1
|
de Kantzow M, Hick PM, Whittington RJ. Immune Priming of Pacific Oysters ( Crassostrea gigas) to Induce Resistance to Ostreid herpesvirus 1: Comparison of Infectious and Inactivated OsHV-1 with Poly I:C. Viruses 2023; 15:1943. [PMID: 37766349 PMCID: PMC10536431 DOI: 10.3390/v15091943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pacific oyster mortality syndrome (POMS), which is caused by Ostreid herpesvirus 1 (OsHV-1), causes economic losses in Pacific oyster (Crassostrea gigas) aquaculture in many countries. Reducing the mortality in disease outbreaks requires changing the host, pathogen and environment interactions to favor the host. Survivors of natural exposure to OsHV-1 are able to survive subsequent outbreaks. This has been replicated under laboratory conditions, suggesting the existence of an immune response. The aim of the present study is to compare the effects of prior exposure to infectious OsHV-1, heat-inactivated OsHV-1 and the chemical anti-viral immune stimulant poly I:C on mortality following exposure to virulent OsHV-1. All treatments were administered by intramuscular injection. Oysters were maintained at 18 °C for 14 days; then, the temperature was increased to 22 °C and the oysters were challenged with virulent OsHV-1. Heat-inactivated OsHV-1, infectious OsHV-1 and poly I:C all induced significant protection against mortality, with the hazard of death being 0.41, 0.18 and 0.02, respectively, compared to the controls, which had no immune priming. The replication of OsHV-1 on first exposure was not required to induce a protective response. While the underlying mechanisms for protection remain to be elucidated, conditioning for resistance to POMS by prior exposure to inactivated or infectious OsHV-1 may have practical applications in oyster farming but requires further development to optimize the dose and delivery mechanism and evaluate the duration of protection.
Collapse
Affiliation(s)
| | | | - Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
2
|
Liu OM, Hick PM, Whittington RJ. The Resistance to Lethal Challenge with Ostreid herpesvirus-1 of Pacific Oysters ( Crassostrea gigas) Previously Exposed to This Virus. Viruses 2023; 15:1706. [PMID: 37632048 PMCID: PMC10458589 DOI: 10.3390/v15081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pacific oyster (Crassostrea gigas) aquaculture has been economically impacted in many countries by Pacific oyster mortality syndrome (POMS), a disease initiated by Ostreid herpesvirus 1. The objectives of this study were to determine whether naturally exposed, adult C. gigas could act as reservoirs for OsHV-1 and explain the recurrent seasonal outbreaks of POMS and to test whether or not they were resistant to OsHV-1. In a laboratory infection experiment using thermal shock, OsHV-1 replication was not reactivated within the tissues of such oysters and the virus was not transmitted to naïve cohabitating spat. The adult oysters were resistant to intramuscular injection with a lethal dose of OsHV-1 and had 118 times lower risk of mortality than naïve oysters. Considered together with the results of other studies in C. gigas, natural exposure or laboratory exposure to OsHV-1 may result in immunity during subsequent exposure events, either in the natural environment or the laboratory. While adult C. gigas can carry OsHV-1 infection for lengthy periods, reactivation of viral replication leading to mortality and transmission of the virus to naïve oysters may require specific conditions that were not present in the current experiment. Further investigation is required to evaluate the mechanisms responsible for resistance to disease in oysters previously exposed to OsHV-1, whether immunity can be exploited commercially to prevent POMS outbreaks and to determine the source of the virus for recurrent seasonal outbreaks.
Collapse
Affiliation(s)
- Olivia M. Liu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
- Biosecurity Animal Division, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia
| | - Paul M. Hick
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
- Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Richard J. Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
| |
Collapse
|
3
|
Trancart S, Tweedie A, Liu O, Paul-Pont I, Hick P, Houssin M, Whittington RJ. Diversity and molecular epidemiology of Ostreid herpesvirus 1 in farmed Crassostrea gigas in Australia: Geographic clusters and implications for "microvariants" in global mortality events. Virus Res 2023; 323:198994. [PMID: 36332723 PMCID: PMC10194400 DOI: 10.1016/j.virusres.2022.198994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Since 2010, mass mortality events known as Pacific oyster mortality syndrome (POMS) have occurred in Crassostrea gigas in Australia associated with Ostreid herpesvirus 1. The virus was thought to be an OsHV-1 µVar or "microvariant", i.e. one of the dominant variants associated with POMS in Europe, but there are few data to characterize the genotype in Australia. Consequently, the genetic identity and diversity of the virus was determined to understand the epidemiology of the disease in Australia. Samples were analysed from diseased C. gigas over five summer seasons between 2011 and 2016 in POMS-affected estuaries: Georges River in New South Wales (NSW), Hawkesbury River (NSW) and Pitt Water in Tasmania. Sequencing was attempted for six genomic regions. Numerous variants were identified among these regions (n = 100 isolates) while twelve variants were identified from concatenated nucleotide sequences (n = 61 isolates). Nucleotide diversity of the seven genotypes of C region among Australian isolates (Pi 0.99 × 10-3) was the lowest globally. All Australian isolates grouped in a cluster distinct from other OsHV-1 isolates worldwide. This is the first report that Australian outbreaks of POMS were associated with OsHV-1 distinct from OsHV-1 reference genotype, µVar and other microvariants from other countries. The findings illustrate that microvariants are not the only variants of OsHV-1 associated with mass mortality events in C. gigas. In addition, there was mutually exclusive spatial clustering of viral genomic and amino acid sequence variants between estuaries, and a possible association between genotype/amino acid sequence and the prevalence and severity of POMS, as this differed between these estuaries. The sequencing findings supported prior epidemiological evidence for environmental reservoirs of OsHV-1 for POMS outbreaks in Australia.
