1
|
Goodarzi MM, Mosayebi G, Ganji A, Raoufi E, Sadelaji S, Babaei S, Abtahi H. HPV16 mutant E6/E7 construct is protective in mouse model. BMC Biotechnol 2024; 24:71. [PMID: 39350162 PMCID: PMC11443707 DOI: 10.1186/s12896-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model. RESULTS Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed. CONCLUSIONS So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ehsan Raoufi
- Vaccine research center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sadelaji
- Department of Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
2
|
Han X, Gao Z, Cheng Y, Wu S, Chen J, Zhang W. A Therapeutic DNA Vaccine Targeting HPV16 E7 in Combination with Anti-PD-1/PD-L1 Enhanced Tumor Regression and Cytotoxic Immune Responses. Int J Mol Sci 2023; 24:15469. [PMID: 37895145 PMCID: PMC10607554 DOI: 10.3390/ijms242015469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Persistent infection of high-risk human papillomavirus (HPV) and the expression of E6 and E7 oncoproteins are the main causes of cervical cancer. Several prophylactic HPV vaccines are used in the clinic, but these vaccines have limited efficacy in patients already infected with HPV. Since HPV E7 is vital for tumor-specific immunity, developing a vaccine against HPV E7 is an attractive strategy for cervical cancer treatment. Here, we constructed an HPV16 E7 mutant that loses the ability to bind pRb while still eliciting a robust immune response. In order to build a therapeutic DNA vaccine, the E7 mutant was packaged in an adenovirus vector (Ad-E7) for efficient expression and enhanced immunogenicity of the vaccine. Our results showed that the Ad-E7 vaccine effectively inhibited tumor growth and increased the proportion of interferon-gamma (IFN-γ)-secreting CD8+ T cells in the spleen, and tumor-infiltrating lymphocytes in a mouse cervical cancer model was achieved by injecting with HPV16-E6/E7-expressing TC-1 cells subcutaneously. Combining the Ad-E7 vaccine with the PD-1/PD-L1 antibody blockade significantly improved the control of TC-1 tumors. Combination therapy elicited stronger cytotoxic T lymphocyte (CTL) responses, and IFN-γ secretion downregulated the proportion of Tregs and MDSCs significantly. The expressions of cancer-promoting factors, such as TNF-α, were also significantly down-regulated in the case of combination therapy. In addition, combination therapy inhibited the number of capillaries in tumor tissues and increased the thickness of the tumor capsule. Thus, Ad-E7 vaccination, in combination with an immune checkpoint blockade, may benefit patients with HPV16-associated cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Weifang Zhang
- Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (X.H.); (Z.G.); (Y.C.); (S.W.); (J.C.)
| |
Collapse
|
3
|
Miri SM, Pourhossein B, Hosseini SY, Keshavarz M, Shahmahmoodi S, Zolfaghari MR, Mohebbi SR, Gorji A, Ghaemi A. Enhanced synergistic antitumor effect of a DNA vaccine with anticancer cytokine, MDA-7/IL-24, and immune checkpoint blockade. Virol J 2022; 19:106. [PMID: 35752792 PMCID: PMC9233788 DOI: 10.1186/s12985-022-01842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer. However, the restricted immunogenicity has limited their clinical applications individually. To address this deficiency, we investigated whether combining the E7 DNA vaccine with MDA-7/IL-24 as an adjuvant would elicit efficient antitumor responses in tumor-bearing mouse models. Next, we evaluated how suppression of immunosuppressive IL-10 cytokine would enhance the outcome of our candidate adjuvant vaccine.
