1
|
Yadav AK, Rajak KK, Kumar A, Bhatt M, Chakravarti S, Muthu S, Dubal ZB, Khulape S, Yousuf RW, Rai V, Kumar B, Muthuchelvan D, Gupta PK, Singh RP, Singh R. Replication competence of canine distemper virus in cell lines expressing signaling lymphocyte activation molecule (SLAM) of goat, sheep and dog origin. Microb Pathog 2021; 156:104940. [PMID: 33962006 DOI: 10.1016/j.micpath.2021.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Cellular receptors play an important role in entry and cell to cell spread of morbillivirus infections. The cells expressing SLAM and Nectin-4 have been used for successful and efficient isolation of canine distemper virus (CDV) in high titre. There are several methods for generation of cells expressing receptor molecules. Here, we have used a comparatively cheaper and easily available method, pcDNA 3.1 (+) for engineering Vero cells to express SLAM gene of goat, sheep and dog origin (Vero/Goat/SLAM (VGS), Vero/Sheep/SLAM (VSS) and Vero/Dog/SLAM (VDS), respectively). The generated cell lines were then compared to test their efficacy to support CDV replication. CDV could be grown in high titre in the cells expressing SLAM and a difference of log two could be recorded in virus titre between VDS and native Vero cells. Also, CDV could be grown in a higher titre in VDS as compared to VGS and VSS. The finding of this study supports the preferential use of SLAM expressing cells over the native Vero cells by CDV. Further, the higher titre of CDV in cells expressing dog-SLAM as compared to the cells expressing SLAM of non-CDV hosts (i.e. goat and sheep) points towards the preferential use of dog SLAM by the CDV and may be a plausible reason for differential susceptibility of small ruminants and Canines to CDV.
Collapse
Affiliation(s)
- Ajay Kumar Yadav
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India; ICAR -National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India.
| | - Ashok Kumar
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Mukesh Bhatt
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India; ICAR -National Organic Farming Research Institute, Tadong, Gangtok, Sikkim, 737102, India
| | - Soumendu Chakravarti
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Sankar Muthu
- Division of Parasitology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Z B Dubal
- Division of Veterinary Public Health, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Sagar Khulape
- ICAR-D-FMD, Indian Veterinary Research Institute (IVRI), Mukteswar, 263138, Nainital, Uttarakhand, India
| | - Raja Wasim Yousuf
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Vishal Rai
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Bablu Kumar
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Mukteswar, 263138, Nainital, Uttrakhand, India
| | - Praveen Kumar Gupta
- Division of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Rabindra Prasad Singh
- Division of Biological Products, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Rajkumar Singh
- Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
2
|
PPRV-induced novel miR-3 contributes to inhibit type I IFN production by targeting IRAK1. J Virol 2021; 95:JVI.02045-20. [PMID: 33504605 PMCID: PMC8103702 DOI: 10.1128/jvi.02045-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV has evolved several mechanisms to evade IFN-I responses. We report that a novel microRNA in goat PBMCs, novel miR-3, was upregulated by PPRV to facilitate virus infection. Furthermore, PPRV V protein alone was sufficient to induce novel miR-3 expression, and NF-κB and p38 pathway may involved in the induction of novel miR-3 during PPRV infection. Importantly, we demonstrated that novel miR-3 was a potent negative regulator of IFN-α production by targeting IRAK1, which resulted in the enhancement of PPRV infection. In addition, we found that PPRV infection can activated ISGs through IFN independent and IRF3 dependent pathway. Moreover, our data revealed that novel miR-3 mediated regulation of IFN-α production may involve in the differential susceptibility between goat and sheep to PPRV. Taken together, our findings identified a new strategy taken by PPRV to escape IFN-I-mediated antiviral immune responses by engaging cellular microRNA and, thus, improve our understanding of its pathogenesis.IMPORTANCE: Peste des petits ruminants virus (PPRV) induce in the hosts a transient but severe immunosuppression, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research has been explored, the mechanism underlying PPRV immune system evasion remains elusive. Our data provided the first direct evidence that novel microRNA-3 (novel miR-3) feedback inhibits type I IFN signaling when goat PBMCs are infected with PPRV vaccine strain N75/1, thus promoting the infection. In this study, the target of novel miR-3, IRAK1, which are important for PPRV-induced type I IFN production, have also been found. Moreover, we identified NF-κB and p38 pathways may involve in novel miR-3 induction in response to PPRV infection. Taken together, our research has provided new insight into understanding the effects of miRNA on host-virus interactions, and revealed a potential therapeutic target for antiviral intervention.
