1
|
Li J, Du Y, Shi Q, Chen L, Gao X, Liu Y, Luo Y. Permeability-Engineered Compartmentation System-Enabled Digital PCR (PECS-dPCR): A Digital Platform toward Multistep Biomolecular Assays. Anal Chem 2024. [PMID: 39686596 DOI: 10.1021/acs.analchem.4c04270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Droplet-based digital PCR has emerged as a powerful platform for nucleic acid-based detection. However, the formation of droplet compartments and the subsequent amplification process in oil present significant drawbacks: instability under harsh thermal conditions, high background fluorescent noise inside droplets, and major difficulty in supporting multistep assays. Alternatively, droplets made of a hydrogel, or other advanced materials, have been adopted and demonstrate promising improvement over conventional droplet-based platforms. In this context, we present permeability-engineered compartmentation system-enabled digital PCR (PECS-dPCR), a novel digital platform that facilitates multistep biomolecular assays with thermal stability, minimized background noise, and long-term preservation capability. We achieve compartmentalization by forming a core-shell structure using the aqueous two-phase system (ATPS). The hydrogel shell provides exceptional mechanical strength and thermal stability to these compartments. The permeability of the shell can be fine-tuned to retain larger DNA targets while sieving out smaller ancillary molecules. Therefore, we can significantly improve the signal-to-noise ratio inside the compartments by washing out fluorescent background. Furthermore, these core-shell compartments remain intact in aqueous solution and are able to exchange materials with the ambient environment. This critical feature offers the capability to execute multistep assays in simple operational settings, enabling the demonstration of multitarget single-bacteria quantification in our platform. We further show that the assay can be paused with samples preserved for >2 weeks between different detection steps thanks to the excellent biochemical stability offered by the core-shell compartments. We envision PECS-dPCR becoming a versatile platform supporting multiple-reaction-step digital assays, offering high-quality detection signals and long-term stability.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Du
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingyuan Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuli Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Watanuki S, Bao A, Saitou E, Shoji K, Izawa M, Okami M, Matsumoto Y, Aida Y. BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting pol Region. Pathogens 2024; 13:1111. [PMID: 39770370 PMCID: PMC11677995 DOI: 10.3390/pathogens13121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the "Liquid Dual-CoCoMo assay", that uses the coordination of common motif (CoCoMo) degenerate primers. This method can detect two genes simultaneously using a FAM-labeled minor groove binder (MGB) probe for the BLV long terminal repeat (LTR) region and a VIC-labeled MGB probe for the BoLA-DRA gene. In this study, we evaluated the diagnostic and analytical performance of the Dual-CoCoMo assay targeting the LTR region by comparing its performance against the commercially available Takara multiplex assay targeting the pol region. The diagnostic sensitivity and specificity of the Liquid Dual-CoCoMo assay based on the diagnostic results of the ELISA or original Single-CoCoMo qPCR were higher than those of the Takara multiplex assay. Furthermore, using a BLV molecular clone, the analytical sensitivity of our assay was higher than that of the Takara multiplex assay. Our results provide the first evidence that the diagnostic and analytical performances of the Liquid Dual-CoCoMo assay are better than those of commercially available multiplex assays that target the pol region.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
3
|
Watanuki S, Shoji K, Izawa M, Okami M, Ye Y, Bao A, Liu Y, Saitou E, Sugiyama K, Endo M, Matsumoto Y, Aida Y. Development of Dry and Liquid Duplex Reagent Mix-Based Polymerase Chain Reaction Assays as Novel Tools for the Rapid and Easy Quantification of Bovine Leukemia Virus (BLV) Proviral Loads. Viruses 2024; 16:1016. [PMID: 39066179 PMCID: PMC11281531 DOI: 10.3390/v16071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yingbao Ye
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Yulin Liu
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | | | - Michiru Endo
- Kumagaya Livestock Hygiene Service Center, Kumagaya 360-0813, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
4
|
Xing Y, Wang Y, Li X, Pang S. Digital microfluidics methods for nucleic acid detection: A mini review. BIOMICROFLUIDICS 2024; 18:021501. [PMID: 38456173 PMCID: PMC10917463 DOI: 10.1063/5.0180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Many serious infectious diseases have occurred throughout human history. Rapid and accurate detection as well as the isolation of infected individuals, through nucleic acid testing, are effective means of containing the spread of these viruses. However, traditional nucleic acid testing methods rely on complex machines and specialized personnel, making it difficult to achieve large-scale, high-throughput, and rapid detection. In recent years, digital microfluidics has emerged as a promising technology that integrates various fields, including electrokinetics, acoustics, optics, magnetism, and mechanics. By leveraging the advantages of these different technologies, digital microfluidic chips offer several benefits, such as high detection throughput, integration of multiple functions, low reagent consumption, and portability. This rapid and efficient testing is crucial in the timely detection and isolation of infected individuals to prevent the virus spread. Another advantage is the low reagent consumption of digital microfluidic chips. Compared to traditional methods, these chips require smaller volumes of reagents, resulting in cost savings and reduced waste. Furthermore, digital microfluidic chips are portable and can be easily integrated into point-of-care testing devices. This enables testing to be conducted in remote or resource-limited areas, where access to complex laboratory equipment may be limited. Onsite testing reduces the time and cost associated with sample transportation. In conclusion, bioassay technologies based on digital microfluidic principles have the potential to significantly improve infectious disease detection and control. By enabling rapid, high-throughput, and portable testing, these technologies enhance our ability to contain the spread of infectious diseases and effectively manage public health outbreaks.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu Province, People’s Republic of China
| | - Yan Wang
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, People’s Republic of China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong 518000, Shenzhen, People’s Republic of China
| | - Shangran Pang
- Jinzhong Normal Junior College, 189 Guang'an Street, Yuci District, Jinzhong 030600, Shanxi Province, People’s Republic of China
| |
Collapse
|
5
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|