1
|
Mackay G, Allen J. Platelet-rich plasma applications in the larynx: snake oil or stupendous? Curr Opin Otolaryngol Head Neck Surg 2024:00020840-990000000-00159. [PMID: 39436958 DOI: 10.1097/moo.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW To explore and summarize recent work examining the use of platelet-rich plasma (PRP) applications for vocal fold disorder. RECENT FINDINGS Intrachordal PRP injections have recently emerged as a treatment option for patients with damage to the lamina propria of the vocal fold (scar, atrophy, sulcus and inflammatory lesions). Studies support significant improvements in patient-reported and clinician-reported outcomes, and objective phonatory parameters. PRP demonstrates a good safety profile, absence of immune reactions, affordable cost model and improvement in mucosal wave features with resultant improved voice quality up to 12 months following treatment. SUMMARY PRP injection of the vocal folds is a novel repurposing of a previously validated technique, and emerging data shows consistent results across multiple centres, increasing confidence in use of this freely available material. Current published studies confirm improved voice outcomes compared with pretreatment measures and high patient satisfaction. Further research is required to properly assign the role of and ideal candidate for PRP applications, and to delineate durability of treatment.
Collapse
Affiliation(s)
| | - Jacqui Allen
- Department of Surgery, University of Auckland
- Department of Otolaryngology, Te Whatu Ora Waitemata, Auckland, New Zealand
| |
Collapse
|
2
|
Li X, Hu R, Wang H, Xu W. SOCS3 Silencing Promotes Activation of Vocal Fold Fibroblasts via JAK2/STAT3 Signaling Pathway. Inflammation 2023:10.1007/s10753-023-01810-9. [PMID: 37154979 DOI: 10.1007/s10753-023-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a negative regulatory protein that has been identified as a key inhibitory regulator of JAK/STAT signaling pathway. However, the mutual regulatory relationship between SOCS3 and JAK2/STAT3 signaling pathway after vocal fold injury remains unclear. In this study, we used small interfering RNA (siRNA) to investigate the mechanism of SOCS3 regulating of fibroblasts through JAK2/STAT3 signaling pathway after vocal fold injury. Our data shows that SOCS3 silencing promotes the transformation of normal vocal fold fibroblasts (VFFs) into an fibrotic phenotype and activates the JAK2/STAT3 signaling pathway. JAK2 silencing significantly inhibits the increase in type I collagen and α-smooth muscle actin (α-SMA) secretion in VFFs induced by TGF-β but has no significant effect on normal VFFs. The silencing of SOCS3 and JAK2 reverses the fibrotic phenotype of VFFs induced by SOCS3 silencing. Therefore, we suggest that SOCS3 can affect the activation of vocal fold fibroblasts by regulating the JAK2/STAT3 signaling pathway after vocal fold injury. It provides a new insight for promoting the repair of vocal fold injury and preventing the formation of fibrosis.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Rong Hu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, 1 Dongjiaominxiang, 100730, Beijing, China.
| |
Collapse
|
3
|
Hasegawa T, Kanazawa T, Komazawa D, Konomi U, Hirosaki M, Watanabe Y. One Year Outcomes and Longitudinal Changes in Voice Improvement With Single High Dose Intracordal Trafermin Injections for Age-Related Vocal Fold Atrophy. J Voice 2023:S0892-1997(23)00110-8. [PMID: 37142528 DOI: 10.1016/j.jvoice.2023.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE Although intracordal trafermin injection has been performed in the treatment of age-related vocal fold atrophy, the effects of single high dose trafermin injections are unknown. In this study, we examined the 1 year outcomes and longitudinal changes in voice improvement with single high dose intracordal trafermin injections. STUDY DESIGN Retrospective study with approval by our Ethics Committee. METHODS The medical records of 34 patients who underwent single high dose (50ug per side) intracordal trafermin injections under local anesthesia for vocal fold atrophy were retrospectively reviewed at 1 month pre-injection and 1 month, 6 months and 1 year post injection. RESULTS Maximum phonation time (MPT), pitch range (PR), Japanese version of voice handicap index (VHI), grade of GRBAS evaluation, and jitter% improved significantly at 1-year post-injection compared to 1-month pre-injection. MPT and PR improved as early as 1-month post-injection and continued to improve most at 1-year post-injection. VHI showed negative progression from 6-months to 1-year post-injection, during which time the speaking fundamental frequency (SFF) changed to the high pitch in men. CONCLUSIONS Single high dose intracordal trafermin injections can be expected to improve voice in the early post-injection period and to maintain its effect for 1 year. SFF may play a role in worsening VHI in men. LEVEL OF EVIDENCE level 4.
