1
|
Heithoff DM, Barnes L, Mahan SP, Fox GN, Arn KE, Ettinger SJ, Bishop AM, Fitzgibbons LN, Fried JC, Low DA, Samuel CE, Mahan MJ. Assessment of a Smartphone-Based Loop-Mediated Isothermal Amplification Assay for Detection of SARS-CoV-2 and Influenza Viruses. JAMA Netw Open 2022; 5:e2145669. [PMID: 35089353 PMCID: PMC8800074 DOI: 10.1001/jamanetworkopen.2021.45669] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Importance A critical need exists in low-income and middle-income countries for low-cost, low-tech, yet highly reliable and scalable testing for SARS-CoV-2 virus that is robust against circulating variants. Objective To assess whether a smartphone-based assay is suitable for SARS-CoV-2 and influenza virus testing without requiring specialized equipment, accessory devices, or custom reagents. Design, Setting, and Participants This cohort study enrolled 2 subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital. The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus; these results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC) criterion-standard reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients. Statistical analysis was performed from May to June 2021. Exposures Testing for SARS-CoV-2 and influenza A and B viruses. Main Outcomes and Measures SARS-CoV-2 and influenza infection status and quantitative viral load were determined. Results Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years). SmaRT-LAMP exhibited 100% concordance (50 of 50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20 of 20 positive and 30 of 30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in spiked saliva samples (n = 20), and in saliva samples from hospitalized patients (50 of 50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1000 copies/mL), low-cost (<$7/test), and scalable (96 samples/phone). Conclusions and Relevance In this cohort study of saliva samples from patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with RT-qPCR tests. These findings suggest that this tool could be adapted in response to novel CoV-2 variants and other pathogens with pandemic potential including influenza and may be useful in settings with limited resources.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| | - Lucien Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis
| | - Gary N Fox
- Department of Materials and Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara
| | - Katherine E Arn
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Sarah J Ettinger
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Andrew M Bishop
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
- Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
- Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| |
Collapse
|
2
|
Li Y, Wan Z, Zuo L, Li S, Liu H, Ma Y, Zhou L, Jin X, Li Y, Zhang C. A Novel 2-dimensional Multiplex qPCR Assay for Single-Tube Detection of Nine Human Herpesviruses. Virol Sin 2021; 36:746-754. [PMID: 33635517 DOI: 10.1007/s12250-021-00354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Human herpesviruses are double-stranded DNA viruses that are classified into nine species. More than 90% of adults are ever infected with one or more herpesviruses. The symptoms of infection with different herpesviruses are diverse ranging from mild or asymptomatic infections to deadly diseases such as aggressive lymphomas and sarcomas. Timely and accurate detection of herpesvirus infection is critical for clinical management and treatment. In this study, we established a single-tube nonuple qPCR assay for detection of all nine herpesviruses using a 2-D multiplex qPCR method with a house-keeping gene as the internal control. The novel assay can detect and distinguish different herpesviruses with 30 to 300 copies per 25 µL single-tube reaction, and does not cross-react with 20 other human viruses, including DNA and RNA viruses. The robustness of the novel assay was evaluated using 170 clinical samples. The novel assay showed a high consistency (100%) with the single qPCR assay for HHVs detection. The features of simple, rapid, high sensitivity, specificity, and low cost make this assay a high potential to be widely used in clinical diagnosis and patient treatment.
Collapse
Affiliation(s)
- Yingxue Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.,School of Biomedical Engineering, University of Science and Technology of China, Hefei, 260026, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, 225300, China
| | - Lulu Zuo
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335, China
| | - Honglian Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lianqun Zhou
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.,School of Biomedical Engineering, University of Science and Technology of China, Hefei, 260026, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yuye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Advances in Directly Amplifying Nucleic Acids from Complex Samples. BIOSENSORS-BASEL 2019; 9:bios9040117. [PMID: 31574959 PMCID: PMC6955841 DOI: 10.3390/bios9040117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Advances in nucleic acid amplification technologies have revolutionized diagnostics for systemic, inherited, and infectious diseases. Current assays and platforms, however, often require lengthy experimental procedures and multiple instruments to remove contaminants and inhibitors from clinically-relevant, complex samples. This requirement of sample preparation has been a bottleneck for using nucleic acid amplification tests (NAATs) at the point of care (POC), though advances in “lab-on-chip” platforms that integrate sample preparation and NAATs have made great strides in this space. Alternatively, direct NAATs—techniques that minimize or even bypass sample preparation—present promising strategies for developing POC diagnostic tools for analyzing real-world samples. In this review, we discuss the current status of direct NAATs. Specifically, we surveyed potential testing systems published from 1989 to 2017, and analyzed their performances in terms of robustness, sensitivity, clinical relevance, and suitability for POC diagnostics. We introduce bubble plots to facilitate our analysis, as bubble plots enable effective visualization of the performances of these direct NAATs. Through our review, we hope to initiate an in-depth examination of direct NAATs and their potential for realizing POC diagnostics, and ultimately transformative technologies that can further enhance healthcare.