Methods For this purpose, tumor-bearing mice received either E7 DNA vaccine, MDA-7/IL-24 cytokine or combination of E7 vaccine with MDA-7/IL-24 adjuvant one week after tumor challenge and boosted two times with one-week interval. IL-10 blockade was performed by injection of anti-IL-10 mAb before each immunization. One week after the last immunization, mice were sacrificed and the treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, the condition of tumors was monitored every two days for six weeks intervals from week 2 on, and the tumor volume was measured and compared within different groups. Results A highly significant synergistic relationship was observed between the E7 DNA vaccine and the MDA-7/IL-24 cytokine against HPV-16+ cervical cancer models. An increase in proliferation of lymphocytes, cytotoxicity of CD8+ T cells, the level of Th1 cytokines (IFN-γ, TNF-α) and IL-4, the level of apoptotic markers (TRAIL and caspase-9), and a decrease in the level of immunosuppressive IL-10 cytokine, together with the control of tumor growth and the induction of tumor regression, all prove the efficacy of adjuvant E7&IL-24 vaccine when compared to their individual administration. Surprisingly, vaccination with the DNA E7&IL-24 significantly reduced the population of Regulatory T cells (Treg) in the spleen of immunized mice compared to sole administration and control groups. Moreover, IL-10 blockade enhanced the effect of the co-administration by eliciting higher levels of IFN-γ and caspase-9, reducing Il-10 secretion and provoking the regression of tumor size. Conclusion The synergy between the E7 DNA vaccine and MDA-7/IL-24 suggests that DNA vaccines’ low immunogenicity can be effectively addressed by coupling them with an immunoregulatory agent. Moreover, IL-10 blockade can be considered a complementary treatment to improve the outcome of conventional or novel cancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01842-x.
Collapse
Affiliation(s)
- Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Behzad Pourhossein
- Department of Medical Virology, Hamedan University of Medical Sciences, Hamedan, Iran.,Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
4
|
Shirmohammadi M, Soleimanjahi H, Kianmehr Z, Karimi H, Kaboudanian Ardestani S. Brucella abortus RB51 lipopolysaccharide influence as an adjuvant on the therapeutic efficacy of HPV16 L1 and HPV16 E7 DNA vaccines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:92-97. [PMID: 33643576 PMCID: PMC7894634 DOI: 10.22038/ijbms.2020.51043.11608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Human papillomavirus (HPV) is a primary contributing agent of cervical cancer. Eradication of HPV-related infections requires therapeutic strategies. We used Brucella abortus RB51 rough lipopolysaccharide (R-LPS) as an adjuvant along with two HPV16 therapeutic DNA vaccines, pcDNA3-E7 and pcDNA3-L1, for improving DNA vaccine efficacy. MATERIALS AND METHODS For evaluation of the B. abortus LPS adjuvant efficacy in combination with DNA vaccines to induce cellular immune responses, C57BL/6 mice were immunized with the DNA vaccines, with or without R-LPS adjuvant. IFN-γ and IL-4 cytokines assay was carried out for assessment of cellular and humoral immune responses. RESULTS Findings indicated that vaccination with pcDNA3-E7 or pcDNA3-L1 alone could induce strong cellular immune responses, but stronger antigen-specific T-cell immune responses were shown by co-administration of HPV16 E7 and HPV16 L1 DNA vaccines along with R-LPS adjuvant. CONCLUSION Overall, B. abortus R-LPS through enhancement of T-cell immune responses can be considered an efficient vaccine adjuvant in future studies and trials.
Collapse
Affiliation(s)
- Masoumeh Shirmohammadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
5
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|
6
|
Wang T, Chen S, Wang X, Huang Y, Qiu J, Fei Y, Chaulagain A, Chen Y, Wang Y, Lin L, Yan B, Wang Y, Wang W, Zhao W, Zhong Z. Aberrant PD-1 ligand expression contributes to the myocardial inflammatory injury caused by Coxsackievirus B infection. Antiviral Res 2019; 166:1-10. [PMID: 30904424 DOI: 10.1016/j.antiviral.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022]
Abstract
Coxsackievirus group B (CVB) is considered as one of the most common pathogens of human viral myocarditis. CVB-induced myocarditis is mainly characterized by the persistence of the virus infection and immune-mediated inflammatory injury. Costimulatory signals are crucial for the activation of adaptive immunity. Our data reveal that the CVB type 3 (CVB3) infection altered the expression profile of costimulatory molecules in host cells. CVB3 infection caused the decrease of PD-1 ligand expression, partially due to the cleavage of AU-rich element binding protein AUF1 by the viral protease 3Cpro, leading to the exacerbated inflammatory injury of the myocardium. Moreover, systemic PD-L1 treatment, which augmented the apoptosis of proliferating lymphocytes, alleviated myocardial inflammatory injury. Our findings suggest that PD1-pathway can be a potential immunologic therapeutic target for CVB-induced myocarditis.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Shuang Chen
- Department of Immunology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Xueqing Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Yike Huang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jianfa Qiu
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Biying Yan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Ying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China.
