1
|
Mbogning Fonkou MD, Kong JD. Leveraging machine learning and big data techniques to map the global patent landscape of phage therapy. Nat Biotechnol 2024; 42:1781-1791. [PMID: 39663481 DOI: 10.1038/s41587-024-02493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Affiliation(s)
| | - Jude Dzevela Kong
- Artificial Intelligence & Mathematical Modeling Lab (AIMM Lab), Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
- Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, Ontario, Canada.
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Toronto, Ontario, Canada.
- Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP), Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Harrison K, Snead D, Kilts A, Ammerman ML, Wigginton KR. The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13757-13766. [PMID: 37656816 PMCID: PMC10516120 DOI: 10.1021/acs.est.3c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Collapse
Affiliation(s)
- Katherine
R. Harrison
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Delaney Snead
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Kilts
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Michelle L. Ammerman
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Krista R. Wigginton
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Arnau V, Díaz-Villanueva W, Mifsut Benet J, Villasante P, Beamud B, Mompó P, Sanjuan R, González-Candelas F, Domingo-Calap P, Džunková M. Inference of the Life Cycle of Environmental Phages from Genomic Signature Distances to Their Hosts. Viruses 2023; 15:v15051196. [PMID: 37243281 DOI: 10.3390/v15051196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The environmental impact of uncultured phages is shaped by their preferred life cycle (lytic or lysogenic). However, our ability to predict it is very limited. We aimed to discriminate between lytic and lysogenic phages by comparing the similarity of their genomic signatures to those of their hosts, reflecting their co-evolution. We tested two approaches: (1) similarities of tetramer relative frequencies, (2) alignment-free comparisons based on exact k = 14 oligonucleotide matches. First, we explored 5126 reference bacterial host strains and 284 associated phages and found an approximate threshold for distinguishing lysogenic and lytic phages using both oligonucleotide-based methods. The analysis of 6482 plasmids revealed the potential for horizontal gene transfer between different host genera and, in some cases, distant bacterial taxa. Subsequently, we experimentally analyzed combinations of 138 Klebsiella pneumoniae strains and their 41 phages and found that the phages with the largest number of interactions with these strains in the laboratory had the shortest genomic distances to K. pneumoniae. We then applied our methods to 24 single-cells from a hot spring biofilm containing 41 uncultured phage-host pairs, and the results were compatible with the lysogenic life cycle of phages detected in this environment. In conclusion, oligonucleotide-based genome analysis methods can be used for predictions of (1) life cycles of environmental phages, (2) phages with the broadest host range in culture collections, and (3) potential horizontal gene transfer by plasmids.
Collapse
Affiliation(s)
- Vicente Arnau
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Wladimiro Díaz-Villanueva
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Jorge Mifsut Benet
- Department of Space, Earth and Environment, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | | - Beatriz Beamud
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
| | - Paula Mompó
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
| | - Rafael Sanjuan
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| |
Collapse
|
4
|
Hatori MN, Modavi C, Xu P, Weisgerber D, Abate AR. Dual-layered hydrogels allow complete genome recovery with nucleic acid cytometry. Biotechnol J 2022; 17:e2100483. [PMID: 35088927 PMCID: PMC9208836 DOI: 10.1002/biot.202100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Abstract
Targeting specific cells for sequencing is important for applications in cancer, microbiology, and infectious disease. Nucleic acid cytometry is a powerful approach for accomplishing this because it allows specific cells to be isolated based on sequence biomarkers that are otherwise impossible to detect. However, existing methods require specialized microfluidic devices, limiting adoption. Here, we describe a modified workflow that uses particle-templated emulsification and flow cytometry to conduct the essential steps of cell detection and sorting normally accomplished by microfluidics. Our microfluidic-free workflow allows facile isolation and sequencing of cells, viruses, and nucleic acids and thus provides a powerful enrichment approach for targeted sequencing applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Makiko N Hatori
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Peng Xu
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Daniel Weisgerber
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
5
|
Pryszlak A, Wenzel T, Seitz KW, Hildebrand F, Kartal E, Cosenza MR, Benes V, Bork P, Merten CA. Enrichment of gut microbiome strains for cultivation-free genome sequencing using droplet microfluidics. CELL REPORTS METHODS 2022; 2:None. [PMID: 35118437 PMCID: PMC8787643 DOI: 10.1016/j.crmeth.2021.100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
We report a droplet microfluidic method to target and sort individual cells directly from complex microbiome samples and to prepare these cells for bulk whole-genome sequencing without cultivation. We characterize this approach by recovering bacteria spiked into human stool samples at a ratio as low as 1:250 and by successfully enriching endogenous Bacteroides vulgatus to the level required for de novo assembly of high-quality genomes. Although microbiome strains are increasingly demanded for biomedical applications, a vast majority of species and strains are uncultivated and without reference genomes. We address this shortcoming by encapsulating complex microbiome samples directly into microfluidic droplets and amplifying a target-specific genomic fragment using a custom molecular TaqMan probe. We separate those positive droplets by droplet sorting, selectively enriching single target strain cells. Finally, we present a protocol to purify the genomic DNA while specifically removing amplicons and cell debris for high-quality genome sequencing.