Collapse
|
4
|
Reliability of direct varicella zoster virus loop-mediated isothermal amplification method for rapid diagnosis of breakthrough varicella. J Clin Virol 2019; 119:53-58. [PMID: 31491710 DOI: 10.1016/j.jcv.2019.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since patients with breakthrough varicella (BV) have mild symptoms, clinical diagnosis is difficult. In high vaccine coverage area, as BV occurs sporadically, point of care test is required for controlling varicella outbreak. In this study, the reliability of varicella zoster virus (VZV)-loop mediated isothermal amplification (LAMP) was evaluated for the rapid diagnosis of BV. STUDY DESIGN A total of 328 swab samples collected from patients with suspected varicella were analyzed. For the laboratory diagnosis of varicella, VZV real-time PCR was carried out using DNA extracted from swab samples. Swab samples without DNA extraction were used for VZV-LAMP(direct-LAMP). RESULTS VZV infection was diagnosed by real-time PCR in 285 cases, including 105 natural varicella cases and 180 BV cases. VZV DNA was detected in 250 (87.8%) of the 285 cases by direct-LAMP. The presence and duration of fever, number of skin eruptions, and VZV DNA load were significantly lower in BV than natural varicella. The sensitivity of direct-LAMP for the diagnosis of varicella and BV was 93.3% and 84.4%, respectively. CONCLUSIONS Direct LAMP was considered to be useful for rapid diagnosis of BV as it has several advantages such as low cost, ease and rapidity, as compared to real time PCR.
Collapse
|
5
|
Joon D, Nimesh M, Gupta S, Kumar C, Varma-Basil M, Saluja D. Development and evaluation of rapid and specific sdaA LAMP-LFD assay with Xpert MTB/RIF assay for diagnosis of tuberculosis. J Microbiol Methods 2019; 159:161-166. [PMID: 30858005 DOI: 10.1016/j.mimet.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/19/2022]
Abstract
There is need for rapid and cost-effective diagnostic test for tuberculosis. The present study was carried out to design a Loop-mediated isothermal amplification (LAMP) assay combined with lateral flow dipstick (LFD) as a point-of-care method for diagnosis of TB. LAMP assay targeting sdaA gene combined with LFD for sequence specific detection was standardized in user friendly and rapid format. It does not require sophisticated instruments and shows visual results instantly. The LAMP-LFD assay was validated using culture confirmed specimens. The assay was evaluated in a cross-sectional study using respiratory specimens collected from patients in Delhi, India and it showed high concordance with GeneXpert MTB/RIF assay. Lateral flow dipstick method has provided an excellent detection format with LAMP method. The LAMP-LFD assay showed high diagnostic accuracy in comparison to other methods and can be used as a point-of-care test in cost-effective manner.