| |
Collapse
|
7
|
Bhateja P, Chiu M, Wildey G, Lipka MB, Fu P, Yang MCL, Ardeshir-Larijani F, Sharma N, Dowlati A. Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung cancer. Cancer Med 2019; 8:1459-1466. [PMID: 30773851 PMCID: PMC6488103 DOI: 10.1002/cam4.2023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The retinoblastoma gene (RB1) encodes the retinoblastoma (RB) pocket protein that plays an important role in cell cycle progression. Here we determine the frequency and prognostic significance of RB1 mutation in non small cell lung cancer (NSCLC), restricting inclusion to Stage III and IV patients with linked genomic and clinical data. The primary outcome was median overall survival (OS). We identified RB1 mutation in 8.2% of NSCLC patients. The median OS for wild-type (wt) RB1 was 28.3 months vs 8.3 months for mutant RB1 (Hazard Ratio = 2.59, P = 0.002). Of special interest, RB1 mutation also correlated with lack of response to immunotherapy. Our study focused on RB1 mutation in locally advanced and advanced non small cell lung cancer to better facilitate comparisons with small cell lung cancer (SCLC). In our SCLC cohort, RB1 mutation was identified in 75% of patients and wt RB1 was associated with significantly shorter OS (P = 0.002). The different outcomes of RB1 mutation observed among lung cancer subtypes suggest a more complicated mechanism than simple regulation of cell cycle or response to chemotherapy.
Collapse
Affiliation(s)
- Priyanka Bhateja
- Department of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| | - Michelle Chiu
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Gary Wildey
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mary Beth Lipka
- Department of Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Michael Chiu Lee Yang
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Neelesh Sharma
- Department of Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Afshin Dowlati
- Department of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| |
Collapse
|
8
|
Mohebbi A, Ebrahimzadeh MS, Baghban Rahimi S, Saeidi M, Tabarraei A, Mohebbi SR, Shirian S, Gorji A, Ghaemi A. Non-replicating Newcastle Disease Virus as an adjuvant for DNA vaccine enhances antitumor efficacy through the induction of TRAIL and granzyme B expression. Virus Res 2018; 261:72-80. [PMID: 30599161 DOI: 10.1016/j.virusres.2018.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/02/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
The potential of non-replicating Newcastle Disease Virus (NDV) as an adjuvant for DNA vaccination remains to be elucidated. To assess the therapeutic effects of DNA vaccine (HPV-16 E7 gene) adjuvanted with NDV, female C57/BL6 mice were inoculated with murine TC-1 cells of human papillomavirus (HPV)-related carcinoma, expressing human papillomavirus 16 (HPV-16) E6/E7 antigens, and immunized with DNA vaccine alone or pretreated with NDV. One week after third immunization, Cytotoxic T lymphocytes (CTLs), splenocyte proliferation, cytokine balance (IFN-γ, IL-4 and IL-12 secretions) and intratumoral expression of cytotoxicity related proteins in tumor lysates were investigated. The results showed that treatment with non-replicating NDV prior to DNA vaccine induced tumor-specific cytolytic and splenocyte proliferation responses. The levels of cytokines IL-12, IL-4 and IFN-γ after treating with combined E7-DNA -non-replicating NDV (NDV-DNA Vaccine) were significantly higher than those of control groups. The intratumoral granzyme B and Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL)-mediated apoptosis was also significantly increased. Tumor therapeutic experiments showed that the NDV pretreatment could reduce the tumor progression of established E7-expressing TC-tumors. Taken together these data suggest that the significant antitumor responses evidenced during treatment with non-replicating NDV prior to DNA vaccine are due, in part, to strong E7-induced cellular immunity and enhanced expression of cytotoxicity related proteins in the tumor microenvironment. These observations indicated the potential of non-replicating NDV as an adjuvant for enhancing therapeutic DNA vaccines -induced immunity and antitumor responses.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Sanaz Baghban Rahimi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Gorji
- Department of Neurosurgery and Neurology, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27a, 48149, Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
9