Collapse
|
3
|
Begum S, Nooruzzaman M, Hasnat A, Parvin MM, Parvin R, Islam MR, Chowdhury EH. Isolation of peste des petits ruminants virus using primary goat kidney cell culture from kidneys obtained at slaughter. Vet Med Sci 2020; 7:915-922. [PMID: 33326709 PMCID: PMC8136951 DOI: 10.1002/vms3.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Traditionally isolation of peste des petits ruminant virus (PPRV) is performed in Vero cells that takes several blind passages before observing typical cytopathic effects (CPEs). As an alternate, researchers have been using lamb kidney (LK) cells but day-old lambs are difficult to obtain and requires animal sacrifice. OBJECTIVE We established a primary goat kidney (GK) cell culture from the kidneys obtained at slaughter. METHODS The kidney of Black Bengal goats were collected from slaughter house and processed to make single cell suspension. The cells were resuspended in appropriate culture medium and maintained under optimum culture condition. RESULTS The 80% confluent monolayer of GK cells was obtained after 15-20 days post seeding. Upon infection with a field isolate of PPRV, the well-developed CPEs characterized by cell rounding, vacuolation in the cytoplasm and fusion of cells were observed after 48 hr post infection. Virus quantification in the culture supernatant revealed more viral RNA in GK cells than LK cells. The multicycle growth analysis of PPRV showed a steady increase in the virus loads in the culture supernatant of infected GK cells, suggesting an adaptation of the PPRV in GK cells. CONCLUSIONS The findings suggest that primary GK cells can be successfully prepared from the mature kidney cortical tissues and can be used for the isolation of PPRV. This system could reduce the unnecessary sacrifice of lambs or kids. Since kidneys of slaughtered goats are available throughout the year, using this protocol primary cell culture from mature goat kidney can provide primary cells to the laboratory throughout the year.
Collapse
Affiliation(s)
- Shahana Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Azmary Hasnat
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Murshida Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
4
|
Comerlato J, Albina E, Puech C, Franco AC, Minet C, Eloiflin RJ, Rodrigues V, Servan de Almeida R. Identification of a murine cell line that distinguishes virulent from attenuated isolates of the morbillivirus Peste des Petits Ruminants, a promising tool for virulence studies. Virus Res 2020; 286:198035. [PMID: 32461190 DOI: 10.1016/j.virusres.2020.198035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
Comprehensive pathogenesis studies on Peste des Petits Ruminants virus (PPRV) have been delayed so far by the absence of a small animal model reproducing the disease or an in vitro biological system revealing virulence differences. In this study, a mouse 10T1/2 cell line has been identified as presenting different susceptibility to virulent and attenuated PPRV strains. As evidenced by immunofluorescence test and RT-PCR, both virulent and attenuated PPR viruses penetrated and initiated the replication cycle in 10T1/2 cells, independently of the presence of the SLAM goat receptor. However, only virulent strains successfully completed their replication cycle while the vaccine strains did not. Since 10T1/2 cells are interferon-producing cells, the role of the type I interferon (type I IFN) response on this differentiated replication between virulent and attenuated strains was verified by stimulation or repression. Modulation of the type I IFN response did not improve the replication of the vaccine strains, indicating that other cell factor(s) not yet established may hinder the replication of attenuated PPRV in 10T1/2. This 10T1/2 cell line can be proposed as a new in vitro tool for PPRV-host interaction and virulence studies.
