1
|
Ma N, Shen M, Chen T, Liu Y, Mao Y, Chen L, Xiong H, Hou W, Liu D, Yang Z. Assessment of a new arbidol derivative against herpes simplex virus II in human cervical epithelial cells and in BALB/c mice. Biomed Pharmacother 2019; 118:109359. [PMID: 31545243 DOI: 10.1016/j.biopha.2019.109359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the highly contagious forms, herpes simplex virus type 2 (HSV-2) commonly caused severe genital diseases and closely referred to the HIV infection. The lack of effective vaccines and drug-resistance proclaimed the preoccupation for alternative antiviral agents against HSV-2. Molecules bearing indole nucleus presented diverse biological properties involving antiviral and anti-inflammatory activities. In this study, one of the indole molecules, arbidol derivative (ARD) was designed and synthesized prior to the evaluation of its anti-HSV-2 activity. Our data showed that the ARD effectively suppressed HSV-2-induced cytopathic effects and the generation of progeny virus, with 50% effective concentrations of 3.386 and 1.717 μg/mL, respectively. The results of the time-course assay suggested that the ARD operated in a dual antiviral way by interfering virus entry and impairing the earlier period of viral cycle during viral DNA synthesis. The ARD-mediated HSV-2 inhibition was partially attained by blocking NF-κB pathways and down-regulating the expressions of several inflammatory cytokines. Furthermore, in vivo studies showed that oral administration of ARD protected BALB/c mice from intravaginal HSV-2 challenge by alleviating serious vulval lesions and histopathological changes in the target organs. Besides, the treatment with ARD also made the levels of viral protein, NF-κB protein and inflammatory cytokines lower, in consistent with the in-vitro studies. Collectively, ARD unveiled therapeutic potential for the prevention and treatment of HSV-2 infections.
Collapse
Affiliation(s)
- Nian Ma
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Mengxin Shen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Tian Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Yidong Mao
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Liangjun Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China
| | - Dongying Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China.
| | - Zhanqiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Medicine of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Dai W, Wu Y, Bi J, Wang S, Li F, Kong W, Barbier J, Cintrat JC, Gao F, Gillet D, Su W, Jiang C. Antiviral Effects of ABMA against Herpes Simplex Virus Type 2 In Vitro and In Vivo. Viruses 2018. [PMID: 29522484 PMCID: PMC5869512 DOI: 10.3390/v10030119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is the causative pathogen of genital herpes and is closely associated with the occurrence of cervical cancer and human immunodeficiency virus (HIV) infection. The absence of an effective vaccine and the emergence of drug resistance to commonly used nucleoside analogs emphasize the urgent need for alternative antivirals against HSV-2. Recently, ABMA [1-adamantyl (5-bromo-2-methoxybenzyl) amine] has been demonstrated to be an inhibitor of several pathogens exploiting host-vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that ABMA inhibited HSV-2-induced cytopathic effects and plaque formation with 50% effective concentrations of 1.66 and 1.08 μM, respectively. We also preliminarily demonstrated in a time of compound addition assay that ABMA exerted a dual antiviral mechanism by impairing virus entry, as well as the late stages of the HSV-2 lifecycle. Furthermore, in vivo studies showed that ABMA protected BALB/c mice from intravaginal HSV-2 challenge with an improved survival rate of 50% at 5 mg/kg (8.33% for the untreated virus infected control). Consequently, our study has identified ABMA as an effective inhibitor of HSV-2, both in vitro and in vivo, for the first time and presents an alternative to nucleoside analogs for HSV-2 infection treatment.
Collapse
Affiliation(s)
- Wenwen Dai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Yu Wu
- SIMOPRO, CEA, Université Paris-Saclay, F-91191 Gif Sur Yvette, France.
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Shuai Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Fang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Julien Barbier
- SIMOPRO, CEA, Université Paris-Saclay, F-91191 Gif Sur Yvette, France.
| | | | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Daniel Gillet
- SIMOPRO, CEA, Université Paris-Saclay, F-91191 Gif Sur Yvette, France.
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China.
| |
Collapse
|