Collapse
Affiliation(s)
- Suzanne Trancart
- LABÉO Research Department, 1 Route de Rosel, Cedex 4, Caen 14053, France
| | - Alison Tweedie
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Olivia Liu
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Agriculture, Water and the Environment, Canberra, ACT 2601, Australia
| | - Ika Paul-Pont
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; LEMAR, Rue Dumont d'Urville, Plouzané 29280, France
| | - Paul Hick
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Maryline Houssin
- LABÉO Research Department, 1 Route de Rosel, Cedex 4, Caen 14053, France; UMR BOREA Université de Caen Normandie, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, Esplanade de la Paix Caen Cedex 4 14032, France
| | - Richard J Whittington
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia.
| |
Collapse
|
4
|
Delisle L, Laroche O, Hilton Z, Burguin JF, Rolton A, Berry J, Pochon X, Boudry P, Vignier J. Understanding the Dynamic of POMS Infection and the Role of Microbiota Composition in the Survival of Pacific Oysters, Crassostrea gigas. Microbiol Spectr 2022; 10:e0195922. [PMID: 36314927 PMCID: PMC9769987 DOI: 10.1128/spectrum.01959-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
For over a decade, Pacific oyster mortality syndrome (POMS), a polymicrobial disease, induced recurring episodes of massive mortality affecting Crassostrea gigas oysters worldwide. Recent studies evidenced a combined infection of the ostreid herpesvirus (OsHV-1 μVar) and opportunistic bacteria in affected oysters. However, the role of the oyster microbiota in POMS is not fully understood. While some bacteria can protect hosts from infection, even minor changes to the microbial communities may also facilitate infection and worsen disease severity. Using a laboratory-based experimental infection model, we challenged juveniles from 10 biparental oyster families with previously established contrasted genetically based ability to survive POMS in the field. Combining molecular analyses and 16S rRNA gene sequencing with histopathological observations, we described the temporal kinetics of POMS and characterized the changes in microbiota during infection. By associating the microbiota composition with oyster mortality rate, viral load, and viral gene expression, we were able to identify both potentially harmful and beneficial bacterial amplicon sequence variants (ASVs). We also observed a delay in viral infection resulting in a later onset of mortality in oysters compared to previous observations and a lack of evidence of fatal dysbiosis in infected oysters. Overall, these results provide new insights into how the oyster microbiome may influence POMS disease outcomes and open new perspectives on the use of microbiome composition as a complementary screening tool to determine shellfish health and potentially predict oyster vulnerability to POMS. IMPORTANCE For more than a decade, Pacific oyster mortality syndrome (POMS) has severely impacted the Crassostrea gigas aquaculture industry, at times killing up to 100% of young farmed Pacific oysters, a key commercial species that is cultivated globally. These disease outbreaks have caused major financial losses for the oyster aquaculture industry. Selective breeding has improved disease resistance in oysters, but some levels of mortality persist, and additional knowledge of the disease progression and pathogenicity is needed to develop complementary mitigation strategies. In this holistic study, we identified some potentially harmful and beneficial bacteria that can influence the outcome of the disease. These results will contribute to advance disease management and aquaculture practices by improving our understanding of the mechanisms behind genetic resistance to POMS and assisting in predicting oyster vulnerability to POMS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Pierre Boudry
- Département Ressources Biologiques et Environnement, Ifremer, ZI de la pointe du diable, Plouzané, France
| | | |
Collapse
|
5
|
Fuhrmann M, Georgiades E, Cattell G, Brosnahan C, Lane HS, Hick PM. Aquatic pathogens and biofouling: pilot study of ostreid herpesvirus 1 translocation by bivalves. BIOFOULING 2021; 37:949-963. [PMID: 34628999 DOI: 10.1080/08927014.2021.1985474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) has caused mass mortalities in Pacific oysters (Crassostrea gigas) in Europe, Australia, and New Zealand. While aquaculture-associated movements of infected Pacific oysters are a well-known cause of OsHV-1 spread once established in a region, translocation via biofouling of aquaculture equipment or vessels needs further investigation to explain the more distant spread of OsHV-1. Laboratory experiments were designed to test for transmission of OsHV-1 between infected and naïve Pacific oysters via a simulated biofouling translocation scenario. Three common biofouling species [Sydney rock oysters (Saccostrea glomerata), Mediterranean mussels (Mytilus galloprovincialis) and Pacific oysters] were tested as intermediaries using a cohabitation challenge with Pacific oysters infected by injection. Transmission occurred, albeit for one of eight replicates when Pacific oysters were the intermediary species. This demonstrated a possible pathway for pathogen spread via biofouling containing Pacific oysters while highlighting the complexity of OsHV-1 transmission. Such complexities require further investigation to inform future risk assessments and management of fouled aquaculture equipment and vessels.