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Baghban Rahimi S, Mohebbi A, Vakilzadeh G, Biglari P, Razeghi Jahromi S, Mohebi SR, Shirian S, Gorji A, Ghaemi A. Enhancement of therapeutic DNA vaccine potency by melatonin through inhibiting VEGF expression and induction of antitumor immunity mediated by CD8+ T cells. Arch Virol 2017; 163:587-597. [PMID: 29149434 DOI: 10.1007/s00705-017-3647-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
To be effective, therapeutic cancer vaccines should stimulate both an effective cell-mediated and a robust cytotoxic CD8+ T-cell response against human papillomavirus (HPV)-infected cells to treat the pre-existing tumors and prevent potential future tumors. In this study, the therapeutic experiments were designed in order to evaluate antitumor effect against the syngeneic TC-1 tumor model. The anti-tumor efficacy of a HPV-16 E7 DNA vaccine adjuvanted with melatonin (MLT) was evaluated in a C57BL/6 mouse tumor model by measuring tumor growth post vaccination and the survival rate of tumor-bearing mice, analyzing the specific lymphocyte proliferation responses in control and vaccinated mice by MTT assay. The E7-specific cytotoxic T cells (CTL) were analyzed by lymphocyte proliferation and lactate dehydrogenates (LDH) release assays. IFN-γ, IL-4 and TNF-α secretion in splenocyte cultures as well as vascular endothelial growth factor (VEGF) and IL-10 in the tumor microenvironment were assayed by ELISA. Our results demonstrated that subcutaneous administration of C57BL/6 mice with a DNA vaccine adjuvanted with MLT dose-dependently and significantly induced strong HPV16 E7-specific CD8+ cytotoxicity and IFN-γ and TNF-α responses capable of reducing HPV-16 E7-expressing tumor volume. A significantly higher level of E7-specific T-cell proliferation was also found in the adjuvanted vaccine group. Furthermore, tumor growth was significantly inhibited when the DNA vaccine was combined with MLT and the survival time of TC-1 tumor bearing mice was also significantly prolonged. In vivo studies further demonstrated that MLT decreased the accumulation of IL-10 and VEGF in the tumor microenvironment of vaccinated mice. These data indicate that melatonin as an adjuvant augmented the cancer vaccine efficiency against HPV-associated tumors in a dose dependent manner.
Collapse
Affiliation(s)
- Sanaz Baghban Rahimi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Mohebbi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Gelareh Vakilzadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Peyvand Biglari
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | | | - Seyed Reza Mohebi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neurosurgery and Neurology, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27a, 48149, Münster, Germany
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran. .,Department of Microbiology, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
11
|
Li J, Chen S, Ge J, Lu F, Ren S, Zhao Z, Pu X, Chen X, Sun J, Gu Y. A novel therapeutic vaccine composed of a rearranged human papillomavirus type 16 E6/E7 fusion protein and Fms-like tyrosine kinase-3 ligand induces CD8 + T cell responses and antitumor effect. Vaccine 2017; 35:6459-6467. [PMID: 29029939 DOI: 10.1016/j.vaccine.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 01/15/2023]
Abstract
The development of cervical cancer is mainly caused by infection with high risk genotypes of human papillomavirus, particularly type 16 (HPV16), which accounts for more than 50% of cervical cancer. The two early viral oncogenes, E6 and E7, are continuously expressed in cervical cancer cells and are necessary to maintain the malignant cellular phenotype, thus providing ideal targets for immunotherapy of cervical cancer. In this study, a novel vaccine strategy was developed based on a rationally shuffled HPV16 E6/E7 fusion protein, the addition of Fms-like tyrosine kinase-3 ligand (Flt3L) or the N domain of calreticulin (NCRT), and the usage of a CpG adjuvant. Four recombinant proteins were constructed: m16E6E7 (mutant E6/E7 fusion protein), rm16E6E7 (rearranged mutant HPV16 E6/E7 fusion protein), Flt3L-RM16 (Flt3L fused to rm16E6E7), and NCRT-RM16 (NCRT fused to rm16E6E7). Our results suggest that Flt3L-RM16 was the most potent of these proteins in terms of inducing E6- and E7-specific CD8+ T cell responses. Additionally, Flt3L-RM16 significantly induced regression of established E6/E7-expressing TC-1 tumors. Higher doses of Flt3L-RM16 trended toward higher levels of antitumor activity, but these differences did not reach statistical significance. In summary, this study found that Flt3L-RM16 fusion protein is a promising therapeutic vaccine for immunotherapy of HPV16-associated cervical cancer.
