus Luteovirus. The study discusses BYDV phylogeny, and through a systematic in silico analysis of published primers for YDV detection, the existing gaps in current diagnostic practices for detection of YDVs, proposing primer pairs based on the most recent genomic information for the detection of different BYDV species. Thanks to the rising number of sequences available in databases, continuous updating of diagnostic primers can improve test specificity, e.g., inclusivity and exclusivity at species levels. This is needed to properly survey the geographical and host distribution of the different species of the YDV complex and their prevalence in cereal/barley yellow dwarf disease epidemics.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech - University of Liège, Gembloux, Belgium
| | - Lucie Tamisier
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech - University of Liège, Gembloux, Belgium
| | - Pille Sooväli
- Department of Plant Protection, Estonian Crop Research Institute, Jõgeva, Estonia
| | - Kanitha Sathees
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
6
|
Kim NK, Kim SM, Jeong RD. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of Barley Yellow Dwarf Virus in Oat. THE PLANT PATHOLOGY JOURNAL 2020; 36:497-502. [PMID: 33082734 PMCID: PMC7542026 DOI: 10.5423/ppj.nt.08.2020.0148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 05/24/2023]
Abstract
Barley yellow dwarf virus (BYDV) is an economically important plant pathogen that causes stunted growth, delayed heading, leaf yellowing, and purple leaf tip, thereby reducing the yields of cereal crops worldwide. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for the detection of BYDV in oat leaf samples. The RT-RPA assay involved incubation at an isothermal temperature (42°C) and could be performed rapidly in 5 min. In addition, no cross-reactivity was observed to occur with other cereal-infecting viruses, and the method was 100 times more sensitive than conventional reverse transcription polymerase chain reaction. Furthermore, the assay was validated for the detection of BYDV in both field-collected oat leaves and viruliferous aphids. Thus, the RT-RPA assay developed in the present study represents a simple, rapid, sensitive, and reliable method for detecting BYDV in oats.
Collapse
Affiliation(s)
- Na-Kyeong Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Sang-Min Kim
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| |
Collapse
|
7
|
Panno S, Matić S, Tiberini A, Caruso AG, Bella P, Torta L, Stassi R, Davino S. Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. PLANTS (BASEL, SWITZERLAND) 2020; 9:E461. [PMID: 32268586 PMCID: PMC7238132 DOI: 10.3390/plants9040461] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023]
Abstract
In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, rapidity, and low-cost efforts. LAMP is a nucleic acid amplification under isothermal conditions, which is highly compatible with point-of-care (POC) analysis and has the potential to improve the diagnosis in plant protection. The great advantages of LAMP have led to several upgrades in order to implement the technique. In this review, the authors provide an overview reporting in detail the different LAMP steps, focusing on designing and main characteristics of the primer set, different methods of result visualization, evolution and different application fields, reporting in detail LAMP application in plant virology, and the main advantages of the use of this technique.
Collapse
Affiliation(s)
- Stefano Panno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Slavica Matić
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Turin, Italy;
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification, 00156 Rome, Italy;
| | - Andrea Giovanni Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Livio Torta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Raffaele Stassi
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Salvatore Davino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 10135 Turin, Italy
| |
Collapse
|
8
|
Zhang Y, Wang Y, Xie Z, Wang R, Guo Z, He Y. Rapid Detection of Lily mottle virus and Arabis mosaic virus Infecting Lily ( Lilium spp.) Using Reverse Transcription Loop-Mediated Isothermal Amplification. THE PLANT PATHOLOGY JOURNAL 2020; 36:170-178. [PMID: 32296296 PMCID: PMC7143516 DOI: 10.5423/ppj.oa.04.2019.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 05/17/2023]
Abstract
The Lily mottle virus (LMoV) impedes the growth and quality of lily crops in Lanzhou, China. Recently Arabis mosaic virus (ArMV) has been detected in LMoV-infected plants in this region, causing plant stunting as well as severe foliar symptoms, and likely posing a threat to lily production. Consequently, there is a need to develop simple, sensitive, and reliable detection methods for these two viruses to prevent them from spreading. Reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assays have been developed to detect LMoV and ArMV using two primer pairs that match six conserved sequences of LMoV and ArMV coat proteins, respectively. RT-LAMP assay results were visually assessed in reaction tubes using green fluorescence and gel electrophoresis. Our assays successfully detected both LMoV and ArMV in lily plants without the occurrence of viral cross-reactivity from other lily viruses. Optimal conditions for LAMP reactions were 65°C and 60°C for 60 min for LMoV and ArMV, respectively. Detection sensitivity for both RT-LAMP assays was a hundredfold greater than that of our comparative RT-polymerase chain reaction assays. We have also found this relatively rapid, target specific and sensitive method can also be used for samples collected in the field and may be especially useful in regions with limited or no laboratory facilities.