Collapse
Affiliation(s)
- M Fuhrmann
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - E Georgiades
- Ministry for Primary Industries, Wellington, New Zealand
| | - G Cattell
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - C Brosnahan
- Ministry for Primary Industries, Wellington, New Zealand
| | - H S Lane
- Ministry for Primary Industries, Wellington, New Zealand
| | - P M Hick
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
6
|
Burge CA, Friedman CS, Kachmar ML, Humphrey KL, Moore JD, Elston RA. The first detection of a novel OsHV-1 microvariant in San Diego, California, USA. J Invertebr Pathol 2021; 184:107636. [PMID: 34116033 DOI: 10.1016/j.jip.2021.107636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 11/15/2022]
Abstract
The spread, emergence, and adaptation of pathogens causing marine disease has been problematic to fisheries and aquaculture industries for the last several decades creating the need for strategic management and biosecurity practices. The Pacific oyster (Crassostrea gigas), a highly productive species globally, has been a target of disease and mortality caused by a viral pathogen, the Ostreid herpesvirus 1 (OsHV-1) and its microvariants (OsHV-1 µvars). During routine surveillance to establish health history at a shellfish aquaculture nursery system in San Diego, California, the presence of OsHV-1 in Pacific oyster juveniles was detected. Quantification of OsHV-1 in tissues of oysters revealed OsHV-1 viral loads > 106 copies/mg. We characterized and identified the OsHV-1 variant by sequencing of ORFs 4 (C2/C6) and 43 (IA1/IA2), which demonstrated that this variant is a novel OsHV-1 microvariant: OsHV-1 µvar SD. A pilot transmission study indicates that OsHV-1 µvar SD is infectious with high viral loads ~ 7.57 × 106 copies/mg detected in dead individuals. The detection of OsHV-1 µvar SD in a large port mirrors previous studies conducted in Australia where aquaculture farms and feral populations near port locations may be at a higher risk of OsHV-1 emergence. Further research is needed to understand the impacts of OsHV-1 µvar SD, such as transmission studies focusing on potential vectors and characterization of virulence as compared to other OsHV-1 µvars. To increase biosecurity of the global aquaculture industry, active and passive surveillance may be necessary to reduce spread of pathogens and make appropriate management decisions.
Collapse
Affiliation(s)
- Colleen A Burge
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA.
| | - Carolyn S Friedman
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - Mariah L Kachmar
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | - James D Moore
- California Department of Fish & Wildlife, UC Davis Bodega Marine Laboratory, 2099 Westside Road, Bodega Bay, CA 94923, USA
| | - Ralph A Elston
- AquaTechnics Inc, 455 West Bell Street, Sequim, WA 98382, USA
| |
Collapse
|
7
|
Whittington RJ, Hick P, Fuhrmann M, Liu O, Paul-Pont I. Removal of oyster pathogens from seawater. ENVIRONMENT INTERNATIONAL 2021; 150:106258. [PMID: 33243468 DOI: 10.1016/j.envint.2020.106258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Affiliation(s)
- R J Whittington
- School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia.
| | - P Hick
- School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - M Fuhrmann
- School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - O Liu
- School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia; Aquatic Pest and Health Policy, Animal Health Policy Branch, Biosecurity Animal Division, Australian Government Department of Agriculture, Water and the Environment, Canberra, ACT 2601, Australia(1)
| | - I Paul-Pont
- School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia; Laboratoire des Sciences de l'Environnement Marin (LEMAR), CNRS/UBO/IRD/IFREMER Institut Universitaire Europeen de la Mer, 29280 Plouzane, France(1)
| |
Collapse
|
8
|
Vincent-Hubert F, Wacrenier C, Morga B, Lozach S, Quenot E, Mège M, Lecadet C, Gourmelon M, Hervio-Heath D, Le Guyader FS. Passive Samplers, a Powerful Tool to Detect Viruses and Bacteria in Marine Coastal Areas. Front Microbiol 2021; 12:631174. [PMID: 33708186 PMCID: PMC7940377 DOI: 10.3389/fmicb.2021.631174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The detection of viruses and bacteria which can pose a threat either to shellfish health or shellfish consumers remains difficult. The current detection methods rely on point sampling of water, a method that gives a snapshot of the microorganisms present at the time of sampling. In order to obtain better representativeness of the presence of these microorganisms over time, we have developed passive sampling using the adsorption capacities of polymer membranes. Our objectives here were to assess the feasibility of this methodology for field detection. Different types of membrane were deployed in coastal waters over 2 years and the microorganisms tested using qPCR were: human norovirus (NoV) genogroups (G)I and II, sapovirus, Vibrio spp. and the species Vibrio alginolyticus, V. cholerae, V. vulnificus, and V. parahaemolyticus, OsHV-1 virus, and bacterial markers of fecal contamination. NoV GII, Vibrio spp., and the AllBac general Bacteroidales marker were quantified on the three types of membrane. NoV GII and OsHV-1 viruses followed a seasonal distribution. All membranes were favorable for NoV GII detection, while Zetapor was more adapted for OsHV-1 detection. Nylon was more adapted for detection of Vibrio spp. and the AllBac marker. The quantities of NoV GII, AllBac, and Vibrio spp. recovered on membranes increased with the duration of exposure. This first application of passive sampling in seawater is particularly promising in terms of an early warning system for the prevention of contamination in oyster farming areas and to improve our knowledge on the timing and frequency of disease occurence.