Collapse
Affiliation(s)
- Tomohiro Hasegawa
- Tokyo Voice Center, International University of Health and Welfare, Tokyo, Japan
| | - Takeharu Kanazawa
- Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Ujimoto Konomi
- Voice and Dizziness Clinic Futakotamagawa Otolaryngology, Tokyo, Japan
| | - Mayu Hirosaki
- Tokyo Voice Center, International University of Health and Welfare, Tokyo, Japan
| | - Yusuke Watanabe
- Tokyo Voice Center, International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
4
|
Xie X, Miao B, Yao J, Chen Z. Silk fibroin-hydroxyapatite scaffolds promote the proliferation of adipose-derived mesenchymal stem cells by activating the ERK signal. J Biomater Appl 2023; 37:1767-1775. [PMID: 37001507 DOI: 10.1177/08853282231168730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Adipose-derived mesenchymal stem cell (Ad-MSC) with capacities of releasing trophic factors and chondrogenic differentiation was a promising candidate for tracheal reconstruction. Silk fibroin (SF)- hydroxyapatite (HA) scaffolds were fabricated by the freeze-drying method. And Ad-MSCs were co-cultured on the scaffolds for 14 days in vitro. The role of the SF-HA scaffold in regulating the adhesion, growth, and proliferation of Ad-MSCs, and its potential mechanisms were investigated. The identity of Ad-MSCs was confirmed by cell morphology, surface markers, and differentiation characteristics. Cell proliferation, viability, and morphology were observed via CCK-8, live/dead assay, and scanning electron microscopy (SEM). Gene mRNA and protein levels were examined using quantitative real-time polymerase chain reaction and western blotting, respectively. SF-HA scaffolds showed excellent properties of promoting Ad-MSCs adhesion, growth, and proliferation for at least 14 days. In the CCK-8 assay, the relative OD value of Ad-MSCs cultured on SF-HA scaffolds increased (p < 0.001). Furthermore, live/dead staining showed that the fluorescent coverage increased with time (p < 0.05). SEM also showed that 3 days after inoculation, the coverage of Ad-MSCs on the SF-HA scaffolds was 78.15%, increased to 92.91% on day 7, and reached a peak of 94.38% on day 14. Extracellular signal-regulated kinase (ERK) mRNA and phosphorylated ERK (pERK) protein expression increased at day 3 (p < 0.05), followed by a significant decline at day 7 (p < 0.05). And ERK mRNA expression was positively correlated with Ad-MSCs proliferation (p < 0.05). In summary, the SF-HA scaffold co-cultured with Ad-MSCs is a promising biomaterial for tracheal repair by activating the ERK signal pathway.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Bianliang Miao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and the Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Zhongchun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
5
|
Effect of SOCS3 on vocal fold fibroblast activation by regulating the JAK2/STAT3 signalling pathway. Tissue Cell 2022; 79:101965. [DOI: 10.1016/j.tice.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2022]
|
6
|
Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022; 10:3082. [PMID: 36551838 PMCID: PMC9775346 DOI: 10.3390/biomedicines10123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
Collapse
Affiliation(s)
- Wan-Chiew Ng
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Vocal fold (VF) fibrosis remains an insoluble problem in most cases, with a severe impact on vocal quality and effort. This review examines current investigations and research strands that explore the understanding of VF wound healing and applied treatments for the management of VF scar. RECENT FINDINGS Recent work focused on VF fibrosis has examined wound healing in the glottis, fibrosis-modifying medication, and tissue engineering approaches that span cytokine and growth factor therapy, scaffold and cell delivery platforms, seeded scaffolds, conditioned media and stem cell therapy. Many show promise and may deliver improvements in the wound bed favouring less fibrogenic healing patterns, ultimately with the goal of preserving or restoring VF vibration. Further collaborative research is required that examines combined approaches, long term outcomes, better three-dimensional modelling of cell-cell interactions and delivery modalities for molecular therapies. SUMMARY VF fibrosis research continues to expand and explore a variety of mechanistic pathways in order to understand VF healing and identify novel and complementary targets for manipulation. Many different approaches show promise and may also offer synergistic benefits. Research continues to strive for healing that more closely resembles true VF architecture and function.
Collapse
|
8
|
Rozier P, Maumus M, Bony C, Maria ATJ, Sabatier F, Jorgensen C, Guilpain P, Noël D. Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. Int J Mol Sci 2021; 22:ijms22136837. [PMID: 34202139 PMCID: PMC8269376 DOI: 10.3390/ijms22136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.
Collapse
Affiliation(s)
- Pauline Rozier
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Marie Maumus
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Claire Bony
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | | | - Florence Sabatier
- INSERM, INRA, C2VN, Aix Marseille University, 13005 Marseille, France;
| | - Christian Jorgensen
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France;
| | - Danièle Noël
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-04-73; Fax: +33-4-67-33-01-13
| |
Collapse
|