Collapse
Affiliation(s)
- Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Si Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Feng Lu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Zhiqiang Zhao
- Suzhou Yuankang Bio-pharmaceutical Co., Ltd., Suzhou, China.
| | - Xiuying Pu
- Suzhou Yuankang Bio-pharmaceutical Co., Ltd., Suzhou, China.
| | - Xiaoxiao Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Jiaojiao Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Yueqing Gu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Perez-Trujillo JJ, Garza-Morales R, Barron-Cantu JA, Figueroa-Parra G, Garcia-Garcia A, Rodriguez-Rocha H, Garcia-Juarez J, Muñoz-Maldonado GE, Saucedo-Cardenas O, Montes-De-Oca-Luna R, Loera-Arias MDJ. DNA vaccine encoding human papillomavirus antigens flanked by a signal peptide and a KDEL sequence induces a potent therapeutic antitumor effect. Oncol Lett 2017; 13:1569-1574. [PMID: 28454292 PMCID: PMC5403354 DOI: 10.3892/ol.2017.5635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular immune responses play a critical role in the eradication of intracellular infections and malignant cells through the recognition and subsequent removal of the infection or malignant cells. Effective antigen presentation is crucial for stimulating the immune system against malignant cells. Calreticulin (CRT) has been used to improve antigen presentation. However, CRT overexpression has been previously associated with the development of pancreatic and breast cancer. The import and retention signals of CRT in the endoplasmic reticulum (ER) can be used to overcome CRT overexpression. The present study describes the potent antitumor effect of a DNA vaccine encoding human papillomavirus type 16 E6 and E7 antigens flanked by ER import and retention signals (SP-E6E7m-KDEL). The effect of this vaccine was compared with that of E6 and E7 antigens fused to human full-length CRT (hCRT-E6E7m). In the present study, the effectiveness of SP-E6E7m-KDEL for inducing an interferon-γ antigen-specific, response and its therapeutic effect against tumors was demonstrated, which was as effective as immunization against those antigens fused to CRT. This simplified strategy, using ER import and retention signal peptides to direct antigens to this organelle, provides an efficient alternative to traditional vaccines and, more importantly, a safe and potent system to induce a therapeutic antitumor response.
Collapse
Affiliation(s)
- Jose J Perez-Trujillo
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Rodolfo Garza-Morales
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Jose A Barron-Cantu
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Gabriel Figueroa-Parra
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Aracely Garcia-Garcia
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Humberto Rodriguez-Rocha
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Jaime Garcia-Juarez
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Gerardo E Muñoz-Maldonado
- General Surgery Service, University Hospital 'Dr Jose Eleuterio Gonzalez', Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Odila Saucedo-Cardenas
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México.,Division of Genetics, Northeast Biomedical Research Center, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon 64720, México
| | - Roberto Montes-De-Oca-Luna
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| | - Maria De Jesus Loera-Arias
- Department of Histology, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, México
| |
Collapse
|
13
|
Increased expression of PD‑L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol Med Rep 2017; 15:1063-1070. [PMID: 28075442 PMCID: PMC5367331 DOI: 10.3892/mmr.2017.6102] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/11/2016] [Indexed: 01/09/2023] Open
Abstract
Cytotoxic T lymphocyte dysfunction is frequently associated with PD‑L1/PD‑1 pathway activation, and is a principal obstacle in cancer therapy. In the present study, the mechanisms underlying the human papillomavirus (HPV)‑induced evasion of cervical cancer cells to the host immune system via the programmed death ligand 1/programmed death 1 (PD‑L1/PD‑1) signaling pathway was investigated. A significant increase in the expression of the HPV16E7 viral protein and PD‑L1 in cervical tissues was observed when compared with normal cervical tissues. In addition, a positive correlation between HPV16E7 and PD‑L1 expression was observed by immunohistochemical staining and reverse transcription‑polymerase chain reaction. Overexpressing HPV16E7 oncoprotein in the epithelial carcinoma of PC3 cells increased the expression level of the PD‑L1 protein and inhibited peripheral blood mononuclear cell (PBMC) proliferation and cytotoxic T lymphocyte (CTL) activity. Upon knockdown of HPV16E7 in HPV16‑associated CaSki cervical cancer cells with a relevant siRNA, a reduction in PD‑L1 protein expression was observed, as well as a significant increase in PBMC proliferation and CTL activity. A recombinant plasmid, MSCVPIG‑soluble PD‑1, was constructed and transfected into the CaSki cell line, and was co‑cultured with PBMCs. PBMC proliferation and CTL activity were observed to increase significantly. In conclusion, the results presented in the current study suggest that overexpression of PD‑L1, induced by HPV16E7, may be responsible for lymphocyte dysfunction. In addition, soluble PD‑1 may restore the function of tumor‑infiltrating lymphocytes by inhibiting the PD‑L1/PD‑1 signaling pathway. These results may provide a novel insight for immunotherapeutic approaches in the treatment of cervical cancer.