Collapse
Affiliation(s)
- Deepali Joon
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India; Shri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi 110 007, India
| | - Manoj Nimesh
- Shri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi 110 007, India
| | - Shraddha Gupta
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 11007, India
| | - Chanchal Kumar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 11007, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 11007, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
6
|
Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine 2018; 36:73-82. [PMID: 30245056 PMCID: PMC6197494 DOI: 10.1016/j.ebiom.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 11/22/2022] Open
Abstract
Background There is an urgent need for rapid, sensitive, and affordable diagnostics for microbial infections at the point-of-care. Although a number of innovative systems have been reported that transform mobile phones into potential diagnostic tools, the translational challenge to clinical diagnostics remains a significant hurdle to overcome. Methods A smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) system was developed for pathogen ID in urinary sepsis patients. The free, custom-built mobile phone app allows the phone to serve as a stand-alone device for quantitative diagnostics, allowing the determination of genome copy-number of bacterial pathogens in real time. Findings A head-to-head comparative bacterial analysis of urine from sepsis patients revealed that the performance of smaRT-LAMP matched that of clinical diagnostics at the admitting hospital in a fraction of the time (~1 h vs. 18–28 h). Among patients with bacteremic complications of their urinary sepsis, pathogen ID from the urine matched that from the blood – potentially allowing pathogen diagnosis shortly after hospital admission. Additionally, smaRT-LAMP did not exhibit false positives in sepsis patients with clinically negative urine cultures. Interpretation The smaRT-LAMP system is effective against diverse Gram-negative and -positive pathogens and biological specimens, costs less than $100 US to fabricate (in addition to the smartphone), and is configurable for the simultaneous detection of multiple pathogens. SmaRT-LAMP thus offers the potential to deliver rapid diagnosis and treatment of urinary tract infections and urinary sepsis with a simple test that can be performed at low cost at the point-of-care. Fund National Institutes of Health, Chan-Zuckerberg Biohub, Bill and Melinda Gates Foundation.
Collapse
|
7
|
Mauk MG, Song J, Liu C, Bau HH. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests. BIOSENSORS 2018; 8:E17. [PMID: 29495424 PMCID: PMC5872065 DOI: 10.3390/bios8010017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/10/2023]
Abstract
Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges ('chips') that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed.
Collapse
Affiliation(s)
- Michael G Mauk
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| | - Jinzhao Song
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| | - Changchun Liu
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| | - Haim H Bau
- Mechanical Engineering and Applied Mechanics (MEAM), School of Engineering and Applied Science, University of Pennsylvania, Towne Building, 220 33rd Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Thu VT, Tien BQ, Ngoc Nga DT, Thanh LC, Sinh LH, Le TC, Lam TD. Reduced graphene oxide-polyaniline film as enhanced sensing interface for the detection of loop-mediated-isothermal-amplification products by open circuit potential measurement. RSC Adv 2018; 8:25361-25367. [PMID: 35539802 PMCID: PMC9082585 DOI: 10.1039/c8ra04050h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022] Open
Abstract
The development of low cost, portable diagnostic tools for in-field detection of viruses and other pathogenic microorganisms is in great demand but remains challenging. In this study, a novel approach based on reduced graphene oxide-polyaniline (rGO-PANi) film for the in situ detection of loop-mediated-isothermal-amplification (LAMP) products by means of open circuit potential measurement is proposed. The pH-sensitive conducting polymer PANi was electro-deposited onto rGO coated screen printed electrodes and tuned to be at the emeraldine state at which the pH sensitivity was maximized. By combining PANi and rGO, the pH sensitivity of the system was modulated up to about −64 mV per pH unit. This enabled the number of amplified amplicons resulting from the isothermal amplification process to be monitored. The sensor was then examined for monitoring LAMP reactions using Hepatitis B virus (HBV) as a model. This simple, low-cost, reproducible and sensitive interfacing layer is expected to provide a new possibility for designing point-of-care sensors under limited-resource conditions. A novel disposable sensor based on reduced graphene oxide-polyaniline (rGO-PANi) for detection of loop-mediated-isothermal-amplification (LAMP) products.![]()
Collapse
Affiliation(s)
- Vu Thi Thu
- University of Science and Technology of Hanoi (USTH)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Center for High Technology Development (HTD)
| | - Bui Quang Tien
- Graduate University of Science and Technology (GUST)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Military Academy of Logistics
| | - Dau Thi Ngoc Nga
- University of Science and Technology of Hanoi (USTH)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Center for High Technology Development (HTD)
| | - Ly Cong Thanh
- Graduate University of Science and Technology (GUST)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Hanoi University of Pharmacy
| | | | - Tu Cam Le
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Tran Dai Lam
- Center for High Technology Development (HTD)
- Vietnam Academy of Science and Technology (VAST)
- Hanoi
- Vietnam
- Graduate University of Science and Technology (GUST)
| |
Collapse
|
9
|
Lai GH, Chao J, Lin MK, Chang WT, Peng WH, Sun FC, Lee MS, Lee MS. Rapid and sensitive identification of the herbal tea ingredient Taraxacum formosanum using loop-mediated isothermal amplification. Int J Mol Sci 2015; 16:1562-75. [PMID: 25584616 PMCID: PMC4307320 DOI: 10.3390/ijms16011562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022] Open
Abstract
Taraxacum formosanum (TF) is a medicinal plant used as an important component of health drinks in Taiwan. In this study, a rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) assay for authenticating TF was established. A set of four specific LAMP primers was designed based on the nucleotide sequence of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA (nrDNA) of TF. LAMP amplicons were successfully amplified and detected when purified genomic DNA of TF was added in the LAMP reaction under isothermal condition (65 °C) within 45 min. These specific LAMP primers have high specificity and can accurately discriminate Taraxacum formosanum from other adulterant plants; 1 pg of genomic DNA was determined to be the detection limit of the LAMP assay. In conclusion, using this novel approach, TF and its misused plant samples obtained from herbal tea markets were easily identified and discriminated by LAMP assay for quality control.