Collapse
Affiliation(s)
- Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yajun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongkui Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Corresponding author. Phone) +86-931-4967204, FAX) +86-931-8273894, E-mail) ,
| | - Ruoyu Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhihong Guo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuhui He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Waliullah S, Ling KS, Cieniewicz EJ, Oliver JE, Ji P, Ali ME. Development of Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Cucurbit Leaf Crumple Virus. Int J Mol Sci 2020; 21:ijms21051756. [PMID: 32143404 PMCID: PMC7084362 DOI: 10.3390/ijms21051756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
A loop-mediated isothermal amplification (LAMP) assay was developed for simple, rapid and efficient detection of Cucurbit leaf crumple virus (CuLCrV), one of the most important begomoviruses that infects cucurbits worldwide. A set of six specific primers targeting a total 240 nt sequence regions in the DNA A of CuLCrV were designed and synthesized for detection of CuLCrV from infected leaf tissues using real-time LAMP amplification with the Genie® III system, which was further confirmed by gel electrophoresis and SYBR™ Green I DNA staining for visual observation. The optimum reaction temperature and time were determined, and no cross-reactivity was seen with other begomoviruses. The LAMP assay could amplify CuLCrV from a mixed virus assay. The sensitivity assay demonstrated that the LAMP reaction was more sensitive than conventional PCR, but less sensitive than qPCR. However, it was simpler and faster than the other assays evaluated. The LAMP assay also amplified CuLCrV-infected symptomatic and asymptomatic samples more efficiently than PCR. Successful LAMP amplification was observed in mixed virus-infected field samples. This simple, rapid, and sensitive method has the capacity to detect CuLCrV in samples collected in the field and is therefore suitable for early detection of the disease to reduce the risk of epidemics.
Collapse
Affiliation(s)
- Sumyya Waliullah
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.W.); (J.E.O.); (P.J.)
| | - Kai-Shu Ling
- U. S. Vegetable Laboratory, USDA-ARS, Charleston, SC 29414, USA;
| | | | - Jonathan E. Oliver
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.W.); (J.E.O.); (P.J.)
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.W.); (J.E.O.); (P.J.)
| | - Md Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.W.); (J.E.O.); (P.J.)
