1
|
Gomes KA, Degiuseppe JI, Stupka JA. Norovirus outbreaks in a nursery school in Buenos Aires, Argentina. Rev Argent Microbiol 2024:S0325-7541(24)00084-1. [PMID: 39227266 DOI: 10.1016/j.ram.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/11/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Norovirus (NoV) is the leading cause of outbreaks of acute gastroenteritis worldwide. These are non-enveloped viruses that are classified into 10 genogroups, of which genogroup I (GI), II (GII), IV (GIV), VIII (GVIII), and IX (GIX) are the ones that infect humans. Two outbreaks (A and B) of acute gastroenteritis that occurred in a nursery school are described. The first outbreak (A) occurred in November 2018, and the second (B) in February 2020. The detection of viral and bacterial pathogens was performed to study both outbreaks. Additionally, an epidemiological investigation of the outbreaks was conducted. In the analyzed fecal and vomit samples from both children and adults in the nursery school, NoV GII.4 [P16] Sydney 2012 and NoV GI.3 [P13] were detected in outbreaks A and B, respectively. Since the study of acute gastroenteritis outbreaks is underestimated in Argentina, it is necessary to design prevention, study, and control protocols, as well as to improve the outbreak notification system in our country.
Collapse
Affiliation(s)
- Karina A Gomes
- Viral Gastroenteritis Laboratory, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| | - Juan I Degiuseppe
- Viral Gastroenteritis Laboratory, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Juan A Stupka
- Viral Gastroenteritis Laboratory, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
2
|
Hensley C, Roier S, Zhou P, Schnur S, Nyblade C, Parreno V, Frazier A, Frazier M, Kiley K, O’Brien S, Liang Y, Mayer BT, Wu R, Mahoney C, McNeal MM, Petsch B, Rauch S, Yuan L. mRNA-Based Vaccines Are Highly Immunogenic and Confer Protection in the Gnotobiotic Pig Model of Human Rotavirus Diarrhea. Vaccines (Basel) 2024; 12:260. [PMID: 38543894 PMCID: PMC10974625 DOI: 10.3390/vaccines12030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.
Collapse
Affiliation(s)
- Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sandro Roier
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sofia Schnur
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Viviana Parreno
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Kelsey Kiley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Samantha O’Brien
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Yu Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Ruizhe Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Monica M. McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | - Susanne Rauch
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| |
Collapse
|
3
|
Pavan MF, Bok M, Betanzos San Juan R, Malito JP, Marcoppido GA, Franco DR, Militelo DA, Schammas JM, Bari SE, Stone W, López K, Porier DL, Muller JA, Auguste AJ, Yuan L, Wigdorovitz A, Parreño VG, Ibañez LI. SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice. Viruses 2024; 16:185. [PMID: 38399961 PMCID: PMC10892724 DOI: 10.3390/v16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
Collapse
Affiliation(s)
- María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Rafael Betanzos San Juan
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina;
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Gisela Ariana Marcoppido
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Daniela Ayelen Militelo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Sara Elizabeth Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - William Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Danielle LaBrie Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - John Anthony Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Albert Jonathan Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Viviana Gladys Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lorena Itat Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| |
Collapse
|
4
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
5
|
Nyblade C, Zhou P, Frazier M, Frazier A, Hensley C, Fantasia-Davis A, Shahrudin S, Hoffer M, Agbemabiese CA, LaRue L, Barro M, Patton JT, Parreño V, Yuan L. Human Rotavirus Replicates in Salivary Glands and Primes Immune Responses in Facial and Intestinal Lymphoid Tissues of Gnotobiotic Pigs. Viruses 2023; 15:1864. [PMID: 37766270 PMCID: PMC10534682 DOI: 10.3390/v15091864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.
Collapse
Affiliation(s)
- Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| | - Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| | - Ariana Fantasia-Davis
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| | - Shabihah Shahrudin
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (S.S.); (M.H.); (C.A.A.); (J.T.P.)
| | - Miranda Hoffer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (S.S.); (M.H.); (C.A.A.); (J.T.P.)
| | - Chantal Ama Agbemabiese
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (S.S.); (M.H.); (C.A.A.); (J.T.P.)
| | - Lauren LaRue
- GIVAX Inc.—RAVEN at RA Capital Management, Boston, MA 02116, USA; (L.L.); (M.B.)
| | - Mario Barro
- GIVAX Inc.—RAVEN at RA Capital Management, Boston, MA 02116, USA; (L.L.); (M.B.)