Collapse
|
14
|
Moeini S, Saeidi M, Fotouhi F, Mondanizadeh M, Shirian S, Mohebi A, Gorji A, Ghaemi A. Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Arch Virol 2016; 162:333-346. [PMID: 27699512 DOI: 10.1007/s00705-016-3091-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022]
Abstract
The use of DNA vaccines has become an attractive approach for generating antigen-specific cytotoxic CD8+ T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be improved by using an adjuvant injected together with checkpoint antibodies. In the current study, we evaluated whether the therapeutic effects of a DNA vaccine encoding human papilloma virus type 16 (HPV-16) E7 can be enhanced by combined application of an immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway and secondary lymphoid tissue chemokine (SLC) also known as CCL21 adjuvant, in a mouse cervical cancer model. The therapeutic effects of the DNA vaccine in combination with CCL21 adjuvant plus PD-1 blockade was evaluated using a tumor growth curve. To further investigate the mechanism underlying the antitumor response, cytolytic and lymphocyte proliferation responses in splenocytes were measured using non-radioactive cytotoxicity and MTT assays, respectively. Vascular endothelial growth factor (VEGF) and IL-10 expression in the tumor and the levels of IFN-γ and IL-4 in supernatants of spleno-lymphocyte cultures were measured using ELISA. The immune efficacy was evaluated by in vivo tumor regression assay. The results showed that vaccination with a DNA vaccine in combination with the CCL21 adjuvant plus PD-1 blockade greatly enhanced cytotoxic T lymphocyte production and lymphocyte proliferation rates and greatly inhibited tumor progression. Moreover, the vaccine in combination with adjuvant and blockade significantly reduced intratumoral VEGF, IL-10 and splenic IL-4 but induced the expression of splenic IFN-γ. This formulation could be an effective candidate for a vaccine against cervical cancers and merits further investigation.
Collapse
Affiliation(s)
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Fotouhi
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Mahdieh Mondanizadeh
- Biotechnology and molecular medicine, Arak University of medical sciences, Arak, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Alireza Mohebi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.,Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Gorji
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse Münster, Germany.,Shefa Neuroscience Research Center, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|
15
|
Hutcheson J, Witkiewicz AK, Knudsen ES. The RB tumor suppressor at the intersection of proliferation and immunity: relevance to disease immune evasion and immunotherapy. Cell Cycle 2016; 14:3812-9. [PMID: 25714546 DOI: 10.1080/15384101.2015.1010922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) was the first identified tumor suppressor based on germline predisposition to the pediatric eye tumor. Since these early studies, it has become apparent that the functional inactivation of RB is a common event in nearly all human malignancy. A great deal of research has gone into understanding how the loss of RB promotes tumor etiology and progression. Since malignant tumors are characterized by aberrant cell division, much of this research has focused upon the ability of RB to regulate the cell cycle by repression of proliferation-related genes. However, it is progressively understood that RB is an important mediator of multiple functions. One area that is gaining progressive interest is the emerging role for RB in regulating diverse features of immune function. These findings suggest that RB is more than simply a regulator of cellular proliferation; it is at the crossroads of proliferation and the immune response. Here we review the data related to the functional roles of RB on the immune system, relevance to immune evasion, and potential significance to the response to immune-therapy.