- Correspondence:
| |
Collapse
|
10
|
Zhang Y, Xie Z, Fletcher JD, Wang Y, Wang R, Guo Z, He Y. Rapid and Sensitive Detection of Lettuce Necrotic Yellows Virus and Cucumber Mosaic Virus Infecting Lettuce ( Lactuca sativa L.) by Reverse Transcription Loop-Mediated Isothermal Amplification. THE PLANT PATHOLOGY JOURNAL 2020; 36:76-86. [PMID: 32089663 PMCID: PMC7012580 DOI: 10.5423/ppj.oa.12.2019.0298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 05/12/2023]
Abstract
Cucumber mosaic virus (CMV) is damaging to the growth and quality of lettuce crops in Lanzhou, China. Recently, however, for the first time an isolate of lettuce necrotic yellows virus (LNYV) has been detected in lettuce crops in China, and there is concern that this virus may also pose a threat to lettuce production in China. Consequently, there is a need to develop a rapid and efficient detection method to accurately identify LNYV and CMV infections and help limit their spread. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed to detect the nucleoprotein (N) and coat protein (CP) genes of LNYV and CMV, respectively. RT-LAMP amplification products were visually assessed in reaction tubes separately using green fluorescence and gel electrophoresis. The assays successfully detected both viruses in infected plants without cross reactivity recorded from either CMV or LNYV or four other related plant viruses. Optimum LAMP reactions were conducted in betaine-free media with 6 mM Mg2+ at 65°C for LNYV and 60°C for 60 min for CMV, respectively. The detection limit was 3.5 pg/ml and 20 fg/ml using RT-LAMP for LNYV and CMV plasmids, respectively. Detection sensitivity for both RT-LAMP assays was greater by a factor of 100 compared to the conventional reverse transcription polymerase chain reaction assays. This rapid, specific, and sensitive technique should be more widely applied due to its low cost and minimal equipment requirements.
Collapse
Affiliation(s)
- Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Zhongkui Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
- Corresponding author: Phone) +86-931-4967204, FAX) +86-931-8273894, E-mail)
| | - John D Fletcher
- The New Zealand Institute for Plant and Food Research, PB 4704 Christchurch,
New Zealand
| | - Yajun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Ruoyu Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Zhihong Guo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Yuhui He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| |
Collapse
|
11
|
Tahzima R, Foucart Y, Peusens G, Beliën T, Massart S, De Jonghe K. New sensitive and fast detection of Little cherry virus 1 using loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2018; 265:91-98. [PMID: 30593838 DOI: 10.1016/j.jviromet.2018.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/20/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
Little cherry virus 1 (LChV-1) belongs to the genus Velarivirus, family Closteroviridae, is an economically important pathogen affecting mainly cherry around the world emphasizing the impetus for its efficient and accurate on-site detection. This study describes the development of a reliable diagnostic protocol of LChV-1 based on a one-step reverse-transcription loop-mediated isothermal amplification (RT-LAMP). The protocol detects LChV-1 isolates in less than 10 min by fluorescence monitoring using a mobile detection device and is most optimal when performed at 67 °C. Sharp melting curves and unique melting temperatures (Tm) were obtained for the positive samples. Both the RT-LAMP and classical RT-PCR methods are capable of specifically detecting LChV-1 in infected leaf tissues. In addition, the RT-LAMP has remarkable advantages in comparison to RT-PCR. It is at least hundred fold more sensitive, significantly faster (allowing on-field leaf-to-result diagnostic) and efficient at minimal cost. In conclusion, this innovative RT-LAMP approach can contribute to the implementation of sustainable integrated management strategies for detection of LChV-1 in commercial orchards or for horticultural research stations. It is also suitable for decision support in phytosanitary epidemiological programs.
Collapse
Affiliation(s)
- Rachid Tahzima
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; Laboratory of Integrated and Urban Phytopathology, University of Liège (ULg), Gembloux Agro-Bio tech, 5030 Gembloux, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Gertie Peusens
- Department of Zoology, Proefcentrum Fruitteelt (pcfruit), 3800 Sint-Truiden, Belgium
| | - Tim Beliën
- Department of Zoology, Proefcentrum Fruitteelt (pcfruit), 3800 Sint-Truiden, Belgium
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, University of Liège (ULg), Gembloux Agro-Bio tech, 5030 Gembloux, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium.