Collapse
Affiliation(s)
| | | | - Benjamin Morga
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques, LGPMM/SG2M, La Tremblade, France
| | - Solen Lozach
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | | | - Mickaël Mège
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques, LGPMM/SG2M, La Tremblade, France
| | - Cyrielle Lecadet
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques, LGPMM/SG2M, La Tremblade, France
| | | | | | | |
Collapse
|
9
|
Prado-Alvarez M, García-Fernández P, Faury N, Azevedo C, Morga B, Gestal C. First detection of OsHV-1 in the cephalopod Octopus vulgaris. Is the octopus a dead-end for OsHV-1? J Invertebr Pathol 2021; 183:107553. [PMID: 33596434 DOI: 10.1016/j.jip.2021.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The ostreid herpes virus (OsHV-1), associated with massive mortalities in the bivalve Crassostrea gigas, was detected for the first time in the cephalopod Octopus vulgaris. Wild adult animals from a natural breeding area in Spain showed an overall prevalence of detection of 87.5% between 2010 and 2015 suggesting an environmental source of viral material uptake. Overall positive PCR detections were significantly higher in adult animals (p = 0.031) compared to newly hatched paralarvae (62%). Prevalence in embryos reached 65%. Sequencing of positive amplicons revealed a match with the variant OsHV-1 µVar showing the genomic features that distinguish this variant in the ORF4. Gill tissues from adult animals were also processed for in situ hybridization and revealed positive labelling. Experimental exposure trials in octopus paralarvae were carried out by cohabitation with virus injected oysters and by immersion in viral suspension observing a significant decrease in paralarval survival in both experiments. An increase in the number of OsHV-1 positive animals was detected in dead paralarvae after cohabitation with virus injected oysters. No signs of viral replication were observed based on lack of viral gene expression or visualization of viral structures by transmission electron microscopy. The octopus response against OsHV-1 was evaluated by gene expression of previously reported transcripts involved in immune response in C. gigas suggesting that immune defences in octopus are also activated after exposure to OsHV-1.
Collapse
Affiliation(s)
- Maria Prado-Alvarez
- Marine Molecular Pathobiology Group, Marine Research Institute, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Pablo García-Fernández
- Marine Molecular Pathobiology Group, Marine Research Institute, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Nicole Faury
- IFREMER, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Carlos Azevedo
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Benjamin Morga
- IFREMER, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Camino Gestal
- Marine Molecular Pathobiology Group, Marine Research Institute, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
10
|
Vincent-Hubert F, Wacrenier C, Morga B, Lozach S, Quenot E, Mège M, Lecadet C, Gourmelon M, Hervio-Heath D, Le Guyader FS. Passive Samplers, a Powerful Tool to Detect Viruses and Bacteria in Marine Coastal Areas. Front Microbiol 2021. [PMID: 33708186 DOI: 10.3389/fmicb.2021.631174/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The detection of viruses and bacteria which can pose a threat either to shellfish health or shellfish consumers remains difficult. The current detection methods rely on point sampling of water, a method that gives a snapshot of the microorganisms present at the time of sampling. In order to obtain better representativeness of the presence of these microorganisms over time, we have developed passive sampling using the adsorption capacities of polymer membranes. Our objectives here were to assess the feasibility of this methodology for field detection. Different types of membrane were deployed in coastal waters over 2 years and the microorganisms tested using qPCR were: human norovirus (NoV) genogroups (G)I and II, sapovirus, Vibrio spp. and the species Vibrio alginolyticus, V. cholerae, V. vulnificus, and V. parahaemolyticus, OsHV-1 virus, and bacterial markers of fecal contamination. NoV GII, Vibrio spp., and the AllBac general Bacteroidales marker were quantified on the three types of membrane. NoV GII and OsHV-1 viruses followed a seasonal distribution. All membranes were favorable for NoV GII detection, while Zetapor was more adapted for OsHV-1 detection. Nylon was more adapted for detection of Vibrio spp. and the AllBac marker. The quantities of NoV GII, AllBac, and Vibrio spp. recovered on membranes increased with the duration of exposure. This first application of passive sampling in seawater is particularly promising in terms of an early warning system for the prevention of contamination in oyster farming areas and to improve our knowledge on the timing and frequency of disease occurence.