Collapse
Affiliation(s)
- Juliana Comerlato
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, ICBS UFRGS. Rua Sarmento Leite, 500, Porto Alegre. CEP 90050-170, RS, Brazil
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, Guadeloupe, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Carinne Puech
- INRA, UMR ASTRE, F-34398 Montpellier, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Ana C Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, ICBS UFRGS. Rua Sarmento Leite, 500, Porto Alegre. CEP 90050-170, RS, Brazil
| | - Cécile Minet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Valérie Rodrigues
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Renata Servan de Almeida
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Takeda M, Seki F, Yamamoto Y, Nao N, Tokiwa H. Animal morbilliviruses and their cross-species transmission potential. Curr Opin Virol 2020; 41:38-45. [PMID: 32344228 DOI: 10.1016/j.coviro.2020.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
Like measles virus (MV), whose primary hosts are humans, non-human animal morbilliviruses use SLAM (signaling lymphocytic activation molecule) and PVRL4 (nectin-4) expressed on immune and epithelial cells, respectively, as receptors. PVRL4's amino acid sequence is highly conserved across species, while that of SLAM varies significantly. However, non-host animal SLAMs often function as receptors for different morbilliviruses. Uniquely, human SLAM is somewhat specific for MV, but canine distemper virus, which shows the widest host range among morbilliviruses, readily gains the ability to use human SLAM. The host range for morbilliviruses is also modulated by their ability to counteract the host's innate immunity, but the risk of cross-species transmission of non-human animal morbilliviruses to humans could occur if MV is successfully eradicated.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | - Fumio Seki
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| | - Naganori Nao
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
6
|
Kinimi E, Odongo S, Muyldermans S, Kock R, Misinzo G. Paradigm shift in the diagnosis of peste des petits ruminants: scoping review. Acta Vet Scand 2020; 62:7. [PMID: 31996243 PMCID: PMC6988203 DOI: 10.1186/s13028-020-0505-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/18/2020] [Indexed: 11/10/2022] Open
Abstract
Peste des petits ruminants virus causes a highly contagious disease, which poses enormous economic losses in domestic animals and threatens the conservation of wild herbivores. Diagnosis remains a cornerstone to the Peste des petits ruminants Global Control and Eradication Strategy, an initiative of the World Organisation for Animal Health and the Food and Agriculture Organisation. The present review presents the peste des petits ruminants diagnostic landscape, including the practicality of commercially available diagnostic tools, prototype tests and opportunities for new technologies. The most common peste des petits ruminants diagnostic tools include; agar gel immunodiffusion, counter-immunoelectrophoresis, enzyme-linked immunosorbent assays, reverse transcription polymerase chain reaction either gel-based or real-time, reverse transcription loop-mediated isothermal amplification, reverse transcription recombinase polymerase amplification assays, immunochromatographic lateral flow devices, luciferase immunoprecipitation system and pseudotype-based assays. These tests vary in their technical demands, but all require a laboratory with exception of immunochromatographic lateral flow and possibly reverse transcription loop-mediated isothermal amplification and reverse transcription recombinase polymerase amplification assays. Thus, we are proposing an efficient integration of diagnostic tests for rapid and correct identification of peste des petits ruminants in endemic zones and to rapidly confirm outbreaks. Deployment of pen-side tests will improve diagnostic capacity in extremely remote settings and susceptible wildlife ecosystems, where transportation of clinical samples in the optimum cold chain is unreliable.