Collapse
Affiliation(s)
- Guan-Hua Lai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40402, Taiwan.
| | - Jung Chao
- Department & Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Wen-Te Chang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Fang-Chun Sun
- Department of Bioresources, Da-Yeh University, Changhua 51591, Taiwan.
| | - Meng-Shiunn Lee
- Management Center, Department of Medical Research and Development, Show Chwan Health Care Sysytem, Changhua 51951, Taiwan.
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
10
|
Howard RL, French DJ, Richardson JA, O'Neill CE, Andreou MP, Brown T, Clark D, Clarke IN, Holloway JW, Marsh P, Debenham PG. Rapid detection of diagnostic targets using isothermal amplification and HyBeacon probes--a homogenous system for sequence-specific detection. Mol Cell Probes 2014; 29:92-8. [PMID: 25542839 DOI: 10.1016/j.mcp.2014.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Isothermal amplification is a rapid, simple alternative to PCR, with amplification commonly detected using fluorescently labelled oligonucleotide probes, intercalating dyes or increased turbidity as a result of magnesium pyrophosphate generation. SNP identification is possible but requires either allele-specific primers or multiple dye-labelled probes, but further downstream processing is often required for allelic identification. Here we demonstrate that modification of common isothermal amplification methods by the addition of HyBeacon probes permits homogeneous sequence detection and discrimination by melting or annealing curve analysis. Furthermore, we demonstrate that isothermal amplification and sequence discrimination is possible directly from a crude sample such as an expressed buccal swab.
Collapse
Affiliation(s)
| | | | - James A Richardson
- University of Southampton School of Chemistry, Highfield, Southampton SO17 1BJ, UK
| | - Colette E O'Neill
- University of Southampton Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | - Tom Brown
- University of Southampton School of Chemistry, Highfield, Southampton SO17 1BJ, UK
| | - Duncan Clark
- OptiGene Ltd., Unit 5, Blatchford Road, Horsham, RH13 5QR, UK
| | - Ian N Clarke
- University of Southampton Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, Southampton SO16 6YD, UK
| | - John W Holloway
- University of Southampton Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Peter Marsh
- Health Protection Agency, Southampton General Hospital, Southampton SO16 6YD, UK
| | | |
Collapse
|
11
|
Direct detection of Marek's disease virus in poultry dust by loop-mediated isothermal amplification. Arch Virol 2014; 159:3083-7. [PMID: 24986718 PMCID: PMC4200374 DOI: 10.1007/s00705-014-2157-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022]
Abstract
Marek’s disease virus (MDV) is a serious concern for poultry production and represents a unique herpesvirus model. MDV can be shed by doubly infected chickens despite vaccination. The fully infectious MDV particles are produced in the feather follicle epithelium (FFE), and MDV remains infectious for many months in fine skin particles and feather debris. Molecular biology methods including PCR and real-time PCR have been shown to be valuable for the detection of MDV DNA in farm dust. Recently, loop-mediated isothermal amplification (LAMP) was found to be useful in the detection of MDV in feathers and internal organs of infected chickens. LAMP is also less affected by the inhibitors present in DNA samples. Taking into account the advantages of LAMP, direct detection of MDV DNA in poultry dust has been conducted in this research. The detection of MDV DNA was possible in 11 out of the 12 examined dust samples without DNA extraction. The DNA was retrieved from dust samples by dilution and incubation at 95 °C for 5 min. The direct detection of MDV DNA in the dust was possible within 30 min using a water bath and UV light. The results were confirmed by electrophoresis and melting curve analysis of the LAMP products. Our results show that LAMP may be used to test for the presence of virulent MDV in poultry farm dust without DNA extraction.
Collapse
|