Collapse
Affiliation(s)
| | | | - Benjamin Morga
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques, LGPMM/SG2M, La Tremblade, France
| | - Solen Lozach
- Ifremer, Laboratoire de Microbiologie, LSEM/SG2M, Nantes, France
| | | | - Mickaël Mège
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques, LGPMM/SG2M, La Tremblade, France
| | - Cyrielle Lecadet
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques, LGPMM/SG2M, La Tremblade, France
| | | | | | | |
Collapse
|
11
|
Agnew MV, Friedman CS, Langdon C, Divilov K, Schoolfield B, Morga B, Degremont L, Dhar AK, Kirkland P, Dumbauld B, Burge CA. Differential Mortality and High Viral Load in Naive Pacific Oyster Families Exposed to OsHV-1 Suggests Tolerance Rather than Resistance to Infection. Pathogens 2020; 9:E1057. [PMID: 33348814 PMCID: PMC7766980 DOI: 10.3390/pathogens9121057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Pacific oysters, Crassostrea gigas, are one of the most productive aquaculture species in the world. However, they are threatened by the spread of Ostreid herpesvirus-1 (OsHV-1) and its microvariants (collectively "µvars"), which cause mass mortalities in all life stages of Pacific oysters globally. Breeding programs have been successful in reducing mortality due to OsHV-1 variants following viral outbreaks; however, an OsHV-1-resistant oyster line does not yet exist in the United States (US), and it is unknown how OsHV-1 µvars will affect US oyster populations compared to the current variant, which is similar to the OsHV-1 reference, found in Tomales Bay, CA. The goals of this study were to investigate the resistance of C. gigas juveniles produced by the Molluscan Broodstock Program (MBP) to three variants of OsHV-1: a California reference OsHV-1, an Australian µvar, and a French µvar. This is the first study to directly compare OsHV-1 µvars to a non-µvar. The survival probability of oysters exposed to the French (FRA) or Australian (AUS) µvar was significantly lower (43% and 71%, respectively) than to the reference variant and controls (96%). No oyster family demonstrated resistance to all three OsHV-1 variants, and many surviving oysters contained high copy numbers of viral DNA (mean ~3.53 × 108). These results indicate that the introduction of OsHV-1 µvars could have substantial effects on US Pacific oyster aquaculture if truly resistant lines are not achieved, and highlight the need to consider resistance to infection in addition to survival as traits in breeding programs to reduce the risk of the spread of OsHV-1 variants.
Collapse
Affiliation(s)
- M. Victoria Agnew
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA;
| | - Carolyn S. Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Christopher Langdon
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Newport, OR 97365, USA; (C.L.); (K.D.); (B.S.)
| | - Konstantin Divilov
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Newport, OR 97365, USA; (C.L.); (K.D.); (B.S.)
| | - Blaine Schoolfield
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Newport, OR 97365, USA; (C.L.); (K.D.); (B.S.)
| | - Benjamin Morga
- Ifremer, SG2M, LGPMM, 17390 La Tremblade, France; (B.M.); (L.D.)
| | - Lionel Degremont
- Ifremer, SG2M, LGPMM, 17390 La Tremblade, France; (B.M.); (L.D.)
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Peter Kirkland
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia;
| | - Brett Dumbauld
- Hatfield Marine Science Center, USDA-ARS, Newport, OR 97365, USA;
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA;
| |
Collapse
|
12
|
Lassudrie M, Hégaret H, Wikfors GH, da Silva PM. Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103660. [PMID: 32145294 DOI: 10.1016/j.dci.2020.103660] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Bivalves were long thought to be "symptomless carriers" of marine microalgal toxins to human seafood consumers. In the past three decades, science has come to recognize that harmful algae and their toxins can be harmful to grazers, including bivalves. Indeed, studies have shown conclusively that some microalgal toxins function as active grazing deterrents. When responding to marine Harmful Algal Bloom (HAB) events, bivalves can reject toxic cells to minimize toxin and bioactive extracellular compound (BEC) exposure, or ingest and digest cells, incorporating nutritional components and toxins. Several studies have reported modulation of bivalve hemocyte variables in response to HAB exposure. Hemocytes are specialized cells involved in many functions in bivalves, particularly in immunological defense mechanisms. Hemocytes protect tissues by engulfing or encapsulating living pathogens and repair tissue damage caused by injury, poisoning, and infections through inflammatory processes. The effects of HAB exposure observed on bivalve cellular immune variables have raised the question of possible effects on susceptibility to infectious disease. As science has described a previously unrecognized diversity in microalgal bioactive substances, and also found a growing list of infectious diseases in bivalves, episodic reports of interactions between harmful algae and disease in bivalves have been published. Only recently, studies directed to understand the physiological and metabolic bases of these interactions have been undertaken. This review compiles evidence from studies of harmful algal effects upon bivalve shellfish that establishes a framework for recent efforts to understand how harmful algae can alter infectious disease, and particularly the fundamental role of cellular immunity, in modulating these interactions. Experimental studies reviewed here indicate that HABs can modulate bivalve-pathogen interactions in various ways, either by increasing bivalve susceptibility to disease or conversely by lessening infection proliferation or transmission. Alteration of immune defense and global physiological distress caused by HAB exposure have been the most frequent reasons identified for these effects on disease. Only few studies, however, have addressed these effects so far and a general pattern cannot be established. Other mechanisms are likely involved but are under-studied thus far and will need more attention in the future. In particular, the inhibition of bivalve filtration by HABs and direct interaction between HABs and infectious agents in the seawater likely interfere with pathogen transmission. The study of these interactions in the field and at the population level also are needed to establish the ecological and economical significance of the effects of HABs upon bivalve diseases. A more thorough understanding of these interactions will assist in development of more effective management of bivalve shellfisheries and aquaculture in oceans subjected to increasing HAB and disease pressures.