Collapse
|
7
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
8
|
A comparative phylogenomic analysis of peste des petits ruminants virus isolated from wild and unusual hosts. Mol Biol Rep 2019; 46:5587-5593. [PMID: 31317455 DOI: 10.1007/s11033-019-04973-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Peste des petits ruminants virus (PPRV) infects a wide range of domestic and wild ruminants, and occasionally unusual hosts such as camel, cattle and pig. Given their broad host-spectrum and disease endemicity in several developing countries, it is imperative to elucidate the viral evolutionary insights for their dynamic pathobiology and differential host-selection. For this purpose, a dataset of all available (n = 37) PPRV sequences originating from wild and unusual hosts was composed and in silico analysed. Compared to domestic small ruminant strains of same geographical region, phylogenomic and residue analysis of PPRV sequences originating from wild and unusual hosts revealed a close relationship between strains. A lack of obvious difference among the studied sequences and deduced residues suggests that these are the host factors that may play a role in their susceptibility to PPRV infection, immune response, pathogenesis, excretion patterns and potential clinical signs or resistance to clinical disease. Summarizing together, the comparative analysis enhances our understanding towards molecular epidemiology of the PPRV in wild and unusual hosts for appropriate intervention strategies particularly at livestock-wildlife interface.
Collapse
|
9
|
Liu F, Zhang Y, Li L, Zuo Y, Sun C, Xiaodong W, Wang Z. Rescue of eGFP-expressing small ruminant morbillivirus for identifying susceptibilities of eight mammalian cell lines to its infection. Virus Res 2019; 261:60-64. [DOI: 10.1016/j.virusres.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
|
10
|
Reverse Genetics for Peste des Petits Ruminants Virus: Current Status and Lessons to Learn from Other Non-segmented Negative-Sense RNA Viruses. Virol Sin 2018; 33:472-483. [PMID: 30456658 PMCID: PMC6335227 DOI: 10.1007/s12250-018-0066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious transboundary animal disease with a severe socio-economic impact on the livestock industry, particularly in poor countries where it is endemic. Full understanding of PPR virus (PPRV) pathobiology and molecular biology is critical for effective control and eradication of the disease. To achieve these goals, establishment of stable reverse genetics systems for PPRV would play a key role. Unfortunately, this powerful technology remains less accessible and poorly documented for PPRV. In this review, we discussed the current status of PPRV reverse genetics as well as the recent innovations and advances in the reverse genetics of other non-segmented negative-sense RNA viruses that could be applicable to PPRV. These strategies may contribute to the improvement of existing techniques and/or the development of new reverse genetics systems for PPRV.
Collapse
|
11
|
Yang B, Qi X, Chen Z, Chen S, Xue Q, Jia P, Wang T, Wang J. Binding and entry of peste des petits ruminants virus into caprine endometrial epithelial cells profoundly affect early cellular gene expression. Vet Res 2018; 49:8. [PMID: 29368634 PMCID: PMC5784595 DOI: 10.1186/s13567-018-0504-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Peste des petits ruminants virus (PPRV), the etiological agent of peste des petits ruminants (PPR), causes an acute or subacute disease in small ruminants. Although abortion is observed in an unusually large proportion of pregnant goats during outbreaks of PPR, the pathogenic mechanism underlying remains unclear. Here, the gene expression profile of caprine endometrial epithelial cells (EECs) infected with PPRV Nigeria 75/1 was determined by DNA microarray to investigate the cellular response immediately after viral entry. The microarray analysis revealed that a total of 146 genes were significantly dysregulated by PPRV internalization within 1 h post-infection (hpi). Of these, 85 genes were upregulated and 61 genes were downregulated. Most of these genes, including NFKB1A, JUNB, and IL1A, have not previously been reported in association with PPRV infection in goats. Following viral replication (24 hpi), the expression of 307 genes were significantly upregulated and that of 261 genes were downregulated. The data for the genes differentially expressed in EECs were subjected to a time sequence profile analysis, gene network analysis and pathway analysis. The gene network analysis showed that 13 genes (EIF2AK3, IL10, TLR4, ZO3, NFKBIB, RAC1, HSP90AA1, SMAD7, ARG2, JUNB, ZFP36, APP, and IL1A) were located in the core of the network. We clearly demonstrate that PPRV infection upregulates the expression of nectin-4 after 1 hpi, which peaked at 24 hpi in EECs. In conclusion, this study demonstrates the early cellular gene expression in the caprine endometrial epithelial cells after the binding and entry of PPRV.