| |
Collapse
|
12
|
Molecular analysis of barley stripe mosaic virus isolates differing in their biological properties and the development of reverse transcription loop-mediated isothermal amplification assays for their detection. Arch Virol 2018; 163:1163-1170. [PMID: 29372405 DOI: 10.1007/s00705-018-3725-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Barley stripe mosaic virus (BSMV) is an important seed-transmitted pathogen occurring worldwide. Recently, the occurrence of mild BSMV pathotypes has been observed in barley crops in Poland. In this study, the full-length genome sequences of mild and aggressive Polish and German BSMV isolates was established. Phylogenetic and recombination analysis was performed using Polish and other BSMV isolates described to date. The analysis revealed that Polish isolates differed only in 25 nucleotides, which suggests that point mutations might have had a great impact on the biological properties of the virus. The phylogenetic analysis revealed that the closest relationship was that between European and BSMV-CV42, BSMV-ND18 and BSMV-Type isolates, whereas the highest genetic distance was observed for BSMV-Qasr Ibrim and BSMV-China isolates. A recombination event within the αa protein of BSMV-De-M and BSMV-CV42 isolates was also detected. Moreover, a sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was developed for rapid detection of BSMV isolates. The RT-LAMP assay can be used for routine diagnostics of BSMV in seed and plant material.
Collapse
|
13
|
Development of a simple and rapid reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for sensitive detection of Citrus tristeza virus. J Virol Methods 2017; 250:6-10. [DOI: 10.1016/j.jviromet.2017.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
|
14
|
Zhang P, Liu Y, Liu W, Massart S, Wang X. Simultaneous detection of wheat dwarf virus, northern cereal mosaic virus, barley yellow striate mosaic virus and rice black-streaked dwarf virus in wheat by multiplex RT-PCR. J Virol Methods 2017; 249:170-174. [PMID: 28918076 DOI: 10.1016/j.jviromet.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10-2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, China; Laboratory of Phytopathology, University of Liège, Gembloux Agro-Bio Tech, Passage des déportés, 2, 5030, Gembloux, Belgium
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, China
| | - Sebastien Massart
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-Bio Tech, Passage des déportés, 2, 5030, Gembloux, Belgium.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, China.
| |
Collapse
|
15
|
Zhang P, Liu Y, Liu W, Cao M, Massart S, Wang X. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease. Front Microbiol 2017; 8:1689. [PMID: 28932215 PMCID: PMC5592212 DOI: 10.3389/fmicb.2017.01689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-Bio TechGembloux, Belgium
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Sebastien Massart
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-Bio TechGembloux, Belgium
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
16
|
Amata RL, Fernandez E, Filloux D, Martin DP, Rott P, Roumagnac P. Prevalence of Sugarcane yellow leaf virus in Sugarcane-Producing Regions in Kenya Revealed by Reverse-Transcription Loop-Mediated Isothermal Amplification Method. PLANT DISEASE 2016; 100:260-268. [PMID: 30694143 DOI: 10.1094/pdis-05-15-0602-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yellow leaf (YL) is a disease of sugarcane that is currently widespread throughout most American and Asian sugarcane-producing countries. However, its actual distribution in Africa remains largely unknown. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to facilitate and improve the detection of Sugarcane yellow leaf virus (SCYLV), the causal agent of YL. The RT-LAMP assay was found to be comparable with or superior to conventional RT-polymerase chain reaction (PCR) for the detection of SCYLV genotypes CUB and BRA in infected sugarcane 'C132-81' and 'SP71-6163', respectively. Additionally, 68 sugarcane samples that tested negative by RT-PCR were found positive by RT-LAMP, whereas the RT-LAMP assay failed to detect SCYLV in only 5 samples that tested positive by RT-PCR. Combining RT-PCR and RT-LAMP data enabled the detection of SCYLV in 86 of 183 Kenyan sugarcane plants, indicating high SCYLV prevalence throughout the country (ranging from 36 to 64% in individual counties). Seminested PCR assays were developed that enabled the amplification of a fragment encompassing the capsid protein coding region gene and its flanking 5' and 3' genomic regions. Sequences of this fragment for four Kenyan SCYLV isolates indicated that they shared 99.2 to 99.6% pairwise identity with one another and clearly clustered phylogenetically with SCYLV-BRA genotype isolates. To our knowledge, this is the first report of SCYLV in Kenya.