Collapse
Affiliation(s)
| | - Hélène Hégaret
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, Milford, CT, 0640, USA
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| |
Collapse
|
13
|
Martínez-García MF, Grijalva-Chon JM, Castro-Longoria R, Re-Vega ED, Varela-Romero A, Chávez-Villalba JE. Prevalence and genotypic diversity of ostreid herpesvirus type 1 in Crassostrea gigas cultured in the Gulf of California, Mexico. DISEASES OF AQUATIC ORGANISMS 2020; 138:185-194. [PMID: 32213666 DOI: 10.3354/dao03462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In bivalve mollusk aquaculture, massive disease outbreaks with high mortality and large economic losses can occur, as in northwest Mexico in the 1990s. A range of pathogens can affect bivalves; one of great concern is ostreid herpesvirus 1 (OsHV-1), of which there are several strains. This virus has been detected in the Gulf of California in occasional or sporadic samplings, but to date, there have been few systematic studies. Monthly samples of Crassostrea gigas, water, and sediment were taken in the La Cruz coastal lagoon and analyzed by PCR. The native mollusk, Dosinia ponderosa, which lives outside the lagoon, was sampled as a control. The virus was found throughout the year only in C. gigas, with prevalence up to 60%. In total, 9 genotype variants were detected, and genetic analysis suggests that linear genotypic evolution has occurred from strain JF894308, present in La Cruz in 2011. There has been no evidence of the entry of new viral genotypes in the recent past, thus confinement of the virus within the lagoons of the Gulf of California could promote a native genotypic diversity in the short term.
Collapse
|
14
|
Liu O, Paul-Pont I, Rubio A, Dhand N, Whittington RJ. Detection of ostreid herpesvirus-1 in plankton and seawater samples at an estuary scale. DISEASES OF AQUATIC ORGANISMS 2020; 138:1-15. [PMID: 32132267 DOI: 10.3354/dao03445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ostreid herpesvirus-1 (OsHV-1) is known to associate with particles in seawater, leading to infection and disease in the Pacific oyster Crassostrea gigas. The estuarine environment is highly complex and changeable, and this needs to be considered when collecting environmental samples for pathogen detection. The aims of this study were to (1) compare different aspects of collecting natural seawater and plankton samples for detection of OsHV-1 DNA and (2) determine whether detection of OsHV-1 DNA in such environmental samples has merit for disease risk prediction. The results of one experiment suggest that sampling on the outgoing tide may improve the detection of OsHV-1 DNA in seawater and plankton tow samples (odds ratio 2.71). This statistical comparison was not possible in 2 other experiments. The method (plankton tow or beta bottle) and depth of collection (range: 250-1250 mm) had no effect on the likelihood of detection of OsHV-1. OsHV-1 DNA was found at low concentrations in plankton tow and seawater samples, and only when outbreaks of mortality associated with OsHV-1 were observed in nearby experimental or farmed populations of C. gigas. This suggests that single point in time environmental samples of seawater or plankton are not sufficient to rule out the presence of OsHV-1 in an estuary. The association of OsHV-1 with particles in seawater needs to be better understood in order to determine whether more selective and sensitive methods can be devised to detect it, before environmental samples can be reliably used in disease risk prediction.
Collapse
Affiliation(s)
- Olivia Liu
- School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
15
|
Different in vivo growth of ostreid herpesvirus 1 at 18 °C and 22 °C alters mortality of Pacific oysters (Crassostrea gigas). Arch Virol 2019; 164:3035-3043. [PMID: 31602543 DOI: 10.1007/s00705-019-04427-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/09/2019] [Indexed: 01/29/2023]
Abstract
Seasonally recurrent outbreaks of mass mortality in Pacific oysters (Crassostrea gigas) caused by microvariant genotypes of ostreid herpesvirus 1 (OsHV-1) occur in Europe, New Zealand and Australia. The incubation period for OsHV-1 under experimental conditions is 48-72 hours and depends on water temperature, as does the mortality. An in vivo growth curve for OsHV-1 was determined by quantifying OsHV-1 DNA at 10 time points between 2 and 72 hours after exposure to OsHV-1. The peak replication rate was the same at 18 °C and 22 °C; however, there was a longer period of amplification leading to a higher peak concentration at 22 °C (2.34 × 107 copies/mg at 18 hours) compared to 18 °C (1.38 × 105 copies/mg at 12 hours). The peak viral concentration preceded mortality by 72 hours and 20 hours at 18 °C and 22 °C, respectively. Cumulative mortality to day 14 was 45.9% at 22 °C compared to 0.3% at 18 °C. The prevalence of OsHV-1 infection after 14 days at 18 °C was 33.3%. No mortality from OsHV-1 occurred when the water temperature in tanks of oysters challenged at 18 °C was increased to 22 °C for 14 days. The influence of water temperature prior to exposure to OsHV-1 and during the initial virus replication is an important determinant of the outcome of infection in C. gigas.