Collapse
Affiliation(s)
- Jack Hutcheson
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| | - Agnieszka K Witkiewicz
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA.,b Simmons Cancer Center ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| | - Erik S Knudsen
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA.,b Simmons Cancer Center ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| |
Collapse
|
16
|
Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, Ghaemi A. Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci 2016; 23:16. [PMID: 26811064 PMCID: PMC4727273 DOI: 10.1186/s12929-016-0238-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND DNA vaccines have emerged as an attractive approach for the generation of cytotoxic T lymphocytes (CTL). In our previous study, we found That Toll like receptor (TLR) ligands are promising candidates for the development of novel adjuvants for DNA vaccine. To improve the efficacy of DNA vaccine directed against human papillomavirus (HPV) tumors, we evaluated whether co-administration of a TLR4 ligand, monophosphoryl lipid A (MPL), and Natural Killer T Cell Ligand α-Galactosylceramide(α-GalCer) adjuvants with DNA vaccine would influence the anti-tumor efficacy of DNA vaccinations. METHODS We investigated the effectiveness of α-GalCer and MPL combination as an adjuvant with an HPV-16 E7 DNA vaccine to enhance antitumor immune responses. RESULTS By using adjuvant combination for a DNA vaccine, we found that the levels of lymphocyte proliferation, CTL activity, IFN- γ, IL-4 and IL-12 responses, and tumor protection against TC-1 cells were significantly increased compared to the DNA vaccine with individual adjuvants. In addition, inhibition of IL-18 signaling during vaccination decreased IFN-γ responses and tumor protection, and that this inhibition suggested stimulatory role of IL-18 in adjuvant effects of α-GalCer and MPL combination. CONCLUSION The strong adjuvanticity associated with α-GalCer/MPL combination may to be an important tool in the development of novel and strong cancer immunotherapy.
Collapse
Affiliation(s)
- Fateme Gableh
- Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, POBox: 49175-1141, Gorgan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaghayegh Hemati
- Guilan Science and Research Branch, Islamic Azad University, Rasht, Iran
| | - Kasra Hamdi
- Department of microbiology, Islamic Azad University, Shiraz branch, Shiraz, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Tehran, Iran.,Epilepsy Research Center, Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse, Münster, Germany.,Klinik und Poliklinik für Neurochirurgie, Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Amir Ghaemi
- Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, POBox: 49175-1141, Gorgan, Iran. .,Shefa Neuroscience Research Center, Tehran, Iran. .,Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Liu F, Lin B, Liu X, Zhang W, Zhang E, Hu L, Ma Y, Li X, Tang X. ERK Signaling Pathway Is Involved in HPV-16 E6 but not E7 Oncoprotein-Induced HIF-1α Protein Accumulation in NSCLC Cells. Oncol Res 2016; 23:109-18. [PMID: 26931433 PMCID: PMC7838632 DOI: 10.3727/096504015x14496932933610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK)1/2 signaling pathway plays a critical role in regulating tumor angiogenesis. Our previous studies have demonstrated that HPV-16 oncoproteins enhanced hypoxia-inducible factor-1α (HIF-1α) protein accumulation and vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) expression in non-small cell lung cancer (NSCLC) cells, thus contributing to angiogenesis. In this study, we further investigated the role of ERK1/2 signaling pathway in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in NSCLC cells. Our results showed that HPV-16 E6 and HPV-16 E7 oncoproteins promoted the activation of ERK1/2 signaling pathway in A549 and NCI-H460 cells. Moreover, PD98059, a specific inhibitor of ERK1/2, blocked in vitro angiogenesis stimulated by HPV-16 E6 but not E7 oncoprotein. Additionally, HIF-1α protein accumulation and VEGF and IL-8 expression in NSCLC cells induced by HPV-16 E6 but not E7 oncoprotein were significantly inhibited by PD98059. Taken together, our results suggest that ERK1/2 signaling pathway is involved in HPV-16 E6 but not E7 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression in NSCLC cells, leading to the enhanced angiogenesis in vitro.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Flavonoids/administration & dosage
- Gene Expression Regulation, Neoplastic/drug effects
- Human papillomavirus 16/genetics
- Human papillomavirus 16/pathogenicity
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Interleukin-8/biosynthesis
- Interleukin-8/genetics
- MAP Kinase Signaling System/drug effects
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Oncogene Proteins, Viral/metabolism
- Papillomavirus E7 Proteins/metabolism
- Repressor Proteins/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Fei Liu
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bihua Lin
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xin Liu
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wenzhang Zhang
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Erying Zhang
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liang Hu
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuefan Ma
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiangyong Li
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xudong Tang
- *Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, China
- †Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
18
|
Trovato M, Berardinis PD. Novel antigen delivery systems. World J Virol 2015; 4:156-168. [PMID: 26279977 PMCID: PMC4534807 DOI: 10.5501/wjv.v4.i3.156] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 02/05/2023] Open
Abstract
Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies for making vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a non-pathogenic prokaryotic organism: the “E2 scaffold” of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus.
Collapse
|
19
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Deng SX, Cai MS, Cui W, Huang JL, Li ML. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines. Vet Q 2014; 34:180-4. [DOI: 10.1080/01652176.2014.966173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|