Collapse
Affiliation(s)
- Ruth L Amata
- Kenya Agricultural and Livestock Research Organization, Nairobi, 00200 Kenya
| | - Emmanuel Fernandez
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, UCT Faculty of Health Sciences, Observatory 7925, South Africa
| | - Philippe Rott
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet; and Plant Pathology Department, Everglades Research and Education Center, University of Florida, IFAS, Belle Glade, 33430
| | - Philippe Roumagnac
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| |
Collapse
|
17
|
Zhao LM, Li G, Gao Y, Zhu YR, Liu J, Zhu XP. Reverse transcription loop-mediated isothermal amplification assay for detecting tomato chlorosis virus. J Virol Methods 2014; 213:93-7. [PMID: 25486081 DOI: 10.1016/j.jviromet.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
A betaine-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and optimised for detecting tomato chlorosis virus (ToCV), one of the most important viruses that infect tomato crops worldwide. A set of four specific primers was designed against the RNA-dependent RNA polymerase (RdRp) gene. The betaine-free RT-LAMP procedure could be completed within 40 min under isothermal conditions at 60 °C without a thermal cycler, and no cross-reactivity was seen with other tomato viral pathogens. Sensitivity analysis showed that RT-LAMP could detect viral dilutions up to 2.0×10(-7)ng, which is 100-times more sensitive than reverse transcription-polymerase chain reaction (RT-PCR). In addition, naked-eye observation after staining in-tube RT-LAMP products with SYBR Green I facilitated detection of ToCV by avoiding the requirement for ethidium staining following gel electrophoresis. These results suggest that ToCV RT-LAMP is a rapid, sensitive, and affordable diagnostic tool that is more suitable than RT-PCR for the detection and surveillance of ToCV in field samples.
Collapse
Affiliation(s)
- Li-ming Zhao
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Ying Gao
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - You-rong Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jin Liu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiao-ping Zhu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
18
|
Anthony Johnson A, Dasgupta I, Sai Gopal D. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species. J Virol Methods 2014; 203:9-14. [DOI: 10.1016/j.jviromet.2014.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 11/25/2022]
|
19
|
Wang Z, Gu Q, Sun H, Li H, Sun B, Liang X, Yuan Y, Liu R, Shi Y. One-step reverse transcription loop mediated isothermal amplification assay for sensitive and rapid detection of Cucurbit chlorotic yellows virus. J Virol Methods 2013; 195:63-6. [PMID: 24056260 DOI: 10.1016/j.jviromet.2013.08.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 11/28/2022]
Abstract
A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of Cucurbit chlorotic yellows virus (CCYV). In this procedure, a set of four primers matching a total of six sequences in the coat protein gene region of CCYV was synthesized for the RT-LAMP assay using total RNA extracted from CCYV-infected melon leaf tissues, and the optimum reaction temperature and assay time were determined. The sensitivity assay showed that the virus was detectable in RT-LAMP reactions at dilutions of 1×10(-11), which was 10(5) times more sensitive than the RT-PCR assay. The RT-LAMP assay for CCYV and Sweet potato chlorotic stunt virus (SPCSV) exhibited high specificity for CCYV. This simple and sensitive method has potential for detection of CCYV in samples collected in the field.