Collapse
|
16
|
Whittington RJ, Paul-Pont I, Evans O, Hick P, Dhand NK. Counting the dead to determine the source and transmission of the marine herpesvirus OsHV-1 in Crassostrea gigas. Vet Res 2018; 49:34. [PMID: 29636093 PMCID: PMC5891919 DOI: 10.1186/s13567-018-0529-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023] Open
Abstract
Marine herpesviruses are responsible for epizootics in economically, ecologically and culturally significant taxa. The recent emergence of microvariants of Ostreid herpesvirus 1 (OsHV-1) in Pacific oysters Crassostrea gigas has resulted in socioeconomic losses in Europe, New Zealand and Australia however, there is no information on their origin or mode of transmission. These factors need to be understood because they influence the way the disease may be prevented and controlled. Mortality data obtained from experimental populations of C. gigas during natural epizootics of OsHV-1 disease in Australia were analysed qualitatively. In addition we compared actual mortality data with those from a Reed–Frost model of direct transmission and analysed incubation periods using Sartwell’s method to test for the type of epizootic, point source or propagating. We concluded that outbreaks were initiated from an unknown environmental source which is unlikely to be farmed oysters in the same estuary. While direct oyster-to-oyster transmission may occur in larger oysters if they are in close proximity (< 40 cm), it did not explain the observed epizootics, point source exposure and indirect transmission being more common and important. A conceptual model is proposed for OsHV-1 index case source and transmission, leading to endemicity with recurrent seasonal outbreaks. The findings suggest that prevention and control of OsHV-1 in C. gigas will require multiple interventions. OsHV-1 in C. gigas, which is a sedentary animal once beyond the larval stage, is an informative model when considering marine host-herpesvirus relationships.
Collapse
Affiliation(s)
| | - Ika Paul-Pont
- School of Veterinary Science, University of Sydney, Camden, NSW, 2570, Australia.,Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Olivia Evans
- School of Veterinary Science, University of Sydney, Camden, NSW, 2570, Australia.,Department of Agriculture and Water Resources, Canberra, ACT, 2601, Australia
| | - Paul Hick
- School of Veterinary Science, University of Sydney, Camden, NSW, 2570, Australia
| | - Navneet K Dhand
- School of Veterinary Science, University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
17
|
Recent Advances in Nanoparticle Concentration and Their Application in Viral Detection Using Integrated Sensors. SENSORS 2017; 17:s17102316. [PMID: 29019959 PMCID: PMC5677234 DOI: 10.3390/s17102316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
Early disease diagnostics require rapid, sensitive, and selective detection methods for target analytes. Specifically, early viral detection in a point-of-care setting is critical in preventing epidemics and the spread of disease. However, conventional methods such as enzyme-linked immunosorbent assays or cell cultures are cumbersome and difficult for field use due to the requirements of extensive lab equipment and highly trained personnel, as well as limited sensitivity. Recent advances in nanoparticle concentration have given rise to many novel detection methodologies, which address the shortcomings in modern clinical assays. Here, we review the primary, well-characterized methods for nanoparticle concentration in the context of viral detection via diffusion, centrifugation and microfiltration, electric and magnetic fields, and nano-microfluidics. Details of the concentration mechanisms and examples of related applications provide valuable information to design portable, integrated sensors. This study reviews a wide range of concentration techniques and compares their advantages and disadvantages with respect to viral particle detection. We conclude by highlighting selected concentration methods and devices for next-generation biosensing systems.
Collapse
|
18
|
Detection of Ostreid herpesvirus -1 microvariants in healthy Crassostrea gigas following disease events and their possible role as reservoirs of infection. J Invertebr Pathol 2017; 148:20-33. [DOI: 10.1016/j.jip.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
|
19
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
20
|
Evans O, Paul-Pont I, Whittington RJ. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. DISEASES OF AQUATIC ORGANISMS 2017; 122:247-255. [PMID: 28117303 DOI: 10.3354/dao03078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ostreid herpesvirus 1 microvariants (OsHV-1) present a serious threat to the Australian Crassostrea gigas industry. Of great concern is the propensity for mortality due to the virus recurring each season in farmed oysters. However, the source of the virus in recurrent outbreaks remains unclear. Reference strain ostreid herpesvirus 1 (OsHV-1 ref) and other related variants have been detected in several aquatic invertebrate species other than C. gigas in Europe, Asia and the USA. The aim of this study was to confirm the presence or absence of OsHV-1 in a range of opportunistically sampled aquatic invertebrate species inhabiting specific locations within the Georges River estuary in New South Wales, Australia. OsHV-1 DNA was detected in samples of wild C. gigas, Saccostrea glomerata, Anadara trapezia, mussels (Mytilus spp., Trichomya hirsuta), whelks (Batillaria australis or Pyrazus ebeninus) and barnacles Balanus spp. collected from several sites between October 2012 and April 2013. Viral loads in non-ostreid species were consistently low, as was the prevalence of OsHV-1 DNA detection. Viral concentrations were highest in wild C. gigas and S. glomerata; the prevalence of detectable OsHV-1 DNA in these oysters reached approximately 68 and 43%, respectively, at least once during the study. These species may be important to the transmission and/or persistence of OsHV-1 in endemically infected Australian estuaries.
