1
|
Shahrajabian MH, Sun W. The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases. Curr Pharm Des 2024; 30:169-179. [PMID: 38243947 DOI: 10.2174/0113816128276560231218090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
Digital PCR (dPCR) is the latest technique that has become commercially accessible for various types of research. This method uses Taq polymerase in a standard polymerase chain reaction (PCR) to amplify a target DNA fragment from a complex sample, like quantitative PCR (qPCR) and droplet digital PCR (dd- PCR). ddPCR may facilitate microRNA (miRNA) measurement, particularly in liquid biopsy, because it has been proven to be more effective and sensitive, and in this method, ddPCR can provide an unprecedented chance for deoxyribonucleic acid (DNA) methylation research because of its capability to increase sensitivity and precision over conventional PCR-based methods. qPCR has also been found to be a valuable standard technique to measure both copy DNA (cDNA) and genomic DNA (gDNA) levels, although the finding data can be significantly variable and non-reproducible without relevant validation and verification of both primers and samples. The SYBR green quantitative real-time PCR (qPCR) method has been reported as an appropriate technique for quantitative detection and species discrimination, and has been applied profitably in different experiments to determine, quantify, and discriminate species. Although both TaqMan qRT-PCR and SYBR green qRT-PCR are sensitive and rapid, the SYBR green qRT-PCR assay is easy and the TaqMan qRT-PCR assay is specific but expensive due to the probe required. This review aimed to introduce dPCR, qPCR, SYBR green PCR kit, and digital PCR, compare them, and also introduce their advantages in the detection of different diseases.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| |
Collapse
|
2
|
Yang Y, Qin X, Song Y, Zhang W, Hu G, Dou Y, Li Y, Zhang Z. Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus. Virol J 2017; 14:24. [PMID: 28173845 PMCID: PMC5297045 DOI: 10.1186/s12985-017-0688-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. METHODS In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. RESULTS The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. CONCLUSIONS These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Yiming Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Gaowei Hu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Yanmin Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
3
|
Zhang J, Liu W, Chen W, Li C, Xie M, Bu Z. Development of an Immunoperoxidase Monolayer Assay for the Detection of Antibodies against Peste des Petits Ruminants Virus Based on BHK-21 Cell Line Stably Expressing the Goat Signaling Lymphocyte Activation Molecule. PLoS One 2016; 11:e0165088. [PMID: 27768770 PMCID: PMC5074545 DOI: 10.1371/journal.pone.0165088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
From 2013 to 2015, peste des petits ruminants (PPR) broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA) was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM) cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP) (rPPRV-GFP), an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT). Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field.
Collapse
Affiliation(s)
- Jialin Zhang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Wenxing Liu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Weiye Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- * E-mail: (WYC); (ZGB)
| | - Cuicui Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Meimei Xie
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Zhigao Bu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- * E-mail: (WYC); (ZGB)
| |
Collapse
|
4
|
Abstract
Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.
Collapse
Affiliation(s)
- M D Baron
- The Pirbright Institute, Surrey, United Kingdom.
| | - A Diallo
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - R Lancelot
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - G Libeau
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| |
Collapse
|
5
|
Wang D, Qiu L, Wu X, Wei H, Xu F. Evaluation of kudzu root extract-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:321-6. [PMID: 26545459 DOI: 10.1016/j.jep.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kudzu root, the root of Pueraria lobata (Willd.) Ohwi, has been used as food and medicine for centuries, but few studies indicate that kudzu root may cause liver damage. AIM OF STUDY We studied the hepatotoxicity of kudzu root extract in mice, HepG2 cells and mice hepatocytes. MATERIALS AND METHODS Mice were administrated with kudzu root extract (10mg/day) for 4 weeks, and then the biochemical analysis and histopathological changes were carried out. To explore the potential mechanism by which kudzu root extract-induced hepatotoxicity, HepG2 cells and mice hepatocytes were co-cultured with kudzu root extract or puerarin, which is a kudzu root isoflavone, for 2h. RESULTS The increase of serum ALT and AST and histopathological changes in treated mice revealed that kudzu root extract was hepatotoxic. The increase of LDH leakage for HepG2 cells and mice hepatocytes further confirmed hepatotoxicity of kudzu root extract. Kudzu root extract and puerarin significantly up-regulated Mt1 mRNA involved in the acute phase response and Bax which is crucial for apoptosis. Gclc, Nrf2 and Ho-1 mRNA expressions did not change in treatment group. CONCLUSIONS Kudzu root extract may be hepatotoxic and caution may be required for its use.
Collapse
Affiliation(s)
- Dengyuan Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hua Wei
- Jiangxi OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Feng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|