Collapse
Affiliation(s)
- Anna Pryszlak
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Wenzel
- European Molecular Biology Laboratory, Heidelberg, Germany
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Falk Hildebrand
- European Molecular Biology Laboratory, Heidelberg, Germany
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
- Digital Biology, Earlham Institute, Norwich, UK
| | - Ece Kartal
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- University of Würzburg, Würzburg, Germany
| | - Christoph A. Merten
- European Molecular Biology Laboratory, Heidelberg, Germany
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Castillo YM, Forn I, Yau S, Morán XAG, Alonso-Sáez L, Arandia-Gorostidi N, Vaqué D, Sebastián M. Seasonal dynamics of natural Ostreococcus viral infection at the single cell level using VirusFISH. Environ Microbiol 2021; 23:3009-3019. [PMID: 33817943 DOI: 10.1111/1462-2920.15504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 μm. Ostreococcus has been extensively studied as a model system to investigate viral-host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, Spain
| | - Néstor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| |
Collapse
|
7
|
Clark IC, Delley CL, Sun C, Thakur R, Stott SL, Thaploo S, Li Z, Quintana FJ, Abate AR. Targeted Single-Cell RNA and DNA Sequencing With Fluorescence-Activated Droplet Merger. Anal Chem 2020; 92:14616-14623. [PMID: 33049138 PMCID: PMC8182774 DOI: 10.1021/acs.analchem.0c03059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biology, combinatorial chemical synthesis, and drug screening.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Rohan Thakur
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shannon L Stott
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Morella NM, Yang SC, Hernandez CA, Koskella B. Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. J Virol Methods 2018; 259:18-24. [DOI: 10.1016/j.jviromet.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/07/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
|
9
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
10
|
Sibbitts J, Sellens KA, Jia S, Klasner SA, Culbertson CT. Cellular Analysis Using Microfluidics. Anal Chem 2017; 90:65-85. [DOI: 10.1021/acs.analchem.7b04519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jay Sibbitts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kathleen A. Sellens
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Scott A. Klasner
- 12966
South
State Highway 94, Marthasville, Missouri 63357, United States
| | | |
Collapse
|
11
|
Clark IC, Abate AR. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. LAB ON A CHIP 2017; 17:2032-2045. [PMID: 28540956 PMCID: PMC6005652 DOI: 10.1039/c7lc00241f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nucleic acids encode the information of life, programming cellular functions and dictating many biological outcomes. Differentiating between cells based on their nucleic acid programs is, thus, a powerful way to unravel the genetic bases of many phenotypes. This is especially important considering that most cells exist in heterogeneous populations, requiring them to be isolated before they can be studied. Existing flow cytometry techniques, however, are unable to reliably recover specific cells based on nucleic acid content. Nucleic acid cytometry is a new field built on droplet microfluidics that allows robust identification, sorting, and sequencing of cells based on specific nucleic acid biomarkers. This review highlights applications that immediately benefit from the approach, biological questions that can be addressed for the first time with it, and considerations for building successful workflows.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
12
|
Haliburton JR, Kim SC, Clark IC, Sperling RA, Weitz DA, Abate AR. Efficient extraction of oil from droplet microfluidic emulsions. BIOMICROFLUIDICS 2017; 11:034111. [PMID: 28611871 PMCID: PMC5438281 DOI: 10.1063/1.4984035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Droplet microfluidic techniques can perform large numbers of single molecule and cell reactions but often require controlled, periodic flow to merge, split, and sort droplets. Here, we describe a simple method to convert aperiodic flows into periodic ones. Using an oil extraction module, we efficiently remove oil from emulsions to readjust the droplet volume fraction, velocity, and packing, producing periodic flows. The extractor acts as a universal adaptor to connect microfluidic modules that do not operate under identical flow conditions, such as droplet generators, incubators, and merger devices.
Collapse
Affiliation(s)
| | - S C Kim
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - I C Clark
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - R A Sperling
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
13
|
Fonager J, Stegger M, Rasmussen LD, Poulsen MW, Rønn J, Andersen PS, Fischer TK. A universal primer-independent next-generation sequencing approach for investigations of norovirus outbreaks and novel variants. Sci Rep 2017; 7:813. [PMID: 28400558 PMCID: PMC5429772 DOI: 10.1038/s41598-017-00926-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Norovirus (NoV) is the most common cause of non-bacterial gastroenteritis and is a major agent associated with outbreaks of gastroenteritis. Conventional molecular genotyping analysis of NoV, used for the identification of transmission routes, relies on standard typing methods (STM) by Sanger-sequencing of only a limited part of the NoV genome, which could lead to wrong conclusions. Here, we combined a NoV capture method with next generation sequencing (NGS), which increased the proportion of norovirus reads by ~40 fold compared to NGS without prior capture. Of 15 NoV samples from 6 single-genotype outbreaks, near full-genome coverage (>90%) was obtained from 9 samples. Fourteen polymerase (RdRp) and 15 capsid (cap) genotypes were identified compared to 12 and 13 for the STM, respectively. Analysis of 9 samples from two mixed-genotype outbreaks identified 6 RdRp and 6 cap genotypes (two at >90% NoV genome coverage) compared to 4 and 2 for the STM, respectively. Furthermore, complete or partial sequences from the P2 hypervariable region were obtained from 7 of 8 outbreaks and a new NoV recombinant was identified. This approach could therefore strengthen outbreak investigations and could be applied to other important viruses in stool samples such as hepatitis A and enterovirus.
Collapse
Affiliation(s)
- Jannik Fonager
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark.
| | - Marc Stegger
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Lasse Dam Rasmussen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Mille Weismann Poulsen
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jesper Rønn
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases and Centre for Global health, Clinical Unit, University of Southern Denmark, Odense, Denmark
| |
Collapse
|