1
|
Lopes L, Setia O, Aurshina A, Liu S, Hu H, Isaji T, Liu H, Wang T, Ono S, Guo X, Yatsula B, Guo J, Gu Y, Navarro T, Dardik A. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther 2018; 9:188. [PMID: 29996912 PMCID: PMC6042254 DOI: 10.1186/s13287-018-0938-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a severe complication of diabetes, preceding most diabetes-related amputations. DFUs require over US$9 billion for yearly treatment and are now a global public health issue. DFU occurs in the setting of ischemia, infection, neuropathy, and metabolic disorders that result in poor wound healing and poor treatment options. Recently, stem cell therapy has emerged as a new interventional strategy to treat DFU and appears to be safe and effective in both preclinical and clinical trials. However, variability in the stem cell type and origin, route and protocol for administration, and concomitant use of angioplasty confound easy interpretation and generalization of the results. METHODS The PubMed, Google Scholar, and EMBASE databases were searched and 89 preclinical and clinical studies were selected for analysis. RESULTS There was divergence between preclinical and clinical studies regarding stem cell type, origin, and delivery techniques. There was heterogeneous preclinical and clinical study design and few randomized clinical trials. Granulocyte-colony stimulating factor was employed in some studies but with differing protocols. Concomitant performance of angioplasty with stem cell therapy showed increased efficiency compared to either therapy alone. CONCLUSIONS Stem cell therapy is an effective treatment for diabetic foot ulcers and is currently used as an alternative to amputation for some patients without other options for revascularization. Concordance between preclinical and clinical studies may help design future randomized clinical trials.
Collapse
Affiliation(s)
- Lara Lopes
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Afsha Aurshina
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haidi Hu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haiyang Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Tun Wang
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Xiangjiang Guo
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tulio Navarro
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
| |
Collapse
|
2
|
Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds. Drug Discov Today 2015; 20:703-17. [PMID: 25603421 DOI: 10.1016/j.drudis.2015.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/10/2014] [Accepted: 01/12/2015] [Indexed: 01/07/2023]
Abstract
Diabetic wounds remain a global unsolved problem and the cost of diabetes-related amputations and diabetic wound treatment is approximately US$3 billion and US$9 billion per year, respectively. Diabetic foot ulcers (DFUs) occur in 15% of all patients with diabetes and precede 84% of all diabetes-related lower leg amputations. Currently, there is no satisfying treatment for these hard-to-heal-wounds. However, as we discuss here, experimental preclinical evidence for the successful use of adult stem cell therapies for diabetic wounds gives new hope for the development of effective treatments for use in the clinic.
Collapse
|
3
|
Abstract
Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium.
Collapse
Affiliation(s)
- Mónica Beato Coelho
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
5
|
Abstract
The liver diseases remain major causes of death all over the world. Although orthotopic liver transplantation is an effective treatment for end-stage liver diseases. However, shortage of healthy livers for transplantation worldwide have urgently limited the use of liver transplantation for acute and chronic liver diseases. Stem cells play an important role in the concert of liver regeneration. Hepatic stem cells have been shown experimentally to participate in liver proliferation. Furthermore, it has been postulated that hepatic stem cells are able to transdifferentiate into both hepatocytes and bole duct cells. These data indicate a possible role and therapeutic potential of hepatic stem cells in liver diseases. In this paper, we reviewed the application of stem cells in liver diseases.
Collapse
|
6
|
Wester T, Jørgensen JJ, Stranden E, Sandbæk G, Tjønnfjord G, Bay D, Kollerøs D, Kroese AJ, Brinchmann JE. Treatment with Autologous Bone Marrow Mononuclear Cells in Patients with Critical Lower Limb Ischaemia. A Pilot Study. Scand J Surg 2008; 97:56-62. [DOI: 10.1177/145749690809700108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background and Aims: Treatment with autologous, bone marrow mononuclear stem cells has shown effects in patients with chronic limb ischaemia in one randomized clinical study. The aim of the study was to test the potential effect of stem cell treatment in a strict defined group of patients with stable critical limb ischaemia (CLI). Design: A prospective, combined-centre pilot study. Material: Eight patients with CLI of the lower extremities, and without any other treatment options. Methods: Bone marrow cells were harvested from the patient's iliac crest and, after separation, injected into the calf muscles of the affected leg. Outcome was evaluated by digital subtraction angiography (DSA), visual analogue scale (VAS) and several non-invasive circulatory physiological tests. Results: There were no complications from the procedures. Two patients were amputated two months after cell injection. Five patients reported pain relief after four months. Five patients could be evaluated at eight months. According to VAS and physiological tests, they were all either stable or showed improvement. Conclusion: This method seems to be a safe option for treating patients with CLI. Inclusion of patients took a long time, mainly because many patients with CLI are offered endovascular treatment in our institution. While symptomatic improvement was found in individual patients, larger trials are required to investigate efficacy. This will probably require multi-centre participation.
Collapse
Affiliation(s)
- T. Wester
- Department of Vascular Surgery, Aker University Hospital
| | | | - E. Stranden
- Department of Vascular Diagnosis and Research, Aker University Hospital
| | - G. Sandbæk
- Department of Radiology, Oslo Vascular Centre, Aker University Hospital
| | - G. Tjønnfjord
- Department of Immunology, Rikshospitalet-Radiumhospitalet Medical Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - D. Bay
- Department of Radiology, Oslo Vascular Centre, Aker University Hospital
| | - D. Kollerøs
- Department of Anaesthesiology, Aker University Hospital
| | - A. J. Kroese
- Department of Vascular Surgery, Aker University Hospital
| | - J. E. Brinchmann
- Department of Immunology, Rikshospitalet-Radiumhospitalet Medical Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|