Collapse
Affiliation(s)
- Olivia Evans
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Camden, NSW 2570, Australia
| | | | | |
Collapse
|
21
|
Pernet F, Lupo C, Bacher C, Whittington RJ. Infectious diseases in oyster aquaculture require a new integrated approach. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0213. [PMID: 26880845 DOI: 10.1098/rstb.2015.0213] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Emerging diseases pose a recurrent threat to bivalve aquaculture. Recently, massive mortality events in the Pacific oyster Crassostrea gigas associated with the detection of a microvariant of the ostreid herpesvirus 1 (OsHV-1µVar) have been reported in Europe, Australia and New Zealand. Although the spread of disease is often viewed as a governance failure, we suggest that the development of protective measures for bivalve farming is presently held back by the lack of key scientific knowledge. In this paper, we explore the case for an integrated approach to study the management of bivalve disease, using OsHV-1 as a case study. Reconsidering the key issues by incorporating multidisciplinary science could provide a holistic understanding of OsHV-1 and increase the benefit of research to policymakers.
Collapse
Affiliation(s)
- Fabrice Pernet
- UMR LEMAR 6539 (UBO/CNRS/IRD/Ifremer), Ifremer, Technopôle Brest Iroise, BP 70, Plouzané 29280, France
| | - Coralie Lupo
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer-SG2M-LGPMM, Avenue Mus de Loup, La Tremblade 17390, France
| | - Cédric Bacher
- Dyneco/BENTHOS, Ifremer, Technopôle Brest Iroise, BP 70, Plouzané 29280, France
| | - Richard J Whittington
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, New South Wales 2570, Australia
| |
Collapse
|
22
|
Bueno R, Perrott M, Dunowska M, Brosnahan C, Johnston C. In situ hybridization and histopathological observations during ostreid herpesvirus-1-associated mortalities in Pacific oysters Crassostrea gigas. DISEASES OF AQUATIC ORGANISMS 2016; 122:43-55. [PMID: 27901503 DOI: 10.3354/dao03062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In a previous longitudinal study conducted during a mortality investigation associated with ostreid herpesvirus-1 (OsHV-1) microvariant in New Zealand Pacific oysters in 2010-2011, temporality of OsHV-1 nucleic acid detection by real-time PCR assay and onset of Pacific oyster mortality was observed. The present study further elucidated the role of OsHV-1 using an in situ hybridization (ISH) assay on sections of Pacific oysters collected from the same longitudinal study. Hybridization of the labelled probe with the target region of the OsHV-1 genome in infected cells was detected colorimetrically using nitro blue tetrazolium (NBT). OsHV-1 presence and distribution in spat indicated by the ISH signal was then compared with the existence of pathological changes in oyster tissues. Dark blue to purplish black NBT cell labelling was seen predominantly in the stroma of the mantle and gills at Day 5 post introduction to the farm. The distribution and location of ISH signals indicated the extent of OsHV-1-infected cells in multiple tissues. Histopathological abnormalities were mostly non-specific; however, a progressive pattern of increasingly widespread haemocytosis coincided with the appearance of OsHV-1-infected cells in spat collected at different time-points. The visualisation of an increasing number of OsHV-1-positive cells in spat prior to a marked increase in mortality indicated the strong likelihood of an on-going and active viral infection in some oysters. Further studies are recommended to elucidate OsHV-1 pathogenesis in Pacific oysters in association with other potentially causal variables, such as elevated temperature and interaction with Vibrio spp. bacteria.
Collapse
Affiliation(s)
- Rudolfo Bueno
- Animal Health Laboratory, Investigation, Diagnostic Centres and Response-Wallaceville, Ministry for Primary Industries, 66 Ward St, PO Box 40742, Upper Hutt 5018, New Zealand
| | | | | | | | | |
Collapse
|
23
|
Whittington R, Hick P, Evans O, Rubio A, Dhand N, Paul-Pont I. Pacific oyster mortality syndrome: a marine herpesvirus active in Australia. MICROBIOLOGY AUSTRALIA 2016. [DOI: 10.1071/ma16043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genotypes of Ostreid herpesvirus 1 (OsHV-1) known as microvariants cause the disease Pacific oyster mortality syndrome (POMS). Since its appearance in NSW in 2010, OsHV-1 microvariant has prevented the farming of Pacific oysters (Crassostrea gigas) in the affected estuaries near Sydney, following the initial massive outbreaks1,2. The arrival of the disease in southeast Tasmania in January 2016 has put the entire $53M industry in Australia in jeopardy3. The virus is a member of the Family Malacoherpesviridae4, which includes several invertebrate herpesviruses. The OsHV-1 genome consists of 207 439 base pairs, with organisation similar to that of mammalian herpesviruses. However, OsHV-1 contains two invertible unique regions (UL, 167.8 kbp; US, 3.4 kbp) each flanked by inverted repeats (TRL/IRL, 7.6 kbp; TRS/IRS, 9.8 kbp), with an additional unique sequence (X, 1.5 kbp) between IRL and IRS4. Unlike many herpesviruses which are host specific, OsHV-1 strains have been transmitted between marine bivalve species5 and the virus is transmitted indirectly. The virus may have relatively prolonged survival in the environment, has extremely high infection and case fatality rates, and latency is unproven. Along with pilchard herpesvirus6–8 and abalone ganglioneuritis virus9,10, it is part of a dawning reality that marine herpesviruses are among the most virulent of pathogens. Finding solutions for industry requires more than laboratory-based research.
Collapse
|