Collapse
Affiliation(s)
- Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhijie Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Peilong Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Yang Y, Qin X, Song Y, Zhang W, Hu G, Dou Y, Li Y, Zhang Z. Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus. Virol J 2017; 14:24. [PMID: 28173845 PMCID: PMC5297045 DOI: 10.1186/s12985-017-0688-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. METHODS In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. RESULTS The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. CONCLUSIONS These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Yiming Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Gaowei Hu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Yanmin Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
13
|
Kumar N, Barua S, Riyesh T, Tripathi BN. Advances in peste des petits ruminants vaccines. Vet Microbiol 2017; 206:91-101. [PMID: 28161212 PMCID: PMC7130925 DOI: 10.1016/j.vetmic.2017.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that leads to high morbidity and mortality thereby results in devastating economic consequences to the livestock industry. PPR is currently endemic across most parts of Asia and Africa, the two regions with the highest concentration of poor people in the world. Sheep and goats in particularly contribute significantly towards the upliftment of livelihood of the poor and marginal farmers in these regions. In this context, PPR directly affecting the viability of sheep and goat husbandry has emerged as a major hurdle in the development of these regions. The control of PPR in these regions could significantly contribute to poverty alleviation, therefore, the Office International des Epizooties (OIE) and Food and Agricultural Organization (FAO) have targeted the control and eradication of PPR by 2030 a priority. In order to achieve this goal, a potent, safe and efficacious live-attenuated PPR vaccine with long-lasting immunity is available for immunoprophylaxis. However, the live-attenuated PPR vaccine is thermolabile and needs maintenance of an effective cold chain to deliver into the field. In addition, the infected animals cannot be differentiated from vaccinated animals. To overcome these limitations, some recombinant vaccines have been developed. This review comprehensively describes about the latest developments in PPR vaccines.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
14
|
Fakri F, Embarki T, Parida S, Bamouh Z, Jazouli M, Mahapatra M, Tadlaoui K, Fassi-Fihri O, Richardson CD, Elharrak M. Re-emergence of Peste des Petits Ruminants virus in 2015 in Morocco: Molecular characterization and experimental infection in Alpine goats. Vet Microbiol 2016; 197:137-141. [PMID: 27938675 DOI: 10.1016/j.vetmic.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 01/08/2023]
Abstract
Peste des Petits Ruminants (PPR) is a transboundary viral disease of small ruminants that causes huge economic losses in Africa, The Middle East and Asia. In Morocco, the first PPR outbreak was notified in 2008. Since then no cases were reported for seven years, probably due to three successive vaccination campaigns during 2008-2011 and close surveillance at the border areas. In June 2015, the disease re-emerged in Morocco, raising questions about the origin of the virus. The PPR virus was confirmed by qRT-PCR and virus was isolated from clinical samples on VeroNectin-4 cells. The disease was experimentally reproduced in Alpine goats using both sheep and goat derived outbreak isolates. Molecular characterization of the 2015 Moroccan PPR isolate confirmed the identity of the virus as lineage IV, closely related to the 2012 Algerian (KP793696) and 2012 Tunisian (KM068121) isolates and significantly distinct from the previous PPRV Morocco 2008 strain (HQ131927). Therefore this study confirms a new incursion of PPR virus in Morocco during 2015 and highlights the urgency of implementation of a common control strategy to combat PPR in Maghreb region in North Africa.
Collapse
Affiliation(s)
- F Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco; Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - T Embarki
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - S Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - M Jazouli
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - M Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - O Fassi-Fihri
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - C D Richardson
- IWK Health Centre, Canadian Center for Vaccinology, Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| |
Collapse
|
15
|
Lin LT, Richardson CD. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016; 8:v8090250. [PMID: 27657109 PMCID: PMC5035964 DOI: 10.3390/v8090250] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles “blind” to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
16
|
Abstract
Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.
Collapse
Affiliation(s)
- M D Baron
- The Pirbright Institute, Surrey, United Kingdom.
| | - A Diallo
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - R Lancelot
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - G Libeau
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| |
Collapse
|