1
|
Romeo MA, Specchiarello E, Mija C, Zulian V, Francalancia M, Maggi F, Garbuglia AR, Lapa D. Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus. Pathogens 2024; 13:1089. [PMID: 39770349 PMCID: PMC11676096 DOI: 10.3390/pathogens13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Rift Valley Fever virus (RVFV) is a mosquito-borne virus with high pathogenic potential in ruminants and humans. Due to its high potential for spreading, it is considered a priority pathogen, and it is included in the Bluepoint list of the World Health Organization (WHO). Given the high pathogenic potential of the virus, it is crucial to develop a rapid heat-mediated inactivation protocol to create a safer working environment, particularly in medical facilities that lack a biosafety level 3 laboratory required for direct handling of RVFV. Our results reveal the broad tissue tropism of RVFV, showing the virus's capacity for replication in various cell lines. In terms of the thermal stability of RVFV, our findings showed that a 70 °C heat treatment did not fully inactivate the virus within 15 min. However, when exposed to 80 °C and 95 °C, the virus was completely inactivated after 15 min and 5 min, respectively. Additionally, our results indicated that heat-treatment only slightly decreased the integrity of the RVFV genome whether there is a high or low number of viral RNA copies. Overall, the study established a straightforward protocol for heat inactivation that may be beneficial in handling clinical and research samples of RVFV.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Cosmina Mija
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospedalieri (IFO), 00144 Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| |
Collapse
|
2
|
Duytschaever G, Ströher PR, Fonseca K, van der Meer F, Melin AD. Effectiveness of TRIzol in Inactivating Animal Pathogens. APPLIED BIOSAFETY 2023; 28:230-241. [PMID: 38090354 PMCID: PMC10712369 DOI: 10.1089/apb.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Introduction Safe handling of biological samples sourced from wild ecosystems is a pressing concern for scientists in disparate fields, including ecology and evolution, OneHealth initiatives, bioresources, geography, veterinary medicine, conservation, and many others. This is especially relevant given the growing global research community and collaborative networks that often span international borders. Treatments to inactivate potential pathogens of concern during transportation and analysis of biospecimens while preserving molecular structures of interest are necessary. Objective We provide a detailed resource on the effectiveness and limitations of TRIzol™ Reagent, a product commonly used in molecular biology to inactivate bacterial and viral pathogens found in wild animals. Methods By literature review, we evaluate the mode of action of TRIzol Reagent and its main components on bacterial and viral structures. We also synthesize peer-reviewed literature on the effectiveness of TRIzol in inactivating a broad range of infectious bacteria and viruses. Key Findings TRIzol Reagent inactivation is based on phenol, chaotropic salts, and sodium acetate. We find evidence of widespread efficacy in deactivating bacteria and a broad range of enveloped viruses. The efficacy against a subset of potential pathogens, including some nonenveloped viruses, remains uncertain. Conclusion Available evidence suggests that TRIzol Reagent is effective in inactivating a broad spectrum of bacteria and viruses from cells, tissues, and liquids in biological samples when the matrices are exposed to at least 10 min at room temperature to the reagent. We highlight areas that require additional research and discuss implications for laboratory protocols.
Collapse
Affiliation(s)
- Gwen Duytschaever
- Department of Anthropology and Archaeology; Calgary, Alberta, Canada
| | | | - Kevin Fonseca
- Alberta Provincial Laboratory for Public Health; Calgary, Alberta, Canada
| | | | - Amanda D. Melin
- Department of Anthropology and Archaeology; Calgary, Alberta, Canada
- Department of Medical Genetics; and Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Bergren NA, Borland EM, Hartman DA, Kading RC. Laboratory demonstration of the vertical transmission of Rift Valley fever virus by Culex tarsalis mosquitoes. PLoS Negl Trop Dis 2021; 15:e0009273. [PMID: 33750981 PMCID: PMC8016277 DOI: 10.1371/journal.pntd.0009273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/01/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-transmitted virus with proven ability to emerge into naïve geographic areas. Limited field evidence suggests that RVFV is transmitted vertically from parent mosquito to offspring, but until now this mechanism has not been confirmed in the laboratory. Furthermore, this transmission mechanism has allowed for the prediction of RVFV epizootics based on rainfall patterns collected from satellite information. However, in spite of the relevance to the initiation of epizootic events, laboratory confirmation of vertical transmission has remained an elusive research aim for thirty-five years. Herein we present preliminary evidence of the vertical transmission of RVFV by Culex tarsalis mosquitoes after oral exposure to RVFV. Progeny from three successive gonotrophic cycles were reared to adults, with infectious RVFV confirmed in each developmental stage. Virus was detected in ovarian tissues of parental mosquitoes 7 days after imbibing an infectious bloodmeal. Infection was confirmed in progeny as early as the first gonotrophic cycle, with infection rates ranging from 2.0–10.0%. Virus titers among progeny were low, which may indicate a host mechanism suppressing replication. Rift Valley fever virus (RVFV) represents a significant threat in terms of its ability to emerge into naïve geographic areas. Furthermore, RVFV represents a global public health risk due to the ability of many mosquito species to transmit the virus and the ease with which the virus can be transported due to increased globalization. The vertical transmission of RVFV by mosquitoes has long been accepted by the research community due to limited field evidence. However, laboratory confirmation of vertical transmission has remained elusive for thirty-five years. We present the first laboratory evidence of vertical transmission of RVFV in the susceptible North American vector, Culex tarsalis. We present two studies that clearly show 1) the accumulation of RVFV antigen in the ovaries of infected mosquitoes and 2) the transmission of RVFV from parent to offspring immediately following an infectious blood meal.
Collapse
Affiliation(s)
- Nicholas A. Bergren
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Erin M. Borland
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel A. Hartman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Rebekah C. Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
- * E-mail:
| |
Collapse
|
4
|
More GK, Makola RT, Prinsloo G. In Vitro Evaluation of Anti-Rift Valley Fever Virus, Antioxidant and Anti-Inflammatory Activity of South African Medicinal Plant Extracts. Viruses 2021; 13:221. [PMID: 33572659 PMCID: PMC7912315 DOI: 10.3390/v13020221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Rift valley fever virus (RVFV) is a mosquito-borne virus endemic to sub-Saharan African countries, and the first sporadic outbreaks outside Africa were reported in the Asia-Pacific region. There are no approved therapeutic agents available for RVFV; however, finding an effective antiviral agent against RVFV is important. This study aimed to evaluate the antiviral, antioxidant and anti-inflammatory activity of medicinal plant extracts. Twenty medicinal plants were screened for their anti-RVFV activity using the cytopathic effect (CPE) reduction method. The cytotoxicity assessment of the extracts was done before antiviral screening using the MTT assay. Antioxidant and reactive oxygen/nitrogen species' (ROS/RNS) inhibitory activity by the extracts was investigated using non-cell-based and cell-based assays. Out of twenty plant extracts tested, eight showed significant potency against RVFV indicated by a decrease in tissue culture infectious dose (TCID50) < 105. The cytotoxicity of extracts showed inhibitory concentrations values (IC50) > 200 µg/mL for most of the extracts. The antioxidant activity and anti-inflammatory results revealed that extracts scavenged free radicals exhibiting an IC50 range of 4.12-20.41 µg/mL and suppressed the production of pro-inflammatory mediators by 60-80% in Vero cells. This study demonstrated the ability of the extracts to lower RVFV viral load and their potency to reduce free radicals.
Collapse
Affiliation(s)
- Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa;
| | - Raymond T. Makola
- Department of Biochemistry Microbiology and Biotechnology, School of Molecular and Life Science, University of Limpopo (Turfloop Campus) Sovenga, Polokwane 0727, South Africa;
- National institute of Communicable Diseases, Special Viral Pathogen/Arbovirus Unit, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Gerhard Prinsloo
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa;
| |
Collapse
|
5
|
Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, Solomon T, Griffiths MJ, Acosta-Serrano Á, Turtle L, Hughes GL. Methods of Inactivation of SARS-CoV-2 for Downstream Biological Assays. J Infect Dis 2020; 222:1462-1467. [PMID: 32798217 PMCID: PMC7529010 DOI: 10.1093/infdis/jiaa507] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/06/2020] [Indexed: 12/29/2022] Open
Abstract
The scientific community has responded to the coronavirus disease 2019 (COVID-19) pandemic by rapidly undertaking research to find effective strategies to reduce the burden of this disease. Encouragingly, researchers from a diverse array of fields are collectively working towards this goal. Research with infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is undertaken in high-containment laboratories; however, it is often desirable to work with samples at lower-containment levels. To facilitate the transfer of infectious samples from high-containment laboratories, we have tested methods commonly used to inactivate virus and prepare the sample for additional experiments. Incubation at 80°C, a range of detergents, Trizol reagents, and UV energies were successful at inactivating a high titer of SARS-CoV-2. Methanol and paraformaldehyde incubation of infected cells also inactivated the virus. These protocols can provide a framework for in-house inactivation of SARS-CoV-2 in other laboratories, ensuring the safe use of samples in lower-containment levels.
Collapse
Affiliation(s)
- Edward I Patterson
- Department of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tessa Prince
- National Institute for Health Research Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Enyia R Anderson
- Department of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aitor Casas-Sanchez
- Department of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Shirley L Smith
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Cintia Cansado-Utrilla
- Department of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tom Solomon
- National Institute for Health Research Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael J Griffiths
- National Institute for Health Research Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Department of Neurology, Alder Hey Children’s NHS Trust, Liverpool, United Kingdom
| | - Álvaro Acosta-Serrano
- Department of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lance Turtle
- National Institute for Health Research Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Tropical and Infectious Disease Unit, Liverpool University Hospitals Foundation NHS Trust, Liverpool, United Kingdom
| | - Grant L Hughes
- Department of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
6
|
Methods of inactivation of SARS-CoV-2 for downstream biological assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511399 DOI: 10.1101/2020.05.21.108035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The scientific community has responded to the COVID-19 pandemic by rapidly undertaking research to find effective strategies to reduce the burden of this disease. Encouragingly, researchers from a diverse array of fields are collectively working towards this goal. Research with infectious SARS-CoV-2 is undertaken in high containment laboratories, however, it is often desirable to work with samples at lower containment levels. To facilitate the transfer of infectious samples from high containment laboratories, we have tested methods commonly used to inactivate virus and prepare the sample for additional experiments. Incubation at 80°C, and a range of detergents and UV energies were successful at inactivating a high titre of SARS-CoV-2. These protocols can provide a framework for in house inactivation of SARS-CoV-2 in other laboratories, ensuring the safe use of samples in lower containment levels.
Collapse
|