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; (S.S.); (M.H.); (C.A.A.); (J.T.P.)
| | - Viviana Parreño
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
- INCUINTA, IVIT (INTA-Conicet), Hurligham, Buenos Aires 1686, Argentina
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (C.N.); (P.Z.); (M.F.); (A.F.); (C.H.); (A.F.-D.); (V.P.)
| |
Collapse
|
6
|
Hensley C, Nyblade C, Zhou P, Parreño V, Ramesh A, Frazier A, Frazier M, Garrison S, Fantasia-Davis A, Cai R, Huang PW, Xia M, Tan M, Yuan L. Combined Live Oral Priming and Intramuscular Boosting Regimen with Rotarix ® and a Nanoparticle-Based Trivalent Rotavirus Vaccine Evaluated in Gnotobiotic Pig Models of G4P[6] and G1P[8] Human Rotavirus Infection. Vaccines (Basel) 2023; 11:927. [PMID: 37243031 PMCID: PMC10223133 DOI: 10.3390/vaccines11050927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Human rotavirus (HRV) is the causative agent of severe dehydrating diarrhea in children under the age of five, resulting in up to 215,000 deaths each year. These deaths almost exclusively occur in low- and middle-income countries where vaccine efficacy is the lowest due to chronic malnutrition, gut dysbiosis, and concurrent enteric viral infection. Parenteral vaccines for HRV are particularly attractive as they avoid many of the concerns associated with currently used live oral vaccines. In this study, a two-dose intramuscular (IM) regimen of the trivalent, nanoparticle-based, nonreplicating HRV vaccine (trivalent S60-VP8*), utilizing the shell (S) domain of the capsid of norovirus as an HRV VP8* antigen display platform, was evaluated for immunogenicity and protective efficacy against P[6] and P[8] HRV using gnotobiotic pig models. A prime-boost strategy using one dose of the oral Rotarix® vaccine, followed by one dose of the IM trivalent nanoparticle vaccine was also evaluated. Both regimens were highly immunogenic in inducing serum virus neutralizing, IgG, and IgA antibodies. The two vaccine regimens failed to confer significant protection against diarrhea; however, the prime-boost regimen significantly shortened the duration of virus shedding in pigs challenged orally with the virulent Wa (G1P[8]) HRV and significantly shortened the mean duration of virus shedding, mean peak titer, and area under the curve of virus shedding after challenge with Arg (G4P[6]) HRV. Prime-boost-vaccinated pigs challenged with P[8] HRV had significantly higher P[8]-specific IgG antibody-secreting cells (ASCs) in the spleen post-challenge. Prime-boost-vaccinated pigs challenged with P[6] HRV had significantly higher numbers of P[6]- and P[8]-specific IgG ASCs in the ileum, as well as significantly higher numbers of P[8]-specific IgA ASCs in the spleen post-challenge. These results suggest the promise of and warrant further investigation into the oral priming and parenteral boosting strategy for future HRV vaccines.
Collapse
Affiliation(s)
- Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Viviana Parreño
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), Instituto Nacional de Tecnología Agropecuaria (INTA)-CONICET, Buenos Aires C1033AAE, Argentina
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Sarah Garrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ariana Fantasia-Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ruiqing Cai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Peng-Wei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
7
|
A New Gnotobiotic Pig Model of P[6] Human Rotavirus Infection and Disease for Preclinical Evaluation of Rotavirus Vaccines. Viruses 2022; 14:v14122803. [PMID: 36560807 PMCID: PMC9784283 DOI: 10.3390/v14122803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Human rotavirus (HRV) is a leading cause of gastroenteritis in children under 5 years of age. Licensed vaccines containing G1P[8] and G1-4P[8] strains are less efficacious against newly emerging P[6] strains, indicating an urgent need for better cross protective vaccines. Here, we report our development of a new gnotobiotic (Gn) pig model of P[6] HRV infection and disease as a tool for evaluating potential vaccine candidates. The Arg HRV (G4P[6]) strain was derived from a diarrheic human infant stool sample and determined to be free of other viruses by metagenomic sequencing. Neonatal Gn pigs were orally inoculated with the stool suspension containing 5.6 × 105 fluorescent focus units (FFU) of the virus. Small and large intestinal contents were collected at post inoculation day 2 or 3. The virus was passaged 6 times in neonatal Gn pigs to generate a large inoculum pool. Next, 33-34 day old Gn pigs were orally inoculated with 10-2, 103, 104, and 105 FFU of Arg HRV to determine the optimal challenge dose. All pigs developed clinical signs of infection, regardless of the inoculum dose. The optimal challenge dose was determined to be 105 FFU. This new Gn pig model is ready to be used to assess the protective efficacy of candidate monovalent and multivalent vaccines against P[6] HRV.