Collapse
Affiliation(s)
- Zhenyue Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fukuta S, Tamura M, Maejima H, Takahashi R, Kuwayama S, Tsuji T, Yoshida T, Itoh K, Hashizume H, Nakajima Y, Uehara Y, Shirako Y. Differential detection of Wheat yellow mosaic virus, Japanese soil-borne wheat mosaic virus and Chinese wheat mosaic virus by reverse transcription loop-mediated isothermal amplification reaction. J Virol Methods 2013; 189:348-54. [PMID: 23523736 DOI: 10.1016/j.jviromet.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/15/2022]
Abstract
A differential detection method for three wheat viruses: Wheat yellow mosaic virus (WYMV), Japanese soil-borne mosaic virus (JSBWMV) and Chinese wheat mosaic virus (CWMV) using reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction was developed. All three primer sets, which were designed from the genome sequences of WYMV, JSBWMV and CWMV respectively, worked most efficiently at 65 °C and could detect each virus RNA within 10 min by fluorescence monitoring using an isothermal DNA amplification and fluorescence detection device. Furthermore, these primer sets showed unique annealing curves. The peak denaturing temperatures of WYMV, JSBWMV and CWMV primer sets were 87.6 °C, 84.8 °C and 86.4 °C, respectively and were clearly distinguished by the isothermal DNA amplification and fluorescence detection device. The RT-LAMP assay including all three primer sets was found to be 100 times more sensitive than RT-PCR for WYMV and JSBWMV and as sensitive as RT-PCR for CWMV. The RT-LAMP method was validated for the simultaneous detection of these viruses in wheat and barley leaves.
Collapse
Affiliation(s)
- Shiro Fukuta
- Agro-Environmental Division, Aichi Agricultural Research Center, 1-1 Sagamine, Yazako, Nagakute, Aichi 480-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang L, Li J, Bi Y, Xu L, Liu W. Development and application of a reverse transcription loop-mediated isothermal amplification method for rapid detection of Duck hepatitis A virus type 1. Virus Genes 2012; 45:585-9. [PMID: 22869367 PMCID: PMC7088793 DOI: 10.1007/s11262-012-0798-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/21/2012] [Indexed: 11/25/2022]
Abstract
We developed and evaluated a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detecting Duck hepatitis A virus type 1 (DHAV-1). The amplification could be finished in 1 h under isothermal conditions at 63 °C by employing a set of four primers targeting the 2C gene of DHAV-1. The RT-LAMP assay showed higher sensitivity than the RT-PCR with a detection limit of 0.1 ELD(50) 0.1 ml(-1) of DHAV-1. The RT-LAMP assay was highly specific; no cross-reactivity was observed from the samples of other related viruses, bacteria, allantoic fluid of normal chicken embryos, or the livers of uninfected ducks. Thirty clinical samples were subjected to detection by RT-LAMP, RT-PCR, and virus isolation, which obtained completely consistent, positive results. As a simple, rapid, and accurate detection method, this RT-LAMP assay has important potential applications in the clinical diagnosis of DHAV-1.
Collapse
Affiliation(s)
- Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
22
|
Qu D, Zhou H, Han J, Tao S, Zheng B, Chi N, Su C, Du A. Development of reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a diagnostic tool of Toxoplasma gondii in pork. Vet Parasitol 2012; 192:98-103. [PMID: 23146414 DOI: 10.1016/j.vetpar.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
A fast, sensitive and specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of Toxoplasma gondii (T. gondii) in pork was developed. In this study, we used a conserved sequence of 18s rRNA of Toxoplasma gondii to design primers for RT-LAMP test. The amplication was able to finish in 60 min under isothermal condition at 63°C by employing a set of six primers. The assay showed higher sensitivity than RT-PCR using T. gondii RNA as template. The RT-LAMP assay was also assessed for specificity and was found to precisely discriminate between positive and negative test samples. Furthermore, the assay correctly detected T. gondii from contaminated pork, and had the detect limit of 1 tachyzoite in 1g pork. This is the first report of a study which applied the RT-LAMP method to detect T. gondii from pork. As RT-LAMP requires very basic instruments and the results can be obtained by visual observation, this technique provides a simple and reliable tool for inspecting food which are T. gondii-contaminated.
Collapse
Affiliation(s)
- Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou T, Du L, Fan Y, Zhou Y. Reverse transcription loop-mediated isothermal amplification of RNA for sensitive and rapid detection of southern rice black-streaked dwarf virus. J Virol Methods 2012; 180:91-5. [DOI: 10.1016/j.jviromet.2011.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 11/26/2022]
|