Collapse
|
8
|
Gu K, Song Z, Zhou C, Ma P, Li C, Lu Q, Liao Z, Huang Z, Tang Y, Li H, Zhao Y, Yan W, Lei C, Wang H. Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella Enteritidis in milk and in vivo colonization in chicken. J Nanobiotechnology 2022; 20:167. [PMID: 35361208 PMCID: PMC8973953 DOI: 10.1186/s12951-022-01376-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Background Salmonella Enteritidis (S. Enteritidis) being one of the most prevalent foodborne pathogens worldwide poses a serious threat to public safety. Prevention of zoonotic infectious disease and controlling the risk of transmission of S. Enteriditidis critically requires the evolution of rapid and sensitive detection methods. The detection methods based on nucleic acid and conventional antibodies are fraught with limitations. Many of these limitations of the conventional antibodies can be circumvented using natural nanobodies which are endowed with characteristics, such as high affinity, thermal stability, easy production, especially higher diversity. This study aimed to select the special nanobodies against S. Enteriditidis for developing an improved nanobody-horseradish peroxidase-based sandwich ELISA to detect S. Enteritidis in the practical sample. The nanobody-horseradish peroxidase fusions can help in eliminating the use of secondary antibodies labeled with horseradish peroxidase, which can reduce the time of the experiment. Moreover, the novel sandwich ELISA developed in this study can be used to detect S. Enteriditidis specifically and rapidly with improved sensitivity. Results This study screened four nanobodies from an immunized nanobody library, after four rounds of screening, using the phage display technology. Subsequently, the screened nanobodies were successfully expressed with the prokaryotic and eukaryotic expression systems, respectively. A sandwich ELISA employing the SE-Nb9 and horseradish peroxidase-Nb1 pair to capture and to detect S. Enteritidis, respectively, was developed and found to possess a detection limit of 5 × 104 colony forming units (CFU)/mL. In the established immunoassay, the 8 h-enrichment enabled the detection of up to approximately 10 CFU/mL of S. Enteriditidis in milk samples. Furthermore, we investigated the colonization distribution of S. Enteriditidis in infected chicken using the established assay, showing that the S. Enteriditidis could subsist in almost all parts of the intestinal tract. These results were in agreement with the results obtained from the real-time PCR and plate culture. The liver was specifically identified to be colonized with quite a several S. Enteriditidis, indicating the risk of S. Enteriditidis infection outside of intestinal tract. Conclusions This newly developed a sandwich ELISA that used the SE-Nb9 as capture antibody and horseradish peroxidase-Nb1 to detect S. Enteriditidis in the spike milk sample and to analyze the colonization distribution of S. Enteriditidis in the infected chicken. These results demonstrated that the developed assay is to be applicable for detecting S. Enteriditidis in the spiked milk in the rapid, specific, and sensitive way. Meanwhile, the developed assay can analyze the colonization distribution of S. Enteriditidis in the challenged chicken to indicate it as a promising tool for monitoring S. Enteriditidis in poultry products. Importantly, the SE-Nb1-vHRP as detection antibody can directly bind S. Enteritidis captured by SE-Nb9, reducing the use of commercial secondary antibodies and shortening the detection time. In short, the developed sandwich ELISA ushers great prospects for monitoring S. Enteritidis in food safety control and further commercial production. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01376-y.
Collapse
Affiliation(s)
- Kui Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Zengxu Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Changyu Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Peng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Chao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Liao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Yizhi Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Yu Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Wenjun Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China. .,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